Méne Fossae on Europa: A Strike-Slip Tectonics Origin above a possible Shallow Water Reservoir

Pietro Matteoni¹, Alicia Neesemann², Ralf Jaumann³, Jon K. Hillier⁴, and Frank Postberg⁵

¹Planetary Sciences and Remote Sensing, Institute of Geological Sciences, Freie Universität Berlin
²Freie Universität Berlin Fachbereich Geowissenschaften
³Freie Universität Berlin Institut für Geologische Wissenschaften
⁴Institute of Geological Sciences, Freie Universität Berlin
⁵Freie Universitaet Berlin

November 21, 2022

Abstract

Faults and fractures may emplace fresh material onto Europa’s surface, originating from shallow reservoirs within the ice shell or directly from the subsurface ocean. Méne Fossae is a region of particular interest, as it displays, within a relatively small area, the interaction of several geological features such as bands, double ridges, chaotic terrains, and fossae. These features might affect the emplacement of buried material and subsequent exposure of fresh volatiles, prime targets for the upcoming JUICE and Europa Clipper missions in order to assess Europa’s astrobiological potential. Previous studies already revealed that a deep central trough is present at Méne Fossae, flanked by several subparallel minor troughs and by few asymmetrical scarps with lobate planforms. The presence of such features has motivated this study, given its potential to provide clear indications on the tectonic regime involved. Through detailed geomorphological-structural mapping on Galileo Solid State Imager data and terrain analysis on Digital Terrain Models, we could develop a novel hypothesis on the formation mechanisms that might have been involved in the study area. We propose that Méne Fossae has been shaped by transtensional (strike-slip with a major extensional component) tectonic activity, as indicated by the orientation and relationship of the tectonic features present. The shear heating related to such a tectonic setting possibly led to the formation of a shallow water reservoir, that in turn could have generated the observed chaotic terrains, double ridges, and fossae. These results strengthen the case for widely distributed shallow water reservoirs within Europa’s ice shell.
Ménec Fossae on Europa: A Strike-Slip Tectonics Origin above a possible Shallow Water Reservoir

Pietro Matteoni1, Alicia Neesemann1, Ralf Jaumann1, Jon Hillier1 and Frank Postberg1

1 Planetary Sciences and Remote Sensing, Institute of Geological Sciences, Freie Universität Berlin, Germany

Corresponding author: Pietro Matteoni (pietro.matteoni@fu-berlin.de)

Key Points:

- Detailed geomorphological-structural analysis of Ménec Fossae has been conducted, using imaging and newly processed topographic data
- Ménec Fossae has been shaped by transtensional tectonic activity, potentially related to the emplacement of a shallow water reservoir
- The hypothesis that shallow water reservoirs are widely distributed within Europa’s ice shell is strengthened
Abstract

Faults and fractures may emplace fresh material onto Europa's surface, originating from shallow reservoirs within the ice shell or directly from the subsurface ocean. Ménec Fossae is a region of particular interest, as it displays, within a relatively small area, the interaction of several geological features such as bands, double ridges, chaotic terrains, and fossae. These features might affect the emplacement of buried material and subsequent exposure of fresh volatiles, prime targets for the upcoming *JUICE* and *Europa Clipper* missions in order to assess Europa’s astrobiological potential. Previous studies already revealed that a deep central trough is present at Ménec Fossae, flanked by several subparallel minor troughs and by few asymmetrical scarps with lobate planforms. The presence of such features has motivated this study, given its potential to provide clear indications on the tectonic regime involved. Through detailed geomorphological-structural mapping on *Galileo* Solid State Imager data and terrain analysis on Digital Terrain Models, we could develop a novel hypothesis on the formation mechanisms that might have been involved in the study area. We propose that Ménec Fossae has been shaped by transtensional (strike-slip with a major extensional component) tectonic activity, as indicated by the orientation and relationship of the tectonic features present. The shear heating related to such a tectonic setting possibly led to the formation of a shallow water reservoir, that in turn could have generated the observed chaotic terrains, double ridges, and fossae. These results strengthen the case for widely distributed shallow water reservoirs within Europa’s ice shell.

Plain Language Summary

Tectonic cracks may emplace fresh material onto Europa's surface, that can originate from shallow water bodies within the icy crust or directly from the subsurface ocean. This kind of material is a prime target for upcoming space missions in order to assess Europa’s habitability. We investigated the area of Ménec Fossae, which is characterized by many different geological features and structures within a relatively small area and can therefore provide clues on the mechanisms that shaped it. Our analysis were based on imaging and new topographic data, we developed a new hypothesis involving a combination of different tectonic styles as the driving processes for the formation of this area. This kind of tectonic activity could be related to heating through shear friction, which might have generated a liquid water pocket at shallow depths within Europa’s icy crust, explaining the concurrent presence of some particular geological features. These findings strengthen the case for shallow water pockets to be widely distributed within the icy crust, which could allow future space missions to more easily assess Europa’s habitability.

1 Introduction

Amongst the three possible Jovian ocean worlds, Europa, Ganymede and Callisto, the most detailed and convincing evidence for an internal ocean has been obtained for Europa (e.g., Nimmo & Pappalardo, 2016). Not only does the magnetic induction response to Jupiter’s time-varying magnetic field indicate the existence of a subsurface salty ocean (Khurana et al., 1998; Kivelson et al., 2000), but the moon’s surface also shows indications of interaction with a liquid layer beneath the ice crust. Images from Voyager 2 and Galileo show a fractured icy surface, with regions where ice crust blocks seem to have moved in a slushy or liquid medium (Carr et
al., 1998; Pappalardo et al., 1999). The orientation of some large-scale linear features also seems
to have changed over time, implying rotation of the ice shell and a very low viscosity layer
between the interior and the surface (Pappalardo et al., 1998). The thickness and thermo-physical
structure of the ice shell are poorly constrained, but models suggest it may be 20–30 km thick
(e.g., Howell, 2021; Hussmann, 2002; Quick & Marsh, 2015), with a layer of warm, convecting
ice underlying a cold, rigid crust (Barr & Pappalardo, 2005; Pappalardo et al., 1998).

Pressures at the base of the internal global ocean are too low for the formation of high-
pressure ice phases, and the ocean is thus believed to be in contact with the rocky interior
(Anderson et al., 1998). This raises the possibility of rich chemical exchange between the silicate
interior and the subsurface ocean, perhaps via hydrothermal vents, and potentially chemical
heating through serpentinization (Vance et al., 2007; Vance et al., 2016). Since long-lived
radioactive elements are expected to be present in the silicates, as they are within the Earth, a
further source of energy that heats the rocky interior is radioactive decay (Běhounková et al.,
2021; Hussmann et al., 2010). However, the major heating source is provided by tidal dissipation
due to Europa’s eccentric orbit, maintained over long time periods by orbital resonances with Io
and Ganymede (Schubert et al., 2009; Sotin et al., 2009). These considerations make Europa one
of the main candidates in the Solar System for supporting the development of life (Greenberg et
al., 2000; Greenberg & Geissler, 2002). If biosignatures are produced within Europa’s ocean,
they will need to reach the surface to be detected by the upcoming Jupiter Icy Moons Explorer
(JUICE) and Europa Clipper missions. There are indications of salts at some surface locations
(e.g., Dalton et al., 2005; Trumbo et al., 2019), consistent with recent extrusions or ejections of
salt-rich liquid water from the moon’s interior. Some investigators have recently suggested that
the salt minerals present on Europa’s surface may be dominated by endogenic chlorinated
species (e.g., sodium and/or magnesium chlorides), rather than by sulfates (Hand & Carlson,
2015; Ligier et al., 2016; Trumbo et al., 2017, 2019a, 2019b, 2022), which were the main
previously hypothesized compounds (e.g., Dalton et al., 2012; Hansen & McCord, 2008;
McCord et al., 1999; Orlando et al., 2005), with radiolysis producing the observed reddish-brown
coloration of *lineae* and *chaos* regions. A chloride-rich, sulfate-poor ocean would likely be
indicative of ongoing water/rock interaction at the seafloor, whereas a sulfate-rich, chloride-poor
ocean could indicate either a primordial, leached composition or significant cycling with the ice
shell and delivery into the ocean of radiolytically-produced sulfates (Hand et al., 2022).

At global scales, landform evolution on atmosphereless bodies is primarily driven by
impact gardening, tectonics, and (cryo-)volcanism. Crater density and frequency analysis
indicate that Europa’s geologically active surface (Greenberg et al., 1998; Greenberg & Geissler,
2002) is relatively young (~40-90 My, Bierhaus et al., 2009), with a wide variety of landforms
including ridges, troughs, bands, lenticulae, and chaotic terrains (Greeley et al., 2004; Greeley et
al., 2000). To understand which resurfacing processes are responsible for Europa’s anomalously
young surface age, several compressional mechanisms have been invoked, such as subduction
(cold, brittle, and dense outer portions of the ice shell sink into the underlying convecting
warmer ice, in analogy to Earth’s convergent plate boundaries; Kattenhorn & Prockter, 2014)
and regional scale folding (e.g., Prockter & Pappalardo, 2000). Nevertheless, the tectonic regime
that dominates within the ice shell is extensional, a hypothesis supported by numerous lines of
evidence, such as the widespread presence of dilational bands that represent >40% of the total
surface area (Kattenhorn & Hurford, 2009). Several types of geological features generated within
such a tectonic regime, including bands, double ridges, cycloids, chaotic terrains, and fossae,
might affect the emplacement of buried material and subsequent exposure of fresh volatiles on
Europa’s surface.

Bands (Figure 1a), on Europa, are tabular zones of dilation in the icy shell where new
crustal material intruded between the walls of a crack (Kattenhorn & Hurford, 2009); they have
lengths of hundreds of km and widths of a few km up to ~30 km. Bands are thought to represent
a phenomenon analogous to Earth’s mid-ocean ridge spreading centers, potentially making them
the only other known feature in the Solar System where complete lithospheric separation has
occurred (Kattenhorn & Prockter, 2014; F. Nimmo et al., 2003).

Double ridges (Figure 1b) are the most common tectonically related type of feature on
Europa, comprising a central crack or trough flanked by two quasi-symmetric raised edifices, up
to a few hundred meters high and less than 5 km wide (Kattenhorn & Hurford, 2009). These
ridges may extend for hundreds of kilometers and include some of the oldest features visible on
the surface, with frequent cross-cutting implying numerous formation cycles over Europa’s
history. Numerous double ridges follow cycloidal paths (i.e., chains of arcs) across the surface:
as the tidal stress field changes through time, propagation of tensile cracks occurs (Greenberg &
Sak, 2014). Double ridges may indicate intrusions of near-surface liquid water (Dombard et al.,
2013; Johnston & Montési, 2014), shear heating (Han & Showman, 2008; Kalousová et al.,
2016; Nimmo & Gaidos, 2002), eruptions (Fagents, 2003), or direct extrusion of recently frozen
ocean water by fractures opening and closing under tidal stresses (Greenberg et al., 2003). More
recent studies suggest how double ridges might be formed through a combination of shear
heating and refreezing, pressurization and fracturing of shallow water reservoirs (e.g., Culberg
et al., 2022).

Cycloids (Figure 1c) are linked, arcuate fractures that form hundreds to thousands of
kilometres long chains of multiple, concatenated segments (Kattenhorn & Hurford, 2009). As the
daily principal tidal stresses on Europa change, cycloids are believed to form in response to that
(e.g., Greenberg et al., 1998). A crack forms as the tidal stress in a given region increases and
eventually exceeds the failure strength of the ice (i.e., becomes more tensile). A cycloidal path
can track the changes in stress orientation with time as it propagates across Europa’s surface, if
the crack propagates slowly (a few km/h). When the tidal stress decreases, propagation ceases,
completing an arc (Rhoden et al., 2021).

Chaotic terrains are (Figure 1d), on Europa, geologically very young and extensively
disrupted surface features, interpreted as reflecting recent interaction with shallow subsurface
material (Chivers et al., 2021; Collins & Nimmo, 2009; B. E. Schmidt et al., 2011). Leading-
hemisphere chaos regions have recently been shown to be compositionally distinct from their
surroundings, probably indicating contributions from endogenous sodium chloride sourced from
the subsurface ocean (Trumbo et al., 2019a, 2019b, 2022).

Fossae (Figure 1e) are long, narrow depressions. The term is used for topographic
features that occur on extraterrestrial planetary surfaces, whose exact origin is uncertain,
although they are thought to be the result of predominantly extensional tectonic processes
(Schenk et al., 2020).
Here we investigate the region around Ménec Fossae on Europa (centered at 51°S, 177°W; on Europa’s trailing hemisphere) for which we produced high-resolution photoclinometrically-derived (Lesage et al., 2021; Schenk & Pappalardo, 2004) digital terrain.
models (DTMs) and a geomorphological-structural map (scale 1:80,000). This area is of particular interest, as it displays the interaction between bands, double ridges, chaotic terrains and fossae, which might share common formation processes, potentially related to shear heating and refreezing, pressurization and fracturing of shallow water reservoirs (Culberg et al., 2022).

Our results suggest that this area of Europa has undergone transtensional (strike-slip with a major extensional component) tectonic activity, as indicated by the orientation and relationship of the tectonic features present. Such tectonic setting has possibly created a pathway facilitating the ascent of subsurface material, especially volatiles (Aydin, 2006). These results, together with ongoing work on other areas of Europa’s surface, will help ascertain the most likely regions on Europa in which to find fresh material, representative of the subsurface ocean, and be used as input data for dust ejecta trajectory models that will ultimately assist the time-of-flight mass spectrometer Surface Dust Analyzer (SUDA), onboard the upcoming Europa Clipper mission, in compositionally mapping Europa’s surface (Goode et al., 2021; Kempf et al., 2014; Postberg et al., 2011).

2 Materials and Methods

DTMs of the selected areas have been produced using the photoclinometry (PC) technique (e.g., Schenk & Pappalardo, 2004), through the Ames Stereo Pipeline (ASP) Shape-from-Shading (SfS) tool (Beyer et al., 2018). DTMs were derived from Galileo’s Solid-State Imager (SSI) images (Belton et al., 1992), which were processed through the Integrated Software for Imaging and Spectrometers (ISIS 1 4.4.0). In the final map, photogrammetrically controlled image mosaics were used as background (Bland et al., 2021a). For the processing of Galileo SSI raw image data, we used the updated SPICE smithed kernels, and projected the processed data on a spheroid with radius of 1560.800 km (i.e., the IAU-defined mean radius for Europa) which is therefore also the DTMs’ reference height (Bland et al., 2021a). The PC/SfS tool overcomes the lack, on Europa, of having the same surface area covered by two or more images for traditional stereophotogrammetry DTMs’ production. The smoothness parameter \(\mu \) of the SfS tool, which weighs the smoothness of the resulting DTM and depends on surface properties, plays an important role and can vary the results significantly: optimal \(\mu \) values with a good S/N ratio of the resulting DTM need to be found by trial and error, where different values need to be applied for each image (a detailed description of how \(\mu \) affects the DTMs results can be found in Lesage et al., 2021). Manual quality checks have been conducted through features’ height \(H \) estimation based on shadow length \(L \) and solar elevation angle \(\alpha \): \(H = L \tan(\alpha) \). The SfS tool assumes uniformity in albedo and photometric parameters across the whole image, based on the reflectance model used. Even though such properties can change at regional or local scales, the overall uncertainties on the SfS DTMs vertical resolution are likely not more than 10-15%, as previously discussed in the literature (Bierhaus & Schenk, 2010; Bland et al., 2021b; Lesage et al., 2021; Schenk et al., 2020; Schenk & Pappalardo, 2004). We further conducted geomorphological-structural mapping of the selected areas on SSI images 9926r and 9939r in stereographic projection using QGIS3 and the Mappy plugin3 (image frames resolution of \(\sim 40 \) m/pixel, which corresponds to a map scale of 1:80,000), units were distinguished based on

1 https://isis.astrogeology.usgs.gov/7.0.0/index.html
3 https://zenodo.org/record/5524389
morphology and albedo differences. Tectonic linear features such as faults were identified based on distinctive morphologies such as scarps, paired with topographical analysis of the DTMs.

3 Results

Ménec Fossa is located in the southern trailing hemisphere of Europa, nearby Thera and Thrace Maculae (Figure 2). We produced high-resolution DTMs of the study area (Figure 3), through the SfS technique described in Section 2.

Figure 2. Regional map on photogrammetrically controlled Galileo SSI image mosaics, the red box depicts the study area. To the NW, Thera Macula is recognizable, while Thrace Macula is located to the NE. Libya Linea, a large-scale smooth band, continues along a NE-SW into Ménec Fossae.
Figure 3. (Top) Regional DTM of Ménec Fossae, individual DTMs are of 9926r and 9939r Galileo SSI image frames, later mosaicked together. The DTM has smoothness parameter (μ).
values of 0.004 for the southern 9926r image frame and of 0.1 for the northern 9939r image frame. Image centered at 52°S, 177°W. Several elevation profile paths are shown, A-A’ and B-B’ profiles are displayed in the bottom panel (vertical exaggeration factor 1), the others are in Figure 5. (Bottom) Elevation profiles. The main central depression reaches depths of ~200 m and is ~1 km wide along the elevation profile (detail in B-B’), with slope angles values of ~20-25° on the gentler southern side and of ~30-35° on the steeper northern side. Several minor depressions, flanking the main one, reach depths of 40-50 m (examples as star symbols in profile A-A’).

We further conducted geomorphological analysis paired with fault mapping, resulting in a geomorphological-structural map of the Ménec Fossae area at a scale of 1:80,000 (Figure 4). We could distinguish among six different geomorphological units (Chaotic Terrain, Double Ridge, Fossa, Crater, Ridged Plains and Smooth Band), which are hereafter described and interpreted.
Geomorphological Units

Chaotic Terrain (CTU)
Double Ridge (DRU)
Fossa (FU)
Crater (CU)
Ridged Plains (RPU)
Smooth Band (SBU)

Tectonic Features
Fault
Figure 4. (Top) Image mosaic of Galileo SSI 9926r and 9939r frames centered at 52°S, 177°W, displaying the area of Ménec Fossae. Photogrammetrically controlled SSI image mosaics as background. (Bottom) Geomorphological-structural map of Ménec Fossae. A detailed interpretation of the tectonic features is given in the text and in Figure 6.

3.1 Description and interpretation of geomorphological units

3.1.1 Chaotic Terrain Unit

The Chaotic Terrain Unit (CTU) is formed by high albedo blocks or polygons of pre-existing crustal material, tens of meters to 1-2 km in size, within a low albedo hummocky matrix (Greeley et al., 2000; Leonard et al., 2018) that, in the studied area lie generally at the same or lower level than the surrounding units, with locally higher crustal blocks (Figure 3).

3.1.2 Double Ridge Unit

The Double Ridge Unit (DRU) consists of two subparallel quasi-linear and symmetric topographically high landforms of relatively high albedo. The landforms are rounded to triangular in cross-section and separated by a trough that contains lower albedo material. In the northwestern part of the map (Figure 4), the DRU has been incorporated into the CTU, with a resulting topographic drop in the corresponding area, and therefore predates such unit (Figures 3 and 5f). It is important to note that the mapped double ridge exhibits flexural bulges and flanking troughs along both its sides (Figure 5e), characteristics previously described by Dombard et al. (2013) who suggested that those double ridges displaying them originate from shallow water bodies. On the regional map (Figure 2), it appears clear how the DRU patch is part of a much bigger cycloid structure (i.e., it is a cycloidal double ridge, Hoppa et al., 1999). Nevertheless, it must be taken into account that at the map scale and within the Ménec Fossae setting, this DRU patch has all geomorphological characteristic of a Europan double ridge. Therefore we consider it as such, although this could be deemed as a cycloidal ridge on a wider context. Furthermore, in the literature there is a shared consensus to consider cycloidal ridges (such as the one part of DRU in the mapped area) as most likely having the same formation process as double ridges (Culberg et al., 2022; Figueredo & Greeley, 2004; Greenberg & Sak, 2014; Hoppa et al., 1999; Johnston & Montési, 2014).

3.1.3 Fossa Unit

The Fossa Unit (FU) is formed by topographically low quasi-linear landforms that have a low albedo appearance. In the mapped area these depressions have steep sides, v-shaped cross sections and many exhibit terraces; the major of such features reach depths up to ~200 m. Since it crosscuts all other mapped units, and therefore postdates them, the FU is interpreted as the youngest unit in this area.

3.1.4 Crater Unit

The Crater Unit (CU) consists of moderately high albedo material comprising a crater’s floor, wall, and raised rim. It is interpreted as material excavated and/or deposited during impact events. Given their clustered appearance and the lack of significant ejecta blanket deposits, craters in this area of Europa have previously been interpreted as being secondary, i.e., craters
formed by material ejected from large primary impact craters (Bierhaus & Schenk, 2010; Bierhaus et al., 2005; Singer et al., 2013).

3.1.5 Ridged Plains Unit

The Ridged Plains Unit (RPU) is characterized by a series of small-scale (~200-500 m in width) high-albedo ridges which can be anywhere from sub-parallel to overlapping, and in several cases in multiple orientations. In general, on Europa’s surface, ridged plains are one of the oldest terrain types (Figueredo & Greeley, 2004; Greeley et al., 2000; Leonard et al., 2020; Pappalardo et al., 1999; Prockter et al., 1999). This is the case in the mapped area as well, as they are crosscut by all the units they are in contact with.

3.1.6 Smooth Band Unit

The Smooth Band Unit (SBU) consists of either very subdued ridges and troughs or material with little or no structure. In the mapped area, the SBU is a portion of the very large structure Libya Linea, which extends over thousands of km (Figure 2). Smooth bands are interpreted as regions of crustal extension in which the low relief and lack of internal structure can be due to small-scale fracturing or the emplacement of infilling material (e.g., Prockter et al., 2002).

3.2 Stratigraphic sequence

Based on the crosscutting relationships among the different geomorphological units, we could determine the following sequence of events (numbered, in brackets):

- RPU is the oldest terrain (1), as it occurs in most regions of Europa (Leonard et al., 2020).
- SBU (2), i.e., a portion of Libya Linea, superimpose the RPU.
- Subsequently, the DRU (3) has formed; in the north-western edge of the mapped area, this unit has been incorporated in the CTU (4) which therefore postdates it.
- Ultimately, the FU (5) crosscuts all the other units it is in contact with. The CU (6) is located on top of all other units, while there is no patch of such unit in contact with the FU, thus the cratering events were older or at least concurrent to the FU formation.

Such stratigraphic sequence follows the typical three-stage development on Europa: the initial formation of ridged plains, followed by band-like features and ultimately the imposition of chaotic terrains (Leonard et al., 2020).

3.3 Tectonic features

Different types of faults have been identified and mapped. Note that many other faults are located in the south-eastern part of the mapped area, within the RPU (Figure 4). Considering that this is the oldest of the mapped units, these faults belong to a much older and likely different tectonic regime. We therefore did not distinguish them in the map and consider them as being part of the RPU’s general rugged appearance.
Most of the mapped faults display both extensional and strike-slip characteristics, such as clear distinctive elevation drops yet with very steep sides and no clear hanging wall - foot wall distinction (uncommon in purely extensional faults), along with en échelon disposition (Figures 3 and 4); we therefore consider them as transtensional faults (i.e., strike-slip features with an extensional component). The most prominent ones in terms of topographic drop have been mapped as part of the FU (Figure 4). These faults follow a roughly NW-SE trend and are distributed within three zones: around the center of the mapped area, where Ménéc Fossa s.s. takes part most of the extensional component, spread along several quasi-parallel en échelon troughs, which become anastomosing towards their SE tips, while reaching depths up to ~200 m (Figure 3). These features are located along the anticline crest of a long-wavelength fold system, as previously observed on SSI image data by (Prockter & Pappalardo, 2000) and further confirmed in this study through the newly available topographic information contained in the DTM (Figure 5d). On both sides of these central features, at distances up to 10-15 km, there are two other sets of subsidiary en échelon transtensional faults also aligned along NW-SE trends, subparallel to the main central features. These subsidiary faults have elevation drops of ~40-50 m in their deepest portions (Figure 3). Along with such structures, few other features have been identified. These are flanking the main central feature as well, along similar orientations. They display a clear increase in elevation, along a roughly SW-NE axis, followed by abrupt asymmetrical scarps, with lobate planform geometries (Figures 3 and 5c and 6), all characteristics typical of compressive faults (Prockter & Pappalardo, 2000) on Earth and other planetary bodies (e.g., Mars, Titan). We therefore consider them as compressive tectonic features (i.e., thrust faults).
Figure 5. Elevation profiles along the DTM at various locations, profiles’ paths are displayed in Figure 3. Vertical exaggeration factor is 1 in all panels. (C-C’) Examples of mapped thrust faults, with hypothetical fault traces sketched in white. The two thrusts seem to follow a typical imbricate fan geometry. (D-D’) Long distance profile displaying the long-wavelength fold system discussed in Section 3.3. (E-E’) Detail of the double ridge (DRU), depicting the observed
marginal troughs and flexural bulges that support the shallow water reservoir’s hypothesis as its origin (Section 3.1.2). (F-F’) Detail of the CTU-DRU transition, showing the elevation drop corresponding to the incorporation of the DRU in the CTU, proving the DRU relative older formation timing (Section 3.1.2).

Figure 6. Proposed structural setting in the area of Ménec Fossae, image centered at 52°S, 177°W. The right-lateral strike-slip faulting controls the deformation along a wide shear zone, generating several extensional and transtensional features (marked together in the legend for ease of use of the structural map) and few compressive structures, in an predominantly transtensional
tectonic setting. Local portions have a larger compressional component, resulting in folding (see Figure 5) and thrust faulting.

3 Discussion and conclusions

Several formation hypotheses have been previously proposed for the area of Méneč Fossae. Prockter & Pappalardo (2000) consider it as a regional scale anticline (upward convex) fold’s crest flanked by small reverse faults, which are inferred to mark syncline (upward concave) folds’ hinges. In this case, the folding and associated small scale thrust faulting would imply that compression was, or is, ongoing in this area of Europa, which would locally compensate for the ubiquitous extension observed on this Jupiter’s icy moon. More recently, it has been suggested (Schenk et al., 2020) that Méneč Fossa is part of a set of en échelon fissures associated with True Polar Wander (TPW) of the ice shell (Schenk et al., 2008), involving a 70° global rotation of surface features. The authors consider these features as sets of multiple parallel faults in which most of the extension is confined within a single narrow central feature. The fissures are also thought to be closely associated with buckling or tilting of the surface by a few tens of meters within the deformation zone. Other features on Europa associated with TPW (Schenk et al., 2020) include the same terrain type, displaying similar geomorphological and structural characteristic as Méneč Fossae (Kermario Fossae - 43°N, 5°E; Kerlescan Fossae - 3°N, 238°W).

Based on observations on geomorphology and topography of the Méneč Fossae area, our novel hypothesis for its formation mechanisms involves transtensional tectonics (Figure 6) above a shallow water reservoir. Such hypothesis considers the two main previous models on this area, described above (Prockter & Pappalardo, 2000; Schenk et al., 2020), and combines them with proposed mechanisms for the formation of different surface features on Europa, including chaotic terrains and double ridges (e.g., Chivers et al., 2021; Craft et al., 2016; Culberg et al., 2022; Dombard et al., 2013; Kalousová et al., 2016; B. E. Schmidt et al., 2011). These last contributions all invoke the emplacement of shallow water bodies within the ice shell to generate the various surface expressions they focus on. In particular, through a comparison with an analysis of an Earth’s double ridge in Greenland, Culberg et al. (2022) show how double ridges might form via refreezing, pressurization and fracturing of shallow water reservoirs, potentially induced by shear heating (Han & Showman, 2008; Kalousová et al., 2016; Nimmo & Gaidos, 2002). Moreover, our observations (Section 3.1.2) on the flexural bulges and flanking troughs along the sides of the mapped double ridge (DRU), further strengthen the case for it originating from a shallow water body. In fact, Dombard et al. (2013) suggest how shallow water reservoirs must be involved in double ridges’ formation in order to explain the aforementioned flanking features, where those are present. These processes could also operate in conjunction with other proposed double ridges’ formation mechanisms, such as shear heating (Johnston & Montési, 2014).

In this study, our analyses on the geomorphological units and tectonic features of the Méneč Fossae area are consistent with such models. We observe a deep central feature (Méneč Fossa s.s.) that takes up most of the extension, flanked by numerous quasi-parallel subsidiary extensional and strike-slip faults and few thrust faults, all in a deformation zone of 20-30 km (see Section 3.3). We propose that such a tectonic setting is generated within a right-lateral strike-slip
fault zone, with a major contribution from an extensional component, i.e., a transtensional tectonic setting (Figure 6). The shear heating related to such a tectonic setting possibly led to the formation of a shallow water reservoir within the ice shell, that in turn could have generated the DRU first and the CTU later (timing based on their crosscutting relationships). Such a scenario is consistent with the 70° global rotation of surface features through TPW proposed by Schenk et al. (2020), to explain the abrupt different orientation of the DRU (E-W) and the CTU and FU (NW-SE), which fits to a 70° rotation. The shallow water reservoir likely responsible for the DRU and CTU formation would have then been involved in such a rotation; its ultimate expression would be the FU and the associated faulting, which are a display on the surface of shearing through transtensional tectonics. Most formation models have calculated depths of 1-5 km for the emplacement of shallow water reservoirs beneath various geological features (lenticulae, chaos, double ridges, Chivers et al., 2021; Craft et al., 2016; Dombard et al., 2013; Johnston & Montési, 2014; Kalousová et al., 2016; Manga & Michaut, 2017; B. E. Schmidt et al., 2011), with estimates varying depending on the adopted thickness value of Europa’s ice shell. We therefore assume a water reservoir’s emplacement depth within such range in the study area, in agreement with the observed lowest elevations at Ménec Fossae of ~ -200 m (see Section 3.3). Compositional information is not available for the study area, as there are no Galileo Near Infrared Mapping Spectrometer (NIMS) data at this location. Having such kind of information would have been essential for detailed characterization of fresh subsurface material potentially emplaced by the Ménec Fossae fault system.

Transtensional tectonic features are widely common on Earth, mainly within large-scale strike-slip settings (Donzé et al., 2021). They have also been observed on terrestrial planets (e.g., Mars, Andrews-Hanna et al., 2008; G. Schmidt et al., 2022) and on other ocean worlds, Ganymede (e.g., Rossi et al., 2018), Enceladus (e.g., Rossi et al., 2020), and Titan (e.g., Burkhard et al., 2022; Matteoni et al., 2020). Several other examples exist on Europa as well, such as along Agenor Linea in the southern trailing hemisphere and Astypalaea Linea in the south polar region (Hoyer et al., 2014; Kattenhorn & Prockter, 2014; Tufts et al., 1999). In transtensional tectonic regimes, minor compressional features are common and expected (Fossen et al., 1994; Petit, 1987). In this context, the small thrust faults observed are consistent as being formed within a predominantly transtensional setting. This hypothesis does not rule out that of Prockter & Pappalardo (2000), which consider such thrust faults as marking synclinal folds’ hinges and Ménec Fossa s.s. as a regional scale anticline’s crest within the same fold system. In fact, in transtensional settings folding (on an oblique axis with respect to the major strike-slip fault zone, as we observe in the study area) is also common (Fossen et al., 1994).

We conclude that Ménec Fossa and its surroundings have been shaped by transtensional tectonic activity, most likely above a shallow water reservoir, whose emplacement has been potentially induced by shear heating. This model explains how an intriguing area of Europa, displaying several major terrain types, might have formed through one single major mechanism, while further strengthening the case for widely distributed shallow water reservoirs within Europa’s ice shell.
Acknowledgments

The research leading to this manuscript received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC Consolidator Grant 724908-Habitat OASIS)

Open Research

Data Availability Statement

Galileo’s SSI data used in this manuscript can be accessed from the PDS Cartography and Imaging Science Node via https://pds-imaging.jpl.nasa.gov/volumes/galileo, while the SSI photogrammetrically-corrected basemap mosaics can be accessed from the USGS Astrogeology website via https://doi.org/10.5066/P9VKKK7C. The Digital Terrain Model (Figure 3) and data of the geomorphological-structural map (Figure 4) produced are available on TRR 170-DB (Matteoni, 2022).

References

