The Notional Plan for Sample Collections by the Perseverance Rover for Mars Sample Return

Christopher Herd1, Tanja Bosak2, Kathryn Stack3, Vivian Sun4, Sanjeev Gupta5, David Shuster6, Svetlana Shkolyar7, Benjamin Weiss8, Meenakshi Wadhwa9, Keyron Hickman-Lewis10, Sandra Siljeström11, Lisa Mayhew12, Elisabeth Hausrath13, Adrian Brown14, Kenneth Williford15, and Kenneth Farley16

1Univ Alberta
2MIT, Earth, Atmospheric and Planetary Sciences
3NASA Jet Propulsion Laboratory
4Jet Propulsion Laboratory
5Imperial College London
6University of California Berkeley
7NASA Goddard Space Flight Center
8MIT
9Arizona State University
10Natural History Museum
11RISE Research Institutes of Sweden
12University of Colorado at Boulder
13University of Nevada Las Vegas
14Plancius Research
15Blue Marble Space Institute of Science
16California Institute of Technology

November 21, 2022

Abstract

The NASA Mars 2020 Perseverance rover mission will collect a suite of scientifically compelling samples for return to Earth. On the basis of orbital data, the Mars 2020 science team* identified two notional sample caches to study (1) the geology of Jezero crater, collected during the prime mission and (2) the ancient crust outside of Jezero crater, collected during a possible extended mission. Jezero crater geology consists of well-preserved, Early Hesperian to Late Noachian deltaic and lacustrine deposits sourced from a river system that drained Noachian terrain. The crater floor comprises at least two distinct units of sedimentary or volcanic origin whose relationship to the deltaic deposits is presently unclear. Remotely-sensed data reveal signatures of carbonate+olivine and clay minerals within crater floor and crater margin units. Samples from within Jezero that comprise the prime mission notional sample collection thus include: crater floor units; fine- and coarse-grained delta facies, the former with potential to preserve organic matter and/or biosignatures, the latter to possibly constrain the type and timing of sediment deposition; chemical sediments with the potential to preserve biosignatures; a sample of crater rim bedrock; and at least one sample of regolith. The region of southern Nili Planum, directly outside the western rim of Jezero crater, is geologically distinct from Jezero crater and contains diverse Early or even Pre-Noachian lithologies, that may contain records of early planetary differentiation, magnetism, paleoclimate and habitability. The notional sample collection from this region will include: layered and other basement rocks; megabreccias, which may represent blocks of (pre-)Noachian crust; basement-hosted
hydrothermal fracture fill; olivine+carbonate rocks that are regionally significant and may be related to units within Jezero crater; and mafic cap unit rocks. The samples described are notional and may change with ongoing surface investigations. However, the samples we anticipate collecting align well with community priorities for Mars exploration, addressing geologic diversity, potential ancient biologic activity on Mars, planetary evolution, volatiles, and human health hazards. *Many other Mars 2020 team members were involved in this planning
Abstract Text:

The NASA Mars 2020 Perseverance rover mission will collect a suite of scientifically compelling samples for return to Earth. On the basis of orbital data, the Mars 2020 science team* identified two notional sample caches to study (1) the geology of Jezero crater, collected during the prime mission and (2) the ancient crust outside of Jezero crater, collected during a possible extended mission.

Jezero crater geology consists of well-preserved, Early Hesperian to Late Noachian deltaic and lacustrine deposits sourced from a river system that drained Noachian terrain. The crater floor comprises at least two distinct units of sedimentary or volcanic origin whose relationship to the deltaic deposits is presently unclear. Remotely-sensed data reveal signatures of carbonate+olivine and clay minerals within crater floor and crater margin units. Samples that comprise the prime mission notional cache will thus include: crater floor units; fine- and coarse-grained delta facies, the former with potential to preserve organic matter and/or biosignatures, the latter to possibly constrain the type and timing of sediment deposition; chemical sediments with the potential to preserve biosignatures; a sample of crater rim bedrock; and at least one sample of regolith.

The region of southern Nili Planum, directly outside the western rim of Jezero crater, is geologically distinct from Jezero crater and contains diverse Early or even Pre-Noachian lithologies, that may contain records of early planetary differentiation, magnetism, paleoclimate and habitability. The notional cache from this region will include: layered and other basement rocks; megabreccias, which may represent blocks of (pre-)Noachian crust excavated by the Isidis and/or other large impact events; basement-hosted hydrothermal fractures; olivine+carbonate
rocks that are regionally significant and may be related to units within Jezero crater; and a mafic cap unit.

The caches described are notional and may change with ongoing surface investigations. However, the samples we anticipate collecting align well with community priorities for Mars exploration, addressing geologic diversity, potential ancient biologic activity on Mars, planetary evolution, volatiles, and human health hazards.

Many other Mars 2020 team members were involved in this planning.

Session Selection:
P021. Mars Sample Return: Challenges and Advances in Planning for the First Samples from Another Planet

Invited Author?:
Yes

Submitter's E-mail Address:
herd@ualberta.ca

Abstract Title:
The Plan for Sampling: Perseverance Rover Notional Caches for Mars Sample Return

Requested Presentation Type:
Assigned by Program Committee (oral, eLightning or poster discussion session)

Previously Published?:
No

AGU On-Demand:
Yes

Abstract Payment:
Paid (agu-fm21-824461-8133-2308-1820-4657)

I do not want to be involved in the OSPA program as a judge (students will be able to opt-into the OSPA program in October).

First Presenting Author

Presenting Author

Christopher D K Herd
Primary Email: herd@ualberta.ca

Affiliation(s):
Univ Alberta
Edmonton AB T6G 2E3 (Canada)
Second Author

Tanja Bosak
Primary Email: tbosak@MIT.EDU

Affiliation(s):

MIT-EAPS
Cambridge MA 02139-0000 (United States)

Third Author

Kathryn Stack
Primary Email: kathryn.m.stack@jpl.nasa.gov

Affiliation(s):

NASA Jet Propulsion Laboratory
Pasadena CA (United States)

Fourth Author

Vivian Zheng Sun
Primary Email: vivian.sun@jpl.nasa.gov

Affiliation(s):

Jet Propulsion Laboratory
Pasadena CA (United States)

Fifth Author

Sanjeev Gupta
Primary Email: s.gupta@imperial.ac.uk

Affiliation(s):

Imperial College London
Earth Science and Engineering
London (United Kingdom)

Sixth Author

David L Shuster
Primary Email: dshuster@berkeley.edu

Affiliation(s):

University of California Berkeley
Department of Earth and Planetary Sciences
Berkeley CA 94720 (United States)

Seventh Author
Svetlana Shkolyar
Primary Email: sshkolyar@carnegiescience.edu

Affiliation(s):
- Blue Marble Space Institute of Science
 Seattle WA 20015-1305 (United States)
- NASA Goddard Space Flight Center
 Greenbelt MD (United States)

Eighth Author

Benjamin P Weiss
Primary Email: bpweiss@mit.edu

Affiliation(s):
- MIT
 Earth, Atmospheric and Planetary Sciences
 Cambridge MA 02139-0000 (United States)

Ninth Author

Meenakshi Wadhwa
Primary Email: Meenakshi.Wadhwa@asu.edu

Affiliation(s):
- Arizona State University
 Tempe 85287 (United States)

Tenth Author

Keyron Hickman-Lewis
Primary Email: keyron.hickman-lewis@cnrs-orleans.fr

Affiliation(s):
- Natural History Museum
 London (United Kingdom)

Eleventh Author

Sandra Siljeström
Primary Email: Sandra.Siljestrom@sp.se

Affiliation(s):
- RISE Research Institutes of Sweden
 Stockholm 114 28 (Sweden)

Twelfth Author
Lisa E Mayhew
Primary Email: lisa.mayhew@colorado.edu
Affiliation(s):
 University of Colorado at Boulder
 Department of Geological Sciences
 Boulder CO 80309 (United States)

Thirteenth Author

Adrian J Brown
Primary Email: adrian.j.brown@nasa.gov
Affiliation(s):
 Plancius Research
 Severna Park MD 21146 (United States)

Fourteenth Author

Kenneth H Williford
Primary Email: kenneth.h.williford@jpl.nasa.gov
Affiliation(s):
 Jet Propulsion Laboratory
 Pasadena CA (United States)

Fifteenth Author

Kenneth A Farley
Primary Email: farley@gps.caltech.edu
Affiliation(s):
 JPL/NASA/Caltech
 Pasadena CA 91109-8001 (United States)
 California Institute of Technology
 Pasadena CA (United States)

If necessary, you can make changes to your abstract submission
To access your submission in the future, point your browser to: User Portal
Your Abstract ID# is: 824461.
Any changes that you make will be reflected instantly in what is seen by the reviewers.
After the abstract proposal is submitted, you are not required to go through all submission steps to make edits. For example, click the "Authors" step in the Abstract Submission Control Panel to edit the Authors and then click save or submit.
When you have completed your submission, you may close this browser window or submit another abstract proposal: Call for Abstracts.
Tell us what you think of the abstract submission process