Biogeochemical drivers of soil N₂O, CH₄, and CO₂ emissions from alfalfa using long-term continuous measurements

Tyler Anthony¹, Joseph Verfaillie², Daphne Szutu², Dennis Baldocchi², and Whendee Silver²

¹University of California, Berkeley
²University of California Berkeley

November 21, 2022

Abstract

Agriculture is a significant source of carbon dioxide (CO₂) and methane (CH₄) and is the dominant source of anthropogenic nitrous oxide (N₂O) emissions. Changes in agricultural land management practices that reduce overall greenhouse gas (GHG) emissions have been suggested to help mitigate climate change, but a better understanding of the timing, magnitude, and drivers of GHG fluxes is needed. Alfalfa agroecosystems may be significant sources of N₂O given their ability to increase N inputs through symbiotic N₂ fixation and frequent irrigation events that create conditions for hot moments of N₂O production. However, few studies have explored long-term N₂O emissions and their associated drivers in alfalfa ecosystems. We collected over 108,000 CO₂, CH₄ and N₂O soil flux measurements over four years using cavity ring-down spectroscopy from a conventional flood-irrigated alfalfa field in California, USA. This ecosystem was a consistent source of N₂O (annual mean: 624.4 ± 27.8 mg N₂O m⁻² yr⁻¹, range: 263.6 ± 5.6 to 901.9 ± 74.5 mg N₂O m⁻² yr⁻¹) and a small net sink of CH₄ (annual mean: -53.5 ± 2.5 mg CH₄ m⁻² yr⁻¹, range: -78.2 ± 8.8 to -31.6 ± 2.5 mg CH₄ m⁻² yr⁻¹). Soil CO₂ fluxes averaged 4925.9 ± 13.5 g CO₂ m⁻² yr⁻¹ and were greater than other alfalfa ecosystem estimates, likely driven by elevated temperatures and plant productivity throughout the growing season. Hot moments of N₂O emissions represented only 0.2% to 1.1% of annual measurements but were 31.6% to 56.8% of the annual flux. We found that both the magnitude and the contribution of N₂O hot moments to annual emissions decreased over time. Normalized difference vegetation index (NDVI), soil temperature, moisture, and O₂ were all significantly correlated with soil CO₂, N₂O, and CH₄ fluxes, although associations varied across both soil depth and timescales. Our results suggest that flood-irrigated alfalfa is a significant source of agricultural N₂O emissions, and that plant productivity and soil moisture effects on O₂ availability may modulate the net GHG budget of alfalfa agroecosystems.
Biogeochemical drivers of soil N_2O, CH$_4$, and CO$_2$ emissions from alfalfa using long-term continuous measurements

Tyler L. Anthony, Joseph G. Verfaillie, Daphne J. Szutu, Dennis D Baldocchi, Whendee L. Silver
Department of Environmental Science, Policy, and Management, University of California, Berkeley

Introduction

- Alfalfa (*Medicago Sativa* L.) is the most common perennial forage legume worldwide and the largest crop by acreage in the Western U.S.1
- Alfalfa is often thought of as a climate-friendly feedstock given its potential to increase soil C as a deep-rooting, perennial plant2, and symbiotic nitrogen (N$_2$) fixer, decreasing inorganic fertilizer inputs.
- Long-term CO$_2$ and CH$_4$ studies suggest alfalfa can be a net C sink3,4, but no continuous long-term N$_2$O studies exist.5
- Alfalfa may be a significant N$_2$O source as enriched soil N and irrigation may stimulate hot moments of N$_2$O production.

Methodology

- Jan 2016-Feb 2021: >108,000 CO$_2$, CH$_4$ and N$_2$O flux measurements from unfertilized alfalfa in California, USA with automated Eosense chambers and a Picarro greenhouse gas (GHG) analyzer.
- Apr 2018-Apr 2019: Weekly soil NO$_3$-, NH$_4$+ sampling.
- Sep 2018-Feb 2021: Continuous soil moisture, temperature, and oxygen (O$_2$) at 10, 30, and 50 cm.
- Fluxes up to 5.7 ± 0.8 kg N-N$_2$O ha$^{-1}$ yr$^{-1}$, and hot moments, only 1% of measurements, were 44% of total N$_2$O fluxes.

Daily mean CO$_2$, CH$_4$, and N$_2$O fluxes

- Hot moments (fluxes > 4 SD) were 57% of N$_2$O fluxes, largely associated with flood irrigation.
- Strong seasonal trends in soil CO$_2$ fluxes closely followed air temperature and plant respiration.
- Alfalfa was a small net CH$_4$ sink with the largest sinks in 2020-21.

Drivers of soil greenhouse gas emissions

- CO$_2$ coupled with temperature and normalized vegetation index (NDVI)
- N$_2$O coupled with soil O$_2$, moisture, and NDVI
- Significant wavelet coherence of all three GHGs with NDVI, temperature, moisture, and O$_2$, but varied across timescales.

Table 1. Mean ± SE annual and hot moment (>4 SD) N$_2$O fluxes.

<table>
<thead>
<tr>
<th>Site Year</th>
<th>Annual mean (mg N$_2$O m$^{-2}$ d$^{-1}$)</th>
<th>Hot moment mean (mg N$_2$O m$^{-2}$ d$^{-1}$)</th>
<th>Hot moment % of flux</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (2017-18)</td>
<td>611 ± 68</td>
<td>496 ± 67</td>
<td>+56.8%</td>
</tr>
<tr>
<td>2 (2018-19)</td>
<td>902 ± 74</td>
<td>457 ± 43</td>
<td>+55.3%</td>
</tr>
<tr>
<td>3 (2019-20)</td>
<td>777 ± 52</td>
<td>363 ± 46</td>
<td>+37.5%</td>
</tr>
<tr>
<td>4 (2020-21)</td>
<td>264 ± 6</td>
<td>20 ± 1</td>
<td>+31.6%</td>
</tr>
<tr>
<td>All years</td>
<td>624 ± 28</td>
<td>401 ± 27</td>
<td>+44.4%</td>
</tr>
</tbody>
</table>

Acknowledgments

Thank you to the members of the Silver and Baldocchi Labs at UC Berkeley. This work was supported by a California Department of Water Resources Contract (award 4000011249). This was also supported by the California Sea Grant College Program Project R/SF 526 and California Sea Grant College Program Project R/SP-89.*

References

*The opinions expressed in this material are those of the authors and do not necessarily reflect the views of the Delta Stewardship Council or the members of the Silver and Baldocchi Labs.