Energy release patterns and shaking effects of earthquakes in the Japan Trench: A Hilbert-Huang Transform approach

Swapnil Mache1 and Kusala Rajendran2

1Indian Institute of Science
2Indian Institute of Science Faculty of Science

November 21, 2022

Abstract

Subduction zones showcase the multiplicity of earthquakes—interplate, intraplate and intraslab—with shallow, intermediate, or deep focus, associated with different energy release patterns and frequency contents. An understanding of the duration and frequencies associated with various pulses of energy is useful for damage assessment. Empirical Mode Decomposition (EMD) of strong-motion records and the application of Hilbert transform have been suggested to overcome the limitations of the Fourier spectral analysis in dealing with highly non-linear strong-motion records (Huang et al., 1998, Zhang et al., 2003). Following the same approach, we have been trying various methods of analysis using the KiK-net strong-motion records to explore the efficacy of these techniques in representing the source of the rupture, in terms of energy release and frequency distribution. Our previous studies used EMD and time-frequency analysis tools such as spectrogram, scalogram, and Hilbert spectrum, using Intrinsic Mode Functions (IMFs) of the original signals as inputs. Nishant (2019) made random picks of IMFs to represent sources by correlating the sum of the selected IMFs with the original signal but found that the results were station dependent. We selected IMFs based on their frequency content (0.1 to 3 Hz) and used their linear combinations to develop the Energy Release Functions (ERF) for individual earthquakes (Mache et al., 2019). They reported that the ability to capture the signature of the original signal using the IMFs varied between earthquakes and stations. Next, we selected stations based on the direction of rupture inferred from teleseismic waveform models. The use of appropriate combinations of individual IMFs, chosen based on the direction of slip, resulted in ERFs whose shapes compared better with the Moment Rate Functions (MRFs) obtained from the teleseismic models. To further explore the station dependence on the resolution of ERFs viz-a-viz the MRFs, we used the instrumental seismic intensity distribution maps (JMA 1996, Shabestari and Yamazaki 2001) to select the stations. We analyzed five earthquakes; two interplate (Mw 7.2 2005 Miyagi, and Mw 6.9 2008/07/19), two intraplate (Mw 7.0 2003 Sendai, and Mw 7.2 2012 Kamaishi) and one intraslab (Mw 7.1 2011 Miyagi), following the above methodologies. This abstract presents the initial results of our study, which to our knowledge, is the first of its kind and holds significant potential in understanding the spatial and temporal patterns of energy release and their associated frequencies. [cont.]
Energy release patterns and shaking effects of earthquakes in the Japan Trench: A Hilbert-Huang Transform approach
Swapnil Mache and Kusala Rajendran
Indian Institute of Science (IISc), Bangalore, India

1. Key Points

1. Specific Intrinsic Mode Functions (IMFs) represent energy release at the earthquake source.
2. Energy Rate Functions (ERFs) generated from Hilbert spectral analysis of such IMF combinations.
3. Proposed ERFs match well with the Moment Rate Functions (MRFs) from teleseismic waveform modeling.
4. ERF-MRF match is controlled by the station azimuth and shaking intensity, and frequency and energy-based selection of IMFs.

A short video explaining our work:

5. Results

1. 26 May 2003 Miyagi Intraslab Earthquake (Mw 7.0, depth 67.0 km)
 - Up-slip (towards east-northeast).
 - Station AKTH16, WNW (305.98° azimuth), seismic intensity (SI) 4.
 - Single, dominant, ~10 s energy pulse captured by both the ERF and MRF, along with a weaker tail.

2. 07 April 2011 Miyagi Intraslab

2. Motivation

1. Subduction zone earthquakes showcase different energy release patterns and frequency content depending on the tectonic setting and depth.
2. Intermediate earthquakes, originating on the plate interface, show enhanced high-frequency energy (HFE) with increasing depth (Lay et al., 2012).
3. Outer-rise intraplate earthquakes produce enhanced HFE and ground shaking despite their high epicentral distances (Ye et al., 2012).
4. Intraslab earthquakes originate within the subduction slab (usually beneath population centers). They are more damaging than other similar Mw events due to enhanced HFE release and associated ground motion in a short duration, along with higher stress.

4. Methodology

1. Telesismic data from International Research Institutions for Seismology (IRIS), P and SH waveforms from 30-40 stations, epicentral distance 30° to 90°.
2. Strong-motion acceleration data from KIK-net, National Research Institute for Earth Science and Disaster Resilience (NIED, Japan). Data from the vertical component of borehole sensors (> 100 m depth) used in the analysis.

Table: Earthquake details (from GCMT).

6. Summary

1. HHT-based ERF captures the earthquake source energy release, with a higher resolution offered by HHT as compared to Fourier analysis methods and wavelet transform.
2. ERF retains frequency information, is computationally faster for a rapid interpretation of an event, and does not entail assumptions of the fault geometry and velocity structure. These are clear advantages over the traditional MRF.
3. ERF captures complex ruptures (2005 Miyagi-Oki event) and sub-events or multiple independent events (2012 Kamashi event).

Waveform Modeling

Strong motion station selection

NARRATION AUTHOR INFORMATION ABSTRACT REFERENCES CONTACT AUTHOR GET IPOSTER

1. Key Points

1. Specific Intrinsic Mode Functions (IMFs) represent energy release at the earthquake source.
2. Energy Rate Functions (ERFs) generated from Hilbert spectral analysis of such IMF combinations.
3. Proposed ERFs match well with the Moment Rate Functions (MRFs) from teleseismic waveform modeling.
4. ERF-MRF match is controlled by the station azimuth and shaking intensity, and frequency and energy-based selection of IMFs.

A short video explaining our work:
2. Motivation

1. Subduction zone earthquakes showcase different energy release patterns and frequency content depending on the tectonic setting and depth.

2. Interplate earthquakes, originating on the plate interface, show enhanced high-frequency energy (HFE) with increasing depth (Lay et al., 2012).

3. Outer-rise intraplate earthquakes produce enhanced HFE and ground shaking despite their high epicentral distances (Ye et al., 2013).

4. Intraslab earthquakes originate within the subduction slab (usually beneath population centers). They are more damaging than other similar Mw events due to enhanced HFE release and associated ground motion in a short duration, along with higher stress drop, increasing with depth (Choy et al., 2001; Okal and Kirby, 2002).

5. Conventional time-frequency analysis methods (Fourier transform, short-time Fourier transform, continuous wavelet transform) are deficient in resolving the above properties. They have a priori defined bases, are not suitable for nonlinear and nonstationary earthquake signals, and have limited resolution (Huang et al., 1998; Tary et al., 2014).

6. Hilbert-Huang Transform (HHT) overcomes these drawbacks
2. Motivation

2. **Interplate earthquakes**, originating on the plate interface, show enhanced high-frequency energy (HFE) with increasing depth (Lay et al., 2012).

3. **Outer-rise intraplate** earthquakes produce enhanced HFE and ground shaking despite their high epicentral distances (Ye et al., 2013).

4. **Intraslab earthquakes** originate within the subduction slab (usually beneath population centers). They are more damaging than other similar Mw events due to enhanced HFE release and associated ground motion in a short duration, along with higher stress drop, increasing with depth (Choy et al., 2001; Okal and Kirby, 2002).

5. Conventional time-frequency analysis methods (Fourier transform, short-time Fourier transform, continuous wavelet transform) are deficient in resolving the above properties. They have a priori defined bases, are not suitable for nonlinear and nonstationary earthquake signals, and have limited resolution (Huang et al., 1998; Tary et al., 2014).

6. **Hilbert-Huang Transform (HHT)** overcomes these drawbacks and provides instantaneous frequency and energy, which we leverage to analyze energy release from five earthquakes, originating in different tectonic settings and depths.
3. Data

1. **Teleseismic data** from International Research Institutions for Seismology (IRIS). P and SH waveforms from 30-40 stations, epicentral distance 30° to 90°.

2. **Strong-motion acceleration data** from KiK-net, National Research Institute for Earth Science and Disaster Resilience (NIED, Japan). Data from the vertical component of borehole sensors (> 100 m depth) used in the analysis.

![Data Table](image)

Table: Earthquake details (from GCMT).

- **Event Number**: 1-5
- **Event Time (hh:mm:ss)**: 09:24:38.8, 14:32:50.6, 02:48:40.3, 02:39:34.8, 09:18:34.9, 09:18:46.9
- **Longitude (°)**: 141.57, 141.85, 142.05, 142.42, 144.09, 143.83
- **Latitude (°)**: 38.94, 38.52, 38.24, 37.47, 38.01, 37.77
- **Depth (km)**: 61.0, 53.3, 37.0, 21.9, 57.8, 19.5
- **M_s**: 7.0, 7.1, 7.2, 6.9, 7.2
- **Tectonic Setting**: Intraslab, Intraplate

4. Methodology

Waveform inversion of teleseismic data
1. Kitica-Karnahom body-wave inversion program (Kitica and Karmahom, 1991) used for the analysis.

Selection of strong-motion stations
1. Slip distribution, along with the seismic intensity distribution maps (JMA, 1998), ShakeMap (2017), used to select stations within the inferred azimuthal range and seismic intensity > 3.

6. Summary

1. HHT-based ERF captures the earthquake source energy release with a higher resolution offered by HHT as compared to Fourier analysis methods and wavelet transform.
2. ERF retains frequency information, computationally faster for a rapid interpretation of an event, and does not entail assumptions of the fault geometry and velocity structure. These are clear advantages over the traditional MRF.
3. ERF captures complex ruptures (2005 Nisqually event and subevents).
3. Data

<table>
<thead>
<tr>
<th>Event Number</th>
<th>Event Date</th>
<th>Event Time (hh:mm:ss)</th>
<th>Longitude (°E)</th>
<th>Latitude (°N)</th>
<th>Depth (km)</th>
<th>(M_w)</th>
<th>Tectonic Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2003-05-26</td>
<td>09:24:38</td>
<td>141.57</td>
<td>38.94</td>
<td>61.0</td>
<td>7.0</td>
<td>Intra-plate</td>
</tr>
<tr>
<td>2</td>
<td>2011-04-07</td>
<td>14:32:50</td>
<td>141.85</td>
<td>38.32</td>
<td>53.3</td>
<td>7.1</td>
<td>Intra-plate</td>
</tr>
<tr>
<td>3</td>
<td>2005-08-16</td>
<td>02:46:40</td>
<td>142.05</td>
<td>38.24</td>
<td>37.0</td>
<td>7.2</td>
<td>Inter-plate</td>
</tr>
<tr>
<td>4</td>
<td>2008-07-19</td>
<td>02:29:34</td>
<td>142.42</td>
<td>37.47</td>
<td>21.8</td>
<td>6.9</td>
<td>Inter-plate</td>
</tr>
<tr>
<td>5</td>
<td>2013-12-07</td>
<td>08:18:34</td>
<td>144.09</td>
<td>38.01</td>
<td>57.8</td>
<td>7.2</td>
<td>Intra-plate</td>
</tr>
</tbody>
</table>

Table: Earthquake details (from GCMT).

Figure: Map of the study region showing the five earthquakes and corresponding stations used for analysis.

4. Methodology

Waveform inversion of teleseismic data
1. Kikuchi-Kanamori body-wave inversion program (Kikuchi and Kanamori, 1991) used for the analysis.
2. Moment Rate Function (MRF) generated from waveform modeling to validate the ERF algorithms.

Selection of strong-motion stations
1. Slip distribution, along with the seismic intensity distribution maps (JMA, 1996; ShakeMap, 2017), used to select stations within the inferred azimuthal range and seismic intensity > 3.

6. Summary

1. HHT-based ERF captures the earthquake source energy release with a higher resolution offered by HHT as compared to Fourier analysis methods and wavelet transform.
2. ERF retains frequency information, is computationally faster for a rapid interpretation of an event, and does not entail assumptions of the fault geometry and velocity structure. These are clear advantages over the traditional MRF.
3. ERF captures complex ruptures (2005 Miyagi Intra-plate event and sub-events).
3. Data

Figure: Map of the study region showing the five earthquakes and corresponding stations used for analysis.

Figure: Cross-section showing the event distance from the trench, and depth, in km.

Key Points
- Specific Intrinsic Mode Functions (IMFs) represent energy release at the earthquake source.
- Energy Rate Functions (ERFs) generated from Hilbert spectral analysis of such IMF combinations.
- Proposed ERFs match well with the Moment Rate Functions (MRFs) from teleseismic waveform modeling.
- ERF-MRF match is controlled by the station azimuth and shaking intensity, and frequency and energy-based selection of IMFs.

Results
- 26 May 2003 Miyagi Intraslab Earthquake (Mw 7.0, depth 37.0 km)
 - Up-dip slip (towards east-northeast)
 - Station AKTH54, WNW (305.38° azimuth), seismic intensity (SI) 4.
 - Single, dominant, ~10 s energy pulse captured by both the ERF and MRF, along with a weaker tail.

4. Methodology

Waveform inversion of teleseismic data
- 1. Kikuchi-Kanamori body-wave inversion program (Kikuchi and Kanamori, 1991) used for the analysis.
- 2. Moment Rate Function (MRF) generated from waveform modeling to validate the ERF algorithm.

Selection of strong-motion stations
- 1. Slip distribution, along with the seismic intensity distribution maps (JMA, 1996, ShakerMap, 2017), used to select stations within the inferred azimuthal range and seismic intensity > 3.

6. Summary

1. HHT-based ERF captures the earthquake source energy release with a higher resolution offered by HHT as compared to Fourier analysis methods and waveform transform.
2. ERF retains frequency information, is computationally faster for a rapid interpretation of an event, and does not entail assumptions of the fault geometry and velocity structure. These are clear advantages over the traditional MRF.
3. Data

1. **Teleseismic data** from International Research Institutions for Seismology (IRIS). P and SH waveforms from 30-40 stations, epicentral distance 30° to 90°.

<table>
<thead>
<tr>
<th>Event Number</th>
<th>Event Date (YYYY-MM-DD)</th>
<th>Event Time (hh:mm:ss.s)</th>
<th>Longitude (°E)</th>
<th>Latitude (°N)</th>
<th>Depth (km)</th>
<th>Mw</th>
<th>Tectonic Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2003-05-26</td>
<td>09:24:38.8</td>
<td>141.57</td>
<td>38.94</td>
<td>61.0</td>
<td>7.0</td>
<td>Intraslab</td>
</tr>
<tr>
<td>2</td>
<td>2011-04-07</td>
<td>14:32:50.6</td>
<td>141.85</td>
<td>38.32</td>
<td>53.3</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2005-08-16</td>
<td>02:46:40.3</td>
<td>142.05</td>
<td>38.24</td>
<td>37.0</td>
<td>7.2</td>
<td>Interplate</td>
</tr>
<tr>
<td>4</td>
<td>2008-07-19</td>
<td>02:39:34.8</td>
<td>142.42</td>
<td>37.47</td>
<td>21.8</td>
<td>6.9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2012-12-07</td>
<td>08:18:34.9</td>
<td>144.09</td>
<td>38.01</td>
<td>57.8</td>
<td>7.2</td>
<td>Intraplate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08:18:46.9</td>
<td>143.83</td>
<td>37.77</td>
<td>19.5</td>
<td>7.2</td>
<td></td>
</tr>
</tbody>
</table>
4. Methodology

Waveform inversion of teleseismic data

1. Kikuchi-Kanamori body-wave inversion program (Kikuchi and Kanamori, 1991) used for the analysis.

2. Moment Rate Function (MRF) generated from waveform modeling to validate the ERF algorithm.

Selection of strong-motion stations

1. Slip distribution, along with the seismic intensity distribution maps (JMA, 1996; ShakeMap, 2017), used to select stations within the inferred azimuthal range and seismic intensity > 3.

6. Summary

1. HHT-based ERF captures the earthquake source energy release with a higher resolution offered by HHT as compared to Fourier analysis methods and wavelet transform.

2. ERF retains frequency information, is computationally faster for a rapid interpretation of an event, and does not entail assumptions of the fault geometry and velocity structure. These are clear advantages over the traditional MRF.

3. ERF captures complex ruptures (2005 Miyagi-Oki event) and sub-events or
4. Methodology

Figure: Waveform modeling results. Shakemap (along with slip distribution), used for strong-motion station-selection.

HHT-based strong-motion analysis

1. Hilbert-Huang Transform (HHT) is a combination of Empirical Mode Decomposition (EMD) and Hilbert Spectral Analysis (HSA) (Huang et al., 1998).
2. EMD decomposes the data into multiple frequency components (IMFs).
3. IMFs selected in the frequency range 0.1 to 3 Hz.

Hilbert energy spectrum, a time-frequency-energy
4. Methodology

HHT-based strong-motion analysis

1. Hilbert-Huang Transform (HHT) is a combination of Empirical Mode Decomposition (EMD) and Hilbert Spectral Analysis (HSA) (Huang et al., 1998).
2. EMD decomposes the data into multiple frequency components (IMFs).
3. IMFs selected in the frequency range 0.1 to 3 Hz. Hilbert energy spectrum, a time-frequency-energy representation of the signal, generated for each selected IMF.
4. Maximum amplitude-squared values obtained from the Hilbert spectra of selected IMFs used to generate the Energy Rate Function (ERF).
5. ERF is representative of energy release at the earthquake source, validated by its comparison with the MRF.

Results

May 2003 Miyagi Intraslab Earthquake (Mw 7.3, depth 67.0 km)
- Up-dip slip (towards east-northeast)
- Station AKTH16, WWV (30.5 58"
- Azimuth), seismic intensity (50)-4
- Single, dominant, ~10 s energy pulse captured by both the ERF and MRF, along with a weaker tail.

6. Summary

1. HHT-based ERF captures the earthquake source energy release with a higher resolution offered by HHT as compared to Fourier analysis methods and wavelet transform.
2. ERF retains frequency information, is computationally faster for a rapid interpretation of an event, and does not entail assumptions of the fault geometry and velocity structure. These are clear advantages over the traditional MRF.
3. ERF captures complex ruptures (2005 Miyagi-Oki event) and sub-events or
4. Methodology

Key Points

- Specific Intrinsic Mode Functions (IMFs) represent energy release at the earthquake source.
- Energy Rate Functions (ERFs) generated from Hilbert spectral analysis of such IMF combinations.
- Proposed ERFs match well with the Moment Rate Functions (MRFs) from teleseismic waveform modeling.
- ERF-MRF match is controlled by the station azimuth and shaking intensity, and frequency and energy based selection of IMFs.

Results

- 18 May 2003 Miyagi Intraslab Earthquake (Mw 7.0, depth 67.0 km)
 - Up-dip slip (towards east-northeast)
 - Station AKTH (305.98° azimuth), seismic intensity (SI) 4.
 - Single, dominant, ~10 s energy pulse captured by both the ERF and MRF, along with a weaker tail.

Figure: EMD and validation.

Selection of IMFs

- Frequency and energy-based selection
- Selection of IMFs based on EMD

Figure: Selection of IMFs.

Generating the ERF from the selected IMFs

- IMF 3

Figure: Generating the ERF from the selected IMFs.

4. Methodology

Waveform inversion of teleseismic data

2. Moment Rate Function (MRF) generated from waveform modeling to validate the ERF algorithm.
3. Selection of strong-motion stations
 - Slip distribution, along with the seismic intensity distribution maps (JMA, 1994, ShakenMap, 2017), used to select stations within the inferred azimuthal range and seismic intensity > 3.

6. Summary

1. HHT-based ERF captures the earthquake source energy release with a higher resolution offered by HHT as compared to Fourier analysis methods and wavelet transform.
2. ERF retains frequency information, is computationally faster for a rapid interpretation of an event, and does not entail assumptions of the fault geometry and velocity structure. These are clear advantages over the traditional MRF.
3. ERF captures complex ruptures (2005 Miyagi-Oki event) and sub-events or...
4. Methodology

Generating the ERF from the selected IMFs

IMF 3
IMF 4
IMF 5

Figure: Using the selected IMFs to generate the Energy Rate Function (ERF).

Comparing the ERF and MRF

Key Points
- Specific Intrinsic Mode Functions (IMFs) represent energy release at the earthquake source.
- Energy Rate Functions (ERFs) generated from Hilbert spectral analysis of such IMF combinations.
- Proposed ERFs match well with the Moment Rate Functions (MRFs) from elastic waveform modeling.
- ERF-MRF match is controlled by the station azimuth and shaking intensity, and frequency and energy-based selection of IMFs.

Results
- 9 May 2003 Miyagi Intraslab Earthquake (Mw 7.0, depth 57.0 km)
 - Up-dip slip (towards east-northeast)
 - Station AKTH16, WNW (305.98° azimuth), seismic intensity (SI) 4
 - Single, dominant ~10 s energy pulse captured by both the ERF and MRF, along with weaker tail.

4. Methodology

Waveform inversion of teleseismic data
1. Kikuchi-Kanamori body-wave inversion program (Kikuchi and Kanamori, 1961) used for the analysis.
2. Moment Rate Function (MRF) generated from waveform modeling to validate the ERF algorithm.

Selection of strong-motion stations
1. Slip distribution, along with the seismic intensity distribution maps (JMA, 1996; ShakeMap, 2017), used to select stations within the inferred azimuthal range and seismic intensity > 3.

6. Summary
1. HHT-based ERF captures the earthquake source energy release with a higher resolution offered by HHT as compared to Fourier analysis methods and wavelet transform.
2. ERF retains frequency information, is computationally faster for a rapid interpretation of an event, and does not entail assumptions of the fault geometry and velocity structure. These are clear advantages over the traditional MRF.
3. ERF captures complex ruptures (2005 Miyagi-Oki event) and sub-events or
4. Methodology

Key Points

- Intrinsic Mode Functions (IMFs) represent energy release at the earthquake source.
- Energy Rate Functions (ERFs) generated via Hilbert spectral analysis of such IMF combinations.
- Revised ERFs match well with the Kinematic Rate Functions (MRFs).
- Seismic waveform modeling.
- MRF is controlled by the station azimuth and shake intensity.
- ERFs and energy-based selection of IMFs.

Figure: Using the selected IMFs to generate the Energy Rate Function (ERF).

Results

- 8 May 2003 Miyagi Intraslab earthquake (Mw 7.0, depth 67.0 km)
 - Up-dip slip (towards east-northeast)
 - Station AK131, WNW (305.8° azimuth), seismic intensity (SI) 4
 - Single, dominant, ~10 s energy pulse captured by both the ERF and MRF, along with a weaker tail.

Figure: Comparison of the ERF with the MRF.

Summary

1. HHT-based ERF captures the earthquake source energy release with a higher resolution offered by HHT as compared to Fourier analysis methods and wavelet transform.
2. ERF retains frequency information, is computationally faster for a rapid interpretation of an event, and does not entail assumptions of the fault geometry and velocity structure. These clear advantages over the traditional MRF.
3. ERF captures complex ruptures (2005 Miyagi-Oki event) and sub-events or...
Waveform Modeling

Mo = 0.602E+20 Nm
Centroid time = 13.44 s

Telesismic waveform modeling result.

Strong motion station selection

Shakemap with epicenter (star) and station (square).

Figure: Waveform modeling results. Shakemap (along with...
Empirical Mode Decomposition (EMD)

Original Signal

Intrinsic Mode Function (IMFs)

Summation of all IMFs (blue), and error between the original and reconstructed signal (red).

Figure: Selection of IMFs.

Generating the ERF from the selected IMFs
4. Methodology

Selection of IMFs

Frequency and energy-based criterion
Frequency band 0.1 to 3 Hz
Generating the ERF from the selected IMFs

1. Key Points

1. Specific Intense Mode Functions (IMFs) represent energy release at the earthquake source.
2. Energy Rate Functions (ERFs) from Hilbert spectral analysis are used.
3. Proposed IMFs match well with moment Rate Functions (MRF) from seismic waveform models.
4. ERF-MRF match is controlled by station azimuth and shaking mechanisms.

5. Results

1. 26 May 2003 Miyagi Intra-ridge Earthquake (Mw 7.9, depth 30 km)
 - Station AKTH15, WNW (245°), seismic intensity: VIII
 - Single, dominant ~10 s pulse captured by both MRF, along with a weaker, slower 2 s pulse

A short-term earthquake scenario
Comparing the ERF and MRF

(a) Time series
(b) Fourier spectra
(c) Hilbert spectra
(d) ERF
(e) Slip distribution
(f) MRF

Strong motion analysis result.
Telesismic waveform modeling result.

Mo = 0.602E+20 Nm
Centroid time = 13.44 s
5. Results

1. 26 May 2003 Miyagi Intraslab Earthquake (Mw 7.0, depth 67.0 km)
 - Up-dip slip (towards east-northeast).
 - Station AKTH16, WNW (305.98° azimuth), seismic intensity (SI) 4.
 - Single, dominant, ~10 s energy pulse captured by both the ERF and MRF, along with a weaker tail.

2. 07 April 2011 Miyagi Intraslab Earthquake (Mw 7.1, depth 53.3 km)
 - Slip direction northwest.
 - Station IWTH02, north-northwest (345.73° azimuth), SI 6-lower.
 - Single, dominant energy pulse with a peak at 20 seconds and decaying gradually up to 40 seconds captured by both the ERF and MRF.
5. Results

2. 07 April 2011 Miyagi Intraslab Earthquake (Mw 7.1, depth 53.3 km)
 - Slip direction northwest.
 - Station IWTH02, north-northwest (345.73° azimuth), SI 6-lower.
 - Single, dominant energy pulse with a peak at 20 seconds and decaying gradually up to 40 seconds captured by both the ERF and MRF.

3. 16 August 2005 Miyagi-Oki Interplate Earthquake (Mw 7.2, depth 37.0 km)
 - Station IWTH26, azimuth 309.76°, SI 5-upper.
 - Rough MRF observed by Lay et al. (2012) and Yaginuma et al. (2006).
 - ERF and MRF both match well with the above studies.
 - A deeper interplate event, and shows enrichment in high-frequency energy (0.4 to 5 Hz range).
5. Results

3. 16 August 2005 Miyagi-Oki Interplate Earthquake (Mw 7.2, depth 37.0 km)
 - Station IWTH26, azimuth 309.76°, SI 5-upper.
 - Rough MRF observed by Lay et al. (2012) and Yaginuma et al. (2006).
 - ERF and MRF both match well with the above studies.
 - A deeper interplate event, and shows enrichment in high-frequency energy (0.4 to 5 Hz range).

4. 19 July 2008 Fukushima ken-Oki Interplate Earthquake (Mw 6.9, depth 21.8 km)
 - Slip directed up-dip (east-southeast).
 - Station YMTH02, north-northwest (azimuth 295.96°), SI 3.
 - ERF-MRF match obtained even for low SI at the station location.
 - A shallow interplate event, low-frequency energy

4. Methodology

2. Moment rate function (ERF) generated from waveform modeling to validate the ERF algorithm.
 - Selection of strong-motion stations
 - Slip distribution, along with the seismic intensity distribution maps (JMA, 1998; ShakeMap, 2017), used to select stations within the inferred azimuthal range and seismic intensity > 3.

6. Summary

1. HHT-based ERF captures the earthquake source energy release, with a higher resolution offered by HHT as compared to Fourier analysis methods and wavelet transform.
 - ERF retains frequency information, is computationally faster for a rapid interpretation of an event, and does not entail assumptions of the fault geometry and velocity structure. These are clear advantages over the traditional MRF.
 - ERF captures complex ruptures (2005 Miyagi-Oki event) and sub-events or
5. Results

4. 19 July 2008 Fukushima ken-Oki Interplate Earthquake (Mw 6.9, depth 21.8 km)
 - Slip directed up-dip (east-southeast).
 - Station YMT02, north-northwest (azimuth 295.96°), SI 3.
 - ERF-MRF match obtained even for low SI at the station location.
 - A shallow interplate event; **low-frequency energy** (Ye et al., 2013).

5. 07 December 2012 Kamaishi Intraplate Earthquake (Mw 7.2, depth 50.8 km)
 - Station IWTH02, azimuth 313.85°, SI 5-lower.
 - Station approximately orthogonal to strike.
 - Earthquake modeled as two independent events, deep thrust and shallow normal-faulting (Craig et al., 2014; Harada et al., 2013; Lay et al., 2013).
 - ERF and MRF both show **two distinct pulses**.
5. Results

(Ye et al., 2013).

5.07 December 2012 Kamaishi Intraplate Earthquake
(Mw 7.2, depth 50.8 km)

- Station IWTH02, azimuth 313.85°, SI 5-lower.
 Station approximately orthogonal to strike.

- Earthquake modeled as two independent events, deep thrust and shallow normal-faulting (Craig et al., 2014; Harada et al., 2013; Lay et al., 2013).

- ERF and MRF both show two distinct pulses, possibly representing the two events.
5. Results

1. 26 May 2003 Miyagi Intraslab Earthquake

1.1 Shakemap with epicenter (star) and station (square).

1.2 Strong motion analysis result.

1.3 Teleseismic waveform modeling result.
5. Results

2. 07 April 2011 Miyagi Intraslab Earthquake

2.1 Shakemap with epicenter (star) and station (square).

2.2 Strong motion analysis result.

3.3 Telesismic waveform modeling result.
5. Results

ERF and MRF both match well with the above studies.

3. 16 August 2005 Miyagi-Oki Interplate Earthquake

3.1 Shakemap with epicenter (star) and station (square).

3.2 Strong motion analysis result.

3.3 Telesismic waveform modeling result.
5. Results

- A shallow interplate event; low-frequency energy
 (Ya et al., 2013)

4. 19 July 2008 Fukushima-ken Oki Interplate Earthquake

4.1 Shakemap with epicenter (star) and station (square).

4.2 Strong motion analysis result.

4.3 Telesismic waveform modeling result.
5. Results
(Ye et al., 2013).

5. 07 December 2012 Kamaishi Intraplate Earthquake

5.1 Shakemap with epicenter (star) and station (square).

5.2 Strong motion analysis result.

5.3 Teleseismic waveform modeling result.
6. Summary

1. HHT-based ERF captures the earthquake source energy release, with a higher resolution offered by HHT as compared to Fourier analysis methods and wavelet transform.

2. ERF retains frequency information, is computationally faster for a rapid interpretation of an event, and does not entail assumptions of the fault geometry and velocity structure. These are clear advantages over the traditional MRF.

3. ERF captures complex ruptures (2005 Miyagi-Oki event) and sub-events or multiple independent events (2012 Kamaishi event).

4. Improvement in the criterion for the selection of stations based on their azimuth, inferred from the slip distribution. Strike of the Japan Trench provides an important starting point. Further, stations with seismic intensity > 3 provide optimal results.

5. Improvement in the selection of IMF(s), based on a frequency and energy criterion corresponding with the bandpass filtering in waveform inversion.
Energy release patterns and shaking effects of earthquakes in the Japan Trench: A Hilbert-Huang Transform approach

*Swapnil Mache¹, Kusala Rajendran¹

1. Indian Institute of Science, Bangalore

Subduction zones showcase the multiplicity of earthquakes—interplate, intraplate and intraslab—with shallow, intermediate, or deep focus, associated with different energy release patterns and frequency contents. An understanding of the duration and frequencies associated with various pulses of energy is useful for damage assessment. Empirical Mode Decomposition (EMD) of strong-motion records and the application of Hilbert transform have been suggested to overcome the limitations of the Fourier spectral analysis in dealing with highly non-linear strong-motion records (Huang et al., 1998, Zhang et al., 2003). Following the same approach, we have been trying various methods of analysis using the KiK-net strong-motion records to explore the efficacy of these techniques in representing the source of the rupture, in terms of energy release and frequency distribution. Our previous studies used EMD and time-frequency analysis tools such as spectrogram, scalogram, and Hilbert spectrum, using Intrinsic Mode Functions (IMFs) of the original signals as inputs. Nishant (2019) made random picks of IMFs to represent sources by correlating the sum of the selected IMFs with the original signal but found that the results were station dependent. We selected IMFs based on their frequency content (0.1 to 3 Hz) and used their linear combinations to develop the Energy Release Functions (ERF) for individual earthquakes (Mache et al., 2019). They reported that the ability to capture the signature of the original signal using the IMFs varied between earthquakes and stations. Next, we selected stations based on the direction of rupture inferred from teleseismic waveform models. The use of appropriate combinations of individual IMFs, chosen based on the direction of slip, resulted in ERFs whose shapes compared better with the Moment Rate Functions (MRFs) obtained from the teleseismic models. To further explore the station dependence on the resolution of ERFs viz-a-viz the MRFs, we used the instrumental seismic intensity distribution maps (JMA 1996, Shabestari and Yamazaki 2001) to select the stations. We analyzed five earthquakes; two interplate (Mw 7.2 2005 Miyagi, and Mw 6.9 2008/07/19), two intraplate (Mw 7.0 2003 Sendai, and Mw 7.2 2012 Kamaishi) and one intraslab (Mw 7.1 2011 Miyagi), following the above methodologies. This abstract presents the initial results of our study, which to our knowledge, is the first of its kind and holds significant potential in understanding the spatial and temporal patterns of energy release and their associated frequencies.

On the use of IMFs based on their frequencies, we find that a linear combination of appropriate signals can lead to ERFs that compare well with their respective MRFs. The selection of stations in the direction of rupture generates better-resolved spectra. While using the seismic intensities, we find that for values three and higher, stations located along the direction of rupture propagation produce ERFs that correlate better with their respective MRFs, as observed for the 2011 Miyagi earthquake. The use of stations located along the direction of the trench also shows a good correlation. For seismic intensities lower than 3, there is a decay in the energy release and hence a poor reproduction of the ERFs. For complex ruptures (2003 Sendai, 2005 Miyagi, and 2012 Kamaishi), the ERFs are not smooth, with their energy distributed in bands of varying frequencies. It could be due to changes in slip direction or generation of sub-events, but the fact that the shapes of both the MRF and ERF are comparable adds credence to our analysis. We find that the local geology also plays an essential role in limiting the energy distribution within a frequency range, an issue that needs further exploration using more examples.
Keywords: strong-motion, spectral analysis, Hibert-Huang transform, energy release, Japan Trench, intraslab, intraplate, and interplate earthquakes