Shallow slow slip events can nucleate on velocity-strengthening thrust faults

Rob Skarbek

1Lamont-Doherty Earth Observatory, Columbia University

November 21, 2022

Abstract

Recent observations of faults in the shallow regions of subduction zones have revealed slow slip events that nucleate up-dip of the locked zone. Clay-rich sediments are prevalent at shallow depths and a large body of experimental work has shown that these sediments have a tendency towards velocity-strengthening frictional behavior, although velocity-weakening behavior is observed as well. Models of deeper slow slip, down-dip of the locked zone, generally require velocity-weakening behavior for events to nucleate. Here I show that slow slip events can nucleate and propagate on shallow, velocity-strengthening thrust faults, in a numerical model of a thrust fault dipping in a homogeneous, elastic half-space. This behavior is due to the broken symmetry of the thrust fault geometry, and is similar to behavior previously reported on bi-material, and poro-elastic faults. The interaction of the fault with the free surface (i.e. the sea floor) creates a coupling between normal stress on the fault and fault slip. This coupling allows velocity-strengthening slow slip events to nucleate, and becomes stronger at shallower depths. Here I conduct a parameter analysis, and show how this behavior is limited to certain values of the frictional and elastic parameters on the fault.
Shallow Slow Slip Events Can Nucleate on Velocity-Strengthening Thrust Faults

Rob Skarbek, rskarbek@ldeo.columbia.edu
Lamont-Doherty Earth Observatory

PRESENTED AT:
AGU FALL MEETING
New Orleans, LA & Online Everywhere
13-17 December 2021
Wiley

References:
- Key Points:
 - For velocity-strengthening parameters, the ratio of v depends on whether the fault is velocity-strengthening or not.
 - v increases for all positive values of v and decreases for all non-positive values.
 - For velocity-strengthening parameters, the ratio of v changes depending on the fault's behavior.
 - The relationship is similar to the simple case of frictional behavior in the upper mantle.
INTRODUCTION AND ELASTIC ANALYSIS

Introduction

- A common measure of frictional fault stability is the critical nucleation length h_0^*

$$ h_0^* = \frac{\pi G d_c}{\sigma_0 (1-\nu)(b-a)} $$

where G is the shear modulus, ν is Poisson's ratio, σ_0 is the normal stress, and a, b, and d_c are rate and state frictional parameters.

- The nucleation length as defined above, strictly applies only to a fault with constant frictional properties, embedded in a homogeneous and isotropic elastic full-space.

- As an idealized model of a subduction zone, here I analyze the sliding stability of a dipping thrust fault, embedded in a homogeneous and isotropic elastic wedge-space.

Elastic Analysis

- Consider a homogeneous, elastic semi-infinite wedge as illustrated above. Relative to horizontal, α is the slope of the upper surface, and β is the dip of the fault.

- Define the complex coordinate $z = x + i y = re^{i \theta}$ where (r, θ) are radial coordinates with θ measured from the x-axis in the direction of the y-axis, as shown. Then the upper surface of the wedge is located at $z = re^{i \alpha'}$ and the fault is located at $z = re^{i \beta'}$, where $\alpha' = \pi + \alpha$ and $\beta' = \pi - \beta$.

The stress and displacement fields throughout the wedge due to a distribution of slip along the fault can be expressed in terms of two analytic functions of z, $\omega(z)$ and $\Omega(z)$ [2]:

$$\sigma_x + \sigma_y = 2 \left[\Omega'(z) + \Omega'(\bar{z}) \right],$$

$$\sigma_y - \sigma_x + 2i\sigma_{xy} = 2 \left[z\Omega''(z) + \omega'(z) \right],$$

where primes denote differentiation with respect to z.

For zero traction along the entire upper surface of the wedge space, the potentials due to a single edge dislocation are:

$$\Omega(z) = -\gamma \left[\ln(z^q - z_0^q) - \ln(z^q - \bar{z}_0^q) \right] + \frac{q\tau(z_0 - z_0^q)^{q-1}}{z^q - z_0^q},$$

$$\omega(z) = -\gamma \left[\ln(z^q - z_0^q) - \ln(z^q - \bar{z}_0^q) \right] - \frac{q\tau(z_0 - z_0^q)^{q-1}}{z^q - z_0^q} + qz^q \left[\gamma \frac{1}{z^q - z_0^q} - \frac{\gamma}{z^q - \bar{z}_0^q} - \frac{q\tau(z_0 - \bar{z}_0)^{q-1}}{(z^q - \bar{z}_0^q)^2} \right]$$

where

$$\gamma = -\frac{i G b e^{i\beta'}}{4\pi(1-\nu)}$$

and $b e^{i\beta'}$ is the Burger's vector for shear slip along the fault.

The method of solution that I've employed depends on a conformal transformation that maps the wedge space in the z-plane, onto a half space in the ζ-plane, where

$$z = m(\zeta) = \zeta^{1/q}$$

and $q = \pi/\alpha'$.

For numerical computations, the changes in shear and normal stress along the fault are determined by the forms of the complex potentials above, and by considering a distribution of dislocations along the fault [1, 3, 6].

Using a piecewise continuous approximation to the slip distribution along the fault, the changes in shear and normal stress may expressed as products between linear operators $K_\alpha(\alpha, \beta, \xi)$, $K_\beta(\alpha, \beta, \xi)$ and the slip along the fault, where ξ is along-dip distance on the fault.
VELOCITY WEAKENING FAULT

Linear Stability Analysis

- The stress change operators K_r and K_σ can be used to numerically conduct a linear stability analysis of the dipping fault system.

- Here I use a form of the linearized equation that governs frictional slip in terms of sliding velocity v, shear stress τ, and normal stress σ. Explicit reference to the frictional state variable is suppressed [4, 5]:

$$\frac{d\tau}{dt} = \frac{a \sigma}{v_0} \frac{dv}{dt} + \mu_0 \frac{d\sigma}{dt} - \frac{\sigma_0}{v_0} \left[\tau - \mu_0 \sigma - \frac{(a-b)\sigma_0}{v_0} (v - v_0) \right]$$

where subscripted zeros denote steady-state quantities.

- This equation can be cast as an eigenvalue problem, whose solution supplies values of the critical nucleation length as a function of location along the fault.

- I determined h^* for a range of different wedge geometries. Upon normalization by the critical nucleation distance for a full-space, results are plotted against the depth of the fault, also normalized by h_0^*.

The qualitative behavior of the results depends primarily on the geometric parameters.
VELOCITY STRENGTHENING FAULT

Slow Slip Pulses

- The video below shows an example of a slow slip pulse, spontaneously nucleating on a dipping thrust fault with velocity-strengthening properties.

- The event nucleates from small, random fluctuations in the slip velocity, relative to the steady-state slip velocity $v_{\text{plate}} = 10^{-9}$ m/s.

Other parameter values are as above for the video.

Simulation Results

- The figure above shows the maximum slip velocity attained by slow slip pulses for a range of background normal stress values, and as a function of $(a - b)$.
• Very small values of \((a-b) > 0\) are required for slow slip pulses to nucleate.

• Higher background normal stress enhances the slip velocities, and possibly the likelihood that slow slip pulses will nucleate.

• More work is needed to better understand what parameters control the maximum value of \((a - b)\) that will generate pulses.
CONCLUSIONS AND REFERENCES

Key Results

• For velocity-weakening properties, the value of \(h^* \) depends on location along the fault.

• \(h^* \) decreases from the full-space value when the depth of the fault is \(~0.6h_0^*\).

• For velocity-strengthening properties, slow slip pulses can spontaneously nucleate on the fault when \((a - b)\) is positive, but small.

• This behavior is similar to that observed on bimaterial and poroelastic faults [4, 5].

References

ABSTRACT

Recent observations of faults in the shallow regions of subduction zones have revealed slow slip events that nucleate up-dip of the locked zone. Clay-rich sediments are prevalent at shallow depths and a large body of experimental work has shown that these sediments have a tendency towards velocity-strengthening frictional behavior, although velocity-weakening behavior is observed as well. Models of deeper slow slip, down-dip of the locked zone, generally require velocity-weakening behavior for events to nucleate. Here I show that slow slip events can nucleate and propagate on shallow, velocity-strengthening thrust faults, in a numerical model of a thrust fault dipping in a homogeneous, elastic half-space. This behavior is due to the broken symmetry of the thrust fault geometry, and is similar to behavior previously reported on bi-material, and poro-elastic faults. The interaction of the fault with the free surface (i.e. the sea floor) creates a coupling between normal stress on the fault and fault slip. This coupling allows velocity-strengthening slow slip events to nucleate, and becomes stronger at shallower depths. Here I conduct a parameter analysis, and show how this behavior is limited to certain values of the frictional and elastic parameters on the fault.