Bounding aerosol radiative forcing of climate change

Nicolas Bellouin¹, Johannes Quaas², Ed Grysspeert³, Stefan Kinne⁴, Philip Stier⁵, Duncan Watson-Parris⁶, Olivier Boucher⁷, Ken Carslaw⁷, Matt Christensen⁵, Anne-Laure Daniau⁸, Jean-Louis Dufresne⁹, Graham Feingold⁹, Stephanie Fiedler⁴, Piers Forster⁷, Andrew Gettelman¹⁰, Jim Haywood¹¹, Florent Malavelle¹², Ulrike Lohmann¹³, Thorsten Mauritsen¹⁴, Daniel McCoy⁷, Gunnar Myhre¹⁵, Johannes Muelmenstaedt², David Neubauer¹⁶, Anna Possner¹⁷, Maria Rugenstein⁴, Yousuke Sato¹⁸, Michael Schulz¹⁹, Stephen Schwartz²⁰, Odran Sourdeval²¹, Trude Storelvmo²², Velle Toll²³, David Winker²⁴, and Bjorn Stevens⁴

¹Department of Meteorology, University of Reading
²University of Leipzig
³Imperial College London
⁴Max Planck Institute for Meteorology, Hamburg
⁵University of Oxford
⁶Laboratoire de Meteorologie Dynamique
⁷University of Leeds
⁸EPOC UMR5805, CNRS, University of Bordeaux
⁹NOAA CSD
¹⁰NCAR
¹¹University of Exeter, UK Met Office
¹²University of Exeter
¹³ETH Zurich
¹⁴Stockholm University
¹⁵Center for International Climate and Environmental Research Oslo
¹⁶ETH Swiss Federal Institute of Technology Zurich
¹⁷University of Frankfurt
¹⁸Hokudai University
¹⁹Norwegian Meteorological Institute
²⁰Brookhaven National Laboratory
²¹Université de Lille
²²University of Oslo
²³University of Tartu
²⁴NASA Langley Research Center

November 21, 2022

Abstract

Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth’s radiation budget caused by anthropogenic aerosols, called
aerosol radiative forcing, but uncertainties remain large. This poster presents the outcome of an international workshop and subsequent review paper, which quantify the likely range of aerosol radiative forcing over the industrial era based on multiple lines of evidence, including modelling approaches, theoretical considerations, and observations. Improved understanding of aerosol absorption and the causes of trends in surface radiative fluxes narrow the range of the forcing from aerosol-radiation interactions compared to the latest assessment by the Intergovernmental Panel on Climate Change (IPCC). A robust theoretical foundation and convincing evidence constrain the forcing caused by aerosol-driven increases in liquid cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid water content and cloud fraction and on mixed-phase and ice clouds remains poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional constraints. These multiple lines of evidence lead to total aerosol radiative forcing ranges that are of similar width to the last IPCC assessment but more clearly based on physical arguments.
Bounding aerosol radiative forcing of climate change

Introduction

Aerosol radiative forcing plays an important role in the attribution of past climate changes, estimates of future allowable carbon emissions, and the assessment of potential geoengineering solutions. Substantial progress made over the past 40 years in observing, understanding, and modeling aerosol processes helped quantify aerosol radiative forcing, but uncertainties remain large.

In spring 2018, under the auspices of the World Climate Research Programme’s Grand Challenge on Clouds, Circulation and Climate Sensitivity, thirty-six experts gathered to take a fresh and comprehensive look at present understanding of aerosol radiative forcing and identify prospects for progress on some of the most pressing open questions. The outcome of that meeting is a review paper, Bellouin et al. (2019), soon to be published in Reviews of Geophysics.

This review provides a new range of aerosol radiative forcing over the industrial era based on multiple, traceable and arguable lines of evidence, including modelling approaches, theoretical considerations, and observations. A substantial achievement is to focus on lines of evidence rather than a survey of past results or expert judgement, and to make the open questions much more specific.

Key points

- An assessment of multiple lines of evidence supported by a conceptual model provides ranges for aerosol radiative forcing of climate change;
- Aerosol effective radiative forcing is assessed to be between −1.60 and −0.65 W m⁻² at the 16%-84% confidence level;
- Although key uncertainties remain, new ways of using observations provide stronger constraints for models.

Industrial-era changes in aerosols and clouds

- Estimating industrial-era changes in aerosol optical depth (Δτₐ) and cloud droplet number concentration (ΔNₐ) is a difficult problem because preindustrial aerosols have not been observed.
- Observational inferences like the one shown in Figure 1 provide possible ways to estimate industrial-era aerosol changes. They suggest that aerosol optical depth likely increased by 15-30% and cloud droplet number concentration likely increased by 6-18% since 1850.

Effective cloud fractions

- For aerosols to exert a radiative forcing, there needs to be an aerosol perturbation, a sensitivity of top-of-atmosphere radiation to that perturbation, and, for adjustments, a sensitivity of temperature, moisture and cloudiness.
- In the equation above, those elements are expressed as effective cloud fractions (the cₙ terms). Figure 2 shows distributions of effective cloud fractions for aerosol-cloud interactions.

Reference


Acknowledgements

- The World Climate Research Programme Grand Challenge Workshop: Bounding Aerosol Effective Radiative Forcing at Schloss Ringberg in February 2018, was supported by the Max Planck Society and the Deutsche Forschungsgemeinschaft, the European Union’s Seventh Framework Programme project BACCHUS and the Swiss National Science Foundation.
- Workshop participants were supported by the US National Science Foundation, the European Union Horizon 2020 programme, the UK Natural Environment Research Council, the European Research Council, the US Department of Energy, the Estonian Research Council, and the Japan Society for the Promotion of Science.