Groundwater Investigation Using Schlumberger Vertical Electrical Sounding (VES) in Baturraden Geothermal Working Area (GWA), Central Java, Indonesia

Katarina Herho1 and Sandy Herho2

1Geological Engineering Study Program, Faculty of Earth Technology and Energy, Trisakti University, Indonesia
2Weather and Climate Prediction Laboratory (WCPL), Bandung Institute of Technology (ITB), Indonesia

November 21, 2022

Abstract

Groundwater investigations are increasingly becoming important for Indonesia. It is natural resources for sustainable development of a region. In this study, PT Sejahtera Alam Energy conducted an investigation of subsurface conditions, especially related to groundwater potential, carried out by a resistivity investigation method by means of Vertical Electrical Sounding (VES) or Geoelectricity in Embung Area, Baturaden Geothermal Project, Pandansari Village, Paguyangan Subdistrict, Brebes Regency. This method is one of the subsurface estimation methods that is considered suitable for water investigations as well as in terms of accuracy as well as in terms of low cost and faster implementation time compared to other geophysical methods.
Groundwater Investigation Using Schlumberger Vertical Electrical Sounding (VES) in Baturaden Geothermal Working Area (GWA), Central Java, Indonesia

Katarina Evelyn Permata Herho, Sandy Hardian Susanto Herho

Geological Engineering Study Program, Faculty of Earth Technology and Energy, Trisakti University
Weather and Climate Prediction Laboratory (WCPL), Bandung Institute of Technology (ITB)

Introduction

Geological conditions based on the geological map of the Purwokerto sheet. The investigation area is located in the Purwokerto sheet, Indonesia, which is composed of volcanic lava deposits, tuffs, and volcaniclastic sandstone. The investigation was carried out in the Embung Area, Baturaden Geothermal Project, Pandansari Village, Paguyangan Subdistrict, Brebes Regency. This method is one of the subsurface estimation methods that is considered suitable for water investigations as well as in terms of accuracy as well as to reduce costs and time in comparison to other geophysical methods.

Geological condition based on the geological map of the Purwokerto sheet.

Location of the investigation included in the Mount Slamet Lava Formation which is composed of volcanic lava deposits, tuffs, and volcaniclastic sandstone.

Methods

Electric current (direct current) is flowed through two current electrodes, A and B, and the potential is measured between two potential electrodes, M and N. Measurement results of electrical values will be converted into rock types, the position of depth, and thickness.

In the Schlumberger configuration method, the arrangement of electrodes is set with certain distance values. This configuration method of potential electrodes M and N is placed between the current electrodes A and B. Ohm’s law is used as the basis for calculating the geoelectric probe in obtaining the resistance of the apparent type must be multiplied by the distance factor (K factor).

Results

The results of geoelectric measurements at the Embung Area location, Baturaden Geothermal Project, found the range of resistivity values between 20.97 and 6315.50 ohmmeters. The range is divided into certain intervals and can be interpreted as lithological layers.

<table>
<thead>
<tr>
<th>Interval Resistivity Range</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 200 ohmmeters</td>
<td>Sandstone</td>
</tr>
<tr>
<td>201 - 500 ohmmeters</td>
<td>Mudstone</td>
</tr>
<tr>
<td>501 - 1000 ohmmeters</td>
<td>Lava</td>
</tr>
<tr>
<td>1001 - 2000 ohmmeters</td>
<td>Tuff</td>
</tr>
<tr>
<td>2001 - 6315 ohmmeters</td>
<td>Basalt</td>
</tr>
</tbody>
</table>

Conclusions

After doing data processing and interpretation of layer types from geoelectric data, the results are supported by geological, geohydrological, and field observations related to soil water aspects. It can be concluded:

1. The distribution of aquifers is evenly distributed around the Embung site.
2. The Embung Area is a groundwater basin area.
3. The lithology condition of the Embung location area consists of soil with a thickness of about 5 meters, laying of mudflow deposits and tuffaceous-sandstone with varying depth and thickness.

Acknowledgements

Authors are grateful to all the colleagues that have had pleasure and honor to work with us in groundwater investigation in Baturraden Geothermal Working Area. Without their participation and feedback, this study would not have been possible.
Groundwater investigation using Schlumberger Vertical Electrical Sounding (VES) in Baturaden Geothermal Working Area (GWA), Central Java, Indonesia

Katarina Evelyn Permata Herho¹, Sandy Hardian Susanto Herho²
¹Geological Engineering Study Program, Faculty of Earth Technology and Energy, Trisakti University
²Weather and Climate Prediction Laboratory (WCPL), Bandung Institute of Technology (ITB)

Abstract

Groundwater investigation is becoming increasingly important for Indonesia. It is natural resources for sustainable development of a region. In this study, we have carried out vertical electrical sounding (VES) at twenty five sites at location of geoelectric survey work in Embung Area, Baturaden Geothermal Project, Pandansari Village, Paguyangan Subdistrict, Brebes Regency.

Geological conditions in this area are included in the unraveled Mount Slamet Lava Formation (Qvs) which is composed of lava, tuff and lava deposits. The range of types of resistivity is obtained between 20.97 and 6315.50 ohmmeters. At intervals of 11-100 ohmmeters the lithology of this resistivity is tuffaceous-sandstone. At 100-1000 ohmmeter is mudflow and the interval> 1000 ohmmeters is lava.

Introduction

Geological condition based on the geological map of the Purwokerto sheet (Figure 1). Location of the investigation included in the unraveled Mount Slamet Lava Formation (Qvs) which is composed of volcanic lava deposits, tuffs and lava.

Data and Methods

Electric current (direct current) is flowed through two current electrodes A and B (Figure 3), there will be a potential difference between the two currents. The potential difference is measured through 2 potential electrodes M and N which are then recorded by the receiver (receiver). The measurement results of the electrical values will be converted into rock types, the position of depth and thickness.
In the Schlumberger configuration method the arrangement of electrodes is set with certain distance values. This configuration method of potential electrodes M and N is always placed between the current electrodes A and B. Ohm's law that is used as the basis for calculating the geoelectric probe in obtaining the resistance of the apparent type must be multiplied by the distance factor (K factor).

\[\rho_a = \pi \frac{\Delta V}{I} \left(L^2 / l - 1 / 4 \right) \]

\(\rho_a \) = apparent resistivity (ohmmeter)
\(\Delta V \) = potential difference (volt)
\(I \) = current (ampere)
\(L \) = half AB current electrode separation (meter)
\(l \) = potential MN electrodes spacing (meter)

The apparent resistivity obtained from the calculation according to the above equation is then plotted on a transparent double logarithmic paper to half the distance of half the current electrode (AB / 2) where the distance of the AB stretch to the measurements carried out is 160-250 meters. After plotting it will be obtained forms of apparent resistivity curves to be interpreted quantitatively.

In processing the data carried out the method of interpretation is used 3 (three) layers, ie each apparent resistivity curve is placed above the standard curve for matching, so that the numbers of true resistivity \(\rho_1, \rho_2, \rho_3 \) with depths \(d_1, d_2, d_3 \). The third layer (\(d_3 \)) is based on numbers. This apparent will have infinite depth (\(d_3 = \infty \))

Result and Discussion

Resistivity Log

The results of geoelectric measurements at the Embung Area location, Baturaden Geothermal Project, found the range of resistivity values between 20.97 and 6315.50 ohmmeters. The range is divided into certain intervals and can be interpreted as lithological layers.

<table>
<thead>
<tr>
<th>Resistivity (Ωm)</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 11 – 100</td>
<td>Tuffaceous-sandstone</td>
</tr>
<tr>
<td>2 100 – 1000</td>
<td>Mudflow deposits</td>
</tr>
<tr>
<td>3 >1000</td>
<td>Lava</td>
</tr>
</tbody>
</table>

Geoelectric Section

Illustrates the thickness and depth of aquifer rock layers, namely in layers that have the ability to store and drain ground water.

The results of the interpretation of the spread of the resistivity value in a vertical type with a geoelectric cross-section at the study site are divided into 9 cross sections.
Figure 4. Geoelectrical Sections
Isoresistivity Map

The Isoresistivity map provides an overview of the distribution of aquifers in the study location. The Isoresistivity map presented is the value of type resistances at depths of 20, 50, 70 and a depth of 100 meters which illustrates the potential of deep aquifiers. From the isoresistivity map can be seen the distribution of the type of resistivity values that are interpreted as aquifers which are between the value of 11-100 ohm meters which are colored blue. The orange color shows the distribution of lava sediment or lava deposits with a type of resistivity value between 100-1000 ohmmeters.

At 20 meters depth the distribution of aquifers accumulates in the plains around the retention basin site at points GL-2, GL-9, GL-10, GL-11, GL-12, GL-13, GL-14, GL-15, GL-17, GL-18, GL-19, GL-25.

At 50 meters depth the distribution of aquifers accumulates in the plains around the retention basin site at points GL-1, GL-3 GL-4, GL-5, GL-6, GL-7, GL-8, GL-14, GL-15, GL-19, GL-21 dan GL-23.

At 70 meters depth the distribution of aquifers accumulates in the plains around the retention basin site at points GL-3 GL-4, GL-5, GL-6, GL-12, GL-15, GL-18, GL-19, GL-21 dan GL-23.

At 100 meters depth the distribution of aquifers accumulates in the plains around the retention basin site at points GL-11 GL-12, GL-13, GL-18, GL-19 dan GL-23.

Conclusions

After doing data processing and interpretation of layer types from geoelectric data are supported by geological, geohydrological and field observations related to soil water aspects, so it can be concluded:

In general, geoelectric measurements in the Embung area, Baturaden Geothermal Project (GL-01 to GL-25) obtained below-ground image are as follows:

1. The distribution of aquifers is evenly distributed around the Embung site.
2. The Embung Area is a groundwater basin area.
3. The lithology condition of the Embung location area consists of soil with a thickness of about 5 meters, laying of mudflow deposits and tuffaceous-sandstone with varying depth and thickness.
References

Acknowledgements (Optional)

Authors are grateful to all the colleagues that have had pleasure and honor to work with in groundwater investigation in Baturraden Geothermal Working Area (GWA). Without their participation and feedback, this study would not have been possible.