Long-term observations of airflow patterns in a man-made coastal trough blowout

Gerben Ruessink1, Christian Schwarz1, Bas Arens1, Marieke Kuipers1, and Jasper Donker1

1Affiliation not available

November 21, 2022

Abstract

Blowouts are characteristic features of many natural coastal foredunes. These dynamic bowl- or trough-shaped depressions act as conduits for aeolian transport of beach sand into the more landward dunes. Along many inhabited coasts foredunes and their blowouts have been planted with vegetation to retain the sand in the foredune, facilitate blowout closure and hence function as sea defense. The resulting vegetated and uniform foredune has, subsequently, contributed to a widespread reduction in the biodiversity of the backdunes. Present-day dune management therefore increasingly involves artificially creating blowouts to maintain and improve backdune biodiversity. The design criteria are high, aiming to postpone or prevent blowout closure as long as possible. Such dune restoration projects often follow a learning-by-doing approach, as information on the underlying aeolian processes, including airflow patterns that steer blowout development, is scarce. Here, we focus on airflow patterns measured in a man-made trough blowout in Dutch National Park Zuid-Kennemerland excavated in winter 2012. The blowout is approximately 100 m long and up to 11 m deep, and has a trapezoidal plan view that narrows from 100 to 20 m in the landward direction. It is approximately aligned with the dominant southwesterly wind direction and hence obliquely with the roughly N-S coastline. Four ultrasonic 3D anemometers, sampling at 10 Hz, were installed in winter/spring 2017 from the mouth of the blowout, across its basin, on to the depositional lobe and have been operational since. The wind recordings at a nearby weather station operated by the Royal Netherlands Meteorological Institute serve as the offshore reference. Wind speed-up through the blowout varied with offshore wind approach angle, and was generally strongest (140\%) when the wind was aligned with the blowout axis up to approximately 30° to the south of this axis. Intriguingly, winds approaching with the same angle from the north did not accelerate. We suspect that this asymmetry in speed-up is invoked by the asymmetric blowout shape, with a substantially steeper northern than southern sidewall. Wind deceleration on the lobe was also a function of offshore wind approach angle, with the largest deceleration (40\%) for winds approaching from the north of the blowout axis. Winds with approach angles up to 70° were all steered into the blowout, to become approximately aligned with the blowout axis at the landward blowout end. On the lobe, however, the wind closely followed the offshore wind direction. Future work will focus on modelling airflow patterns with computational fluid dynamics, and exploring the relationship between the airflow patterns, blowout morphology and sand transport pathways using additional field observations.
Long-term observations of airflow patterns in a man-made coastal trough blowout

1. Introduction

Background
Foredune stabilization for improved coastal safety has negatively affected geomorphological dynamics and biodiversity in coastal dune systems. As a remedy, foredunes are nowadays increasingly reactivated by digging trough-shaped depressions (Fig. 1a), resembling natural trough blowouts, to stimulate aeolian dynamics and improve biodiversity.

Problem definition
Learning-by-doing: Aeolian processes that steer the development of (man-made) trough blowouts are not well understood.

Aim
To analyse long-term (> seasons) observations of wind speed, direction and turbulence in a man-made trough blowout.

2. Methodology

Field site
The study site is a man-made trough blowout in Dutch National Park Zuid-Kennemerland excavated in winter 2012 (Fig. 1b); Ruessink et al., in press). The blowout is ≈100 m long, up to 11 m deep, and has a trapezoidal plan view that narrows from 100 to 20 m in the landward direction. Its main axis is aligned with the dominant southwesterly wind direction (250°N).

Field data
• Four ultrasonic 3D anemometers, sampling at 10 Hz (one of the gaps, also showing the four measurement lobes (SA1 to SA4)). The time series have been processed into 10-minute values of:
 1. Mean wind speed \(w \) [m/s]
 2. Wind direction \(\theta_w \) [°]
 3. Turbulent kinetic energy, TKE [m²/s²], and relative wind gustiness, TKEmax [°]

• Wind recordings \(w_x \) and \(w_y \) of a nearby, offshore weather station serve as the seaward reference. The wind speed was transformed to a height of 0.9 m above beach level assuming a logarithmic velocity profile and a roughness length of 0.1 mm.

3. Main findings

Wind direction
The wind is topographically steered into the blowout (Fig. 2), to become approximately aligned with the blowout axis (250°N) at the landward blowout end (SA3). This steering happens for all winds that approach within 70° from the blowout axis (Fig. 3a).

Wind speed
The wind in the blowout is generally strongest when it blows straight into the blowout (Figs. 2 and 3b). Shore-parallel winds essentially bypass the blowout (Fig. 3b). Wind-speed-up is a function of offshore approach angle and is generally strongest (140%) when the wind is aligned with the blowout axis up to approximately 30° to the south of this axis (Fig. 3c).

Wind gustiness
Wind gustiness in the blowout is a function of the offshore wind approach angle (Fig. 3d). The data indicate jet flow for approach angles near 250°N (√\(w_s / w_0 \) ≤ 1) for winds approaching strongly shore-perpendicular.

4. Conclusions

• Blowout geometry and offshore wind approach angle determine wind patterns in a man-made trough blowout.

• The wind is strongest, is accelerated most and is least turbulent when the wind blows straight into the blowout. Potentially, these wind conditions are most relevant to long-term throughput of aeolian beach sand toward the backdunes.

5. Outlook

Future work will include:
• Field measurements to obtain better spatial and vertical coverage of the wind patterns and to determine aeolian sand transport pathways.
• Computational Fluid Dynamics modelling (Fig. 4) to aid in the design of dune measures that optimize aeolian transport of beach sand and toward the backdunes. For first results, see abstract EGU2018-B27 by Donker et al.
• Vegetation studies to explore effect of increased aeolian dynamics on biodiversity.

Acknowledgements
The trough blowout is part of the Dutch Dune Blowing project, financed by the European LIFE+ Regulation and the province of North-Holland (LIFE09 NAT/NL/000418). Bas van Dam, Arjan van Eijk and Mark Eijkelboom designed and installed the anemometer stations. Data from the reference weather station were made available by the Klimaatdesk (province of North-Holland). The trough blowout is a project of the Dutch Dune Revival project, financed by the European LIFE+ Regulation and the province of North-Holland (LIFE09 NAT/NL/000418).

References