Abstract

The combined study of C and O isotopes in plant organic matter has emerged as a powerful tool for understanding plant functional responses to environmental change. The approach relies on established relationships between leaf gas exchange and isotopic fractionation to derive a series of model scenarios that can be used to infer changes in photosynthetic assimilation and stomatal conductance driven by changes in environmental parameters (CO2, water availability, air humidity, temperature, nutrients). We review the mechanistic basis for a conceptual model, in light of recently published research, and discuss where isotopic observations don’t match our current understanding of plant physiological response to environment. We demonstrate that 1) the model was applied successfully in many, but not all studies, 2), while originally conceived for leaf isotopes, the model has been applied extensively to tree ring isotopes in the context of tree physiology and dendrochronology. Where isotopic observations deviate from physiologically plausible conclusions, this mismatch between gas-exchange and isotope response provides valuable insights on underlying physiological processes. Overall, we found that isotope responses can be grouped into situations of increasing resource limitation versus higher resource availability. The dual isotope model helps to interpret plant responses to a multitude of environmental factors.

Updating the dual C and O isotope – gas exchange model: A concept to understand plant responses to the environment and its implications for tree rings

Rolf T.W. Siegwolf1(orcid.org/0000-0002-0249-0651), Marco M. Lehmann1, Gregory R. Goldsmith3, Olga V. Churakova (Sidorova)4, Cathleen Mirande-Ney2, Galina Timofeeva5, Rosmarie Weigt2, Matthias Saurer1

1Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
2Ecosystem Fluxes Group, Laboratory for Atmospheric Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
3Schmid College of Science and Technology, Chapman University, Orange, California 92866, USA
4Siberian Federal University, Institute of Ecology and Geography, 660041 Krasnoyarsk, Russian Federation
5Swiss Federal Institute of Technology
The combined study of C and O isotopes in plant organic matter has emerged as a powerful tool for understanding plant functional responses to environmental change. The approach relies on established relationships between leaf gas exchange and isotopic fractionation to derive a series of model scenarios that can be used to infer changes in photosynthetic assimilation and stomatal conductance driven by changes in environmental parameters (CO$_2$, water availability, air humidity, temperature, nutrients). We review the mechanistic basis for a conceptual model, in light of recently published research, and discuss where isotopic observations don’t match our current understanding of plant physiological response to environment. We demonstrate that 1) the model was applied successfully in many, but not all studies, 2), while originally conceived for leaf isotopes, the model has been applied extensively to tree ring isotopes in the context of tree physiology and dendrochronology. Where isotopic observations deviate from physiologically plausible conclusions, this mismatch between gas-exchange and isotope response provides valuable insights on underlying physiological processes. Overall, we found that isotope responses can be grouped into situations of increasing resource limitation versus higher resource availability. The dual isotope model helps to interpret plant responses to a multitude of environmental factors.

Introduction

Plants are subject to a wide range of environmental impacts and even withstand environmental extremes, e.g. in temperature (e.g. -60°C to + 45°C in boreal forests), water availability (e.g. prolonged months of drought in arid regions), nutrient availability (e.g. low nutrients in mountainous regions) and disturbance (e.g. storm damage, fires or land use change). Their ability to acclimate is therefore critical for their survival. To describe the nature of responses and acclimatization, detailed and comprehensive plant physiological measurements are necessary; however, the intensive nature of these measurements often limits the extent to which they can be applied across space and time. Moreover, numerous physiological measurements of plant responses to the environment (e.g. classical approaches such as plant gas exchange, light interception, sap flux measurements, etc.) cannot be applied retrospectively. Here, the analysis of stable isotope ratios of plant organic matter can provide additional insights by effectively tracing and integrating physiological processes over both time and space (Dawson & Siegwolf, 2007).

The use of stable isotopes as a proxy for understanding the relationships between environment and plant function relies on a mechanistic understanding of the drivers of isotopic fractionation (Dawson et al., 2002). For instance, changes in environmental conditions and related effects on photosynthesis and transpiration result in predictable carbon and oxygen isotope ratios that are imprinted on photosynthetic assimilates (e.g. carbohydrates). Although there may be further possible isotope fractionations between primary and secondary metabolites, these isotopic “fingerprints” are ultimately reflected in the biomass. The isotopic ratio of assimilates can thus be used as a record of the interaction between the plant and its environment over the lifetime of the specific tissue (e.g. leaf, roots or wood).

In the last three decades, the application of stable carbon and oxygen isotope ratios (13C/12C and 18O/16O) in plant ecophysiological research has become common for studies of short- and long-term effects of environmental changes on vegetation (Farquhar et al., 1982; Griffiths et al., 1997; Ehleringer et al., 2000; Dawson & Siegwolf, 2007). As each isotope ratio reflects particular physiological responses caused by specific environmental changes, the use of both carbon and oxygen isotope ratios provides highly complementary information that improves the potential for interpreting cause and effect. Consequently, the two isotope ratios have been combined and linked with leaf-level CO$_2$ and H$_2$O gas exchange in a formal conceptual model that facilitates inferences about changes in assimilation and stomatal conductance in response to the environment (Scheidegger et al., 2000).

5 ETH Alumni Association, Rämistrasse 101, 8092 Zürich, Switzerland
Correspondence: Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland Email: rolf.siegwolf@wsl.ch
The dual carbon and oxygen isotope model formally proposed by Scheidegger et al., (2000), hereafter described as the DI-model, has been subject to a diversity of applications. With these applications have come new insights into the strengths and weaknesses of the model that have led to advances in our understanding of plant function. To highlight these insights, we carried out a quantitative review of studies that have engaged the DI-model to date. Specifically, we aimed to 1) review the mechanistic basis of the model, 2) determine the nature and extent of its application to date in different fields, and 3) review studies that provide data on the mechanistic relationships between plant physiology and carbon/oxygen isotopes to strengthen our ability to interpret the model.

The dual carbon and oxygen isotope model for C3 plants

The purpose of the DI-model is to make inferences regarding the responses of net assimilation (A_{net}, Larcher, 2003) and stomatal conductance (g_s) to environmental variables based on a dual-isotope (carbon and oxygen) response. Since 1) both carbon and plant oxygen isotope ratios are modified during CO$_2$ and H$_2$O gas exchange in the same leaf, but by different processes (photosynthesis and transpiration), and 2) both carbon and oxygen are incorporated into organic matter equally, it provides a means by which to distinguish whether a change in isotope ratios is the result of a change in photosynthesis or in stomatal conductance. Current theory on carbon and oxygen isotope fractionations is summarized in Breakout Boxes 1 and 2.

In general, two conditions are compared so that it is possible to draw an arrow from condition A to condition B both with respect to the isotope and gas-exchange observations (Figure 1). The conditions A and B may represent two treatments in a controlled experiment, two functional groups (e.g. broad leaved plants and conifers) in the same ecosystem, leaf or stem samples from two positions in a canopy, one species compared between two sites, the same plant at two time points (temporal development), etc. Note that the red arrows in Figure 1 refer to a range of plant responses, indicating the plasticity of plants responding to environmental impacts within the indicated range.

First, the carbon and oxygen isotope ratios need to be measured in an organic compound (e.g. bulk leaf, cellulose, sugars, wood or root material) of the plants under investigation. Proper selection of the plant and compound is important, as it has consequences for the temporal scale at which the physiological processes are integrated. For instance, the time integrated by different compounds is usually longest for cellulose, intermediate for bulk, smaller for water-extracted compounds and shortest for isolated sucrose (Lehmann et al., 2017). Second, the “input-scheme” of the DI-model, a plot of δ^{18}O data versus δ^{13}C data comparing the conditions of interest, can be drawn. Alternatively, the oxygen enrichment in the organic compound relative to source water (Δ^{18}O) can be presented. This is advantageous in cases where the δ^{18}O of source water differs between treatment conditions A compared to B; given that this is not a leaf-level physiological effect, it could ultimately result in erroneous model interpretations (Roden & Siegwolf, 2012). Similarly, it is also possible to present the carbon isotope discrimination (Δ^{13}C) instead of original δ^{13}C data, particularly in cases where the δ^{13}C of source CO$_2$ is not constant (e.g. atmospheric CO$_2$ enrichment studies, or retrospective analyses of organic matter, tree ring, peat bogs). Note that in the case of Δ^{13}C, the 13C arrows in the dual-isotope plot will be pointing inverse inclination as compared to using (6) original data, whereas for Δ^{18}O the direction of the arrows remains unchanged. Here, we assume the presentation of δ^{18}O or Δ^{18}O vs. δ^{13}C (Figure 1).

Deducing the A_{net} – g_s response from the isotope pattern can be explained as a 3-step-process: 1) a change in c_1/c_a (the ratio of leaf internal to ambient CO$_2$) is deduced from a change in the δ^{13}C, 2) a change e.g. in the relative humidity (RH) or vapour pressure deficit (VPD) is causing a change in g_s, which is deduced from a change in the δ^{18}O, and 3) the estimated c_1/c_a change is re-interpreted as a change in net photosynthesis (A_{net}) and stomatal conductance (g_s) based on the information derived in the previous steps. The first step is relatively straightforward based on the theory of carbon isotope fractionation during photosynthesis (Breakout Box 1) (Farquhar et al., 1982; Farquhar et al., 1989). Thus, a significant increase in δ^{13}C (scenarios #1, 2, 8) will be interpreted as a decrease in c_1/c_a, a decrease in δ^{18}O (scenarios #4 to 6) as an increase in c_1/c_a, and no change in δ^{13}C (scenarios #3 and #7) as no change in c_1/c_a. In the second step, a change in δ^{18}O can be interpreted as a response of g_s to humidity (Breakout Box 2). This is also
relatively straightforward, given established theory on oxygen isotope fractionation. In particular, enrichment is strongly driven by drier conditions (low RH or high VPD affecting gs, resulting in a low leaf external to internal partial vapour pressure ratio (eix/cix, see Breakout Box 2) and leading to higher H218O enrichment, as described by the Péclet modified Craig-Gordon/Dongman model (Craig & Gordon, 1965; Dongmann et al., 1974; Farquhar & Lloyd, 1993; Cernusak et al., 2002; Kahmen et al., 2008). The third step is the most critical one, resulting in the qualitative nature of the model. As an example, we discuss scenarios #4 and #6, which both indicate increasing ci/cia that can be caused by either increasing gs or decreasing ANet. In scenario #4, we additionally know that there is higher δ18O (“drier conditions”), therefore, the case of increasing gs seems physiologically implausible and the other possibility, decreasing ANet, is selected. In contrast, for scenario #6, we observe lower δ18O at increasing ci/cia and thus increasing gs is more likely than decreasing ANet. This kind of reasoning directly results in the proposed ANet/scenarios shown in the bottom row of Figure 1.

The use of the original DI-model is applicable for a large number of studies. However, care must be taken when plants respond differently to specific conditions, e.g., to increasing CO2, air pollutants, changes in nutrient supply, or extreme drought. This can lead to model outputs that suggest plant responses that contradict our current physiological understanding because such additional and potentially uncontrollable impacts are not considered by current C- or O-isotope fractionation models. Consequently, the DI-model will produce physiologically non-plausible results as it is strictly based on the C and O isotope fractionation and gas exchange principles (see sections 3, 5 and 6). Such discrepancies then need to be resolved, by considering the changes in fractionation mechanisms or different timing of leaf- and stem level processes.

An example for such discrepancies is cases of extreme and on-going drought. Under such conditions the isotopic signal of the leaves could not be found in the stems or other heterotrophic tissue. Since water became so limiting, no growth was possible and the assimilates were barely sufficient to maintain the metabolism. Therefore, no isotope signal representing these hot and dry conditions were evident in the wood (Sarris et al., 2015). Slightly deviating responses are possible and shown with the dashed red arrows in the model outputs, which reflect a certain range of physiological responses rather than a singular direction (Figure 1), as suggested also by (Grans et al., 2007). Overall, the strength of the approach remains obvious: plant functional response to environmental impacts can generally be deduced using isotopes in the absence of detailed physiological measurements. Or, in the case of non-plausible results, the model facilitates the discovery of previously overlooked plant responses through a new lens.

The C and O isotopic signals during carbohydrate transfer from leaf to whole plant (Post photosynthetic fractionation)

The DI-model was originally derived from leaf isotope and gas exchange data. This raises the question as to whether or not, and to what degree, its application to other tissues (e.g. tree rings, roots, etc.) is possible? As the isotope signals of the newly formed assimilates are dampened by post-photosynthetic processes, a careful evaluation is needed to understand whether the patterns are consistent among tissues. Given the available literature (Cernusak et al., 2013, Gessler et al., 2014, and literature therein; Cernusak et al., 2016) we focus on those factors that have the most prominent post-photosynthetic impact on the isotope signals during the carbohydrate transfer processes between leaves and whole plant.

a) Carbon isotopes: Post-photosynthetic fractionations begin immediately following the sugar formation and prior to phloem export. For carbon, kinetic and equilibrium isotope fractionations related to aldolase-catalysed reactions can cause that transitory starch and remobilized sugars at night-time are more 13C-enriched than daytime sucrose (Gleixner et al., 1998, Tcherkez et al., 2004, Tcherkez et al., 2011). However, starch related13C-fractionations can be very small (Maunoury-Danger et al., 2009) and their significance can vary among species and are under debate (Bögelein et al., 2019, Lehmann et al., 2019a). Moreover, 13C differences among individual sugars in leaf and phloem have been observed (Rinne et al., 2015; Churakova et al., 2018), with sucrose being often the most 13C-enriched soluble sugar.
fractionations have been related to the invertase reaction (Mauve et al., 2009). In addition, tree tissues, leaves or needles often have high abundances of sugar alcohols or cyclitols, which can be isotopically different from primary sugars (Rinne et al., 2015; Lehmann et al., 2017). The low turnover rate of sugar alcohols can strongly dampen the δ¹³C responses of bulk sugar fractions to changes in physiology and climate (Galínó Pérez et al., 2017). Additional isotope fractionations may occur during the export of leaf sugars into the phloem and during their translocation to sink tissues (Gessler et al., 2009a). Only recently it has been observed that phloem exudates can be more enriched than leaf assimilates and that the ¹³C-enrichment increased with canopy height (Bögelein et al., 2019). The isotope fractionation was explained by compartmentalisation of leaf sugars in the mesophyll, such that the designated export sugar sucrose is more ¹³C-enriched in the cytosol than stored sucrose in the vacuole. As a result of these fractionation processes, leaf δ¹³C values are on average often 2 - 3 (Badeck et al., 2005, Chevillat et al., 2005). Subsequent carbon isotope fractionation associated with branch respiration could also contribute to a shift in isotope ratios (Ghashghaie et al., 2003). Furthermore, mixing between old, stored and new freshly assimilated carbohydrates occurs during phloem transport (Boegelein et al., 2019), which is partly affected by the formation of fresh carbohydrates via stem photosynthesis (Brüggemann et al., 2011).

During early wood formation in spring, trees (particularly broadleaves) utilize stored assimilates from previous years, then gradually switch to fresh more ¹³C depleted assimilates (Helle & Schleser, 2004). These stored carbohydrate compounds are generally enriched in ¹³C (Jaeggi et al., 2002) compared to fresh assimilates, especially for starch and its derivatives (Gleixner & Schmidt, 1997).

Also, when considering longer time periods, the impact of industrialization (starting ca. 1850) on the C-isotope ratio in atmospheric CO₂ becomes visible as δ¹³C continuously decreases (Suess effect) resulting from fossil fuel burning and land use change. For the evaluation of time series (tree rings or comparing conserved plant material) this effect needs to be considered (McCarroll & Loader, 2004).

b) Oxygen Isotopes: For δ¹⁸O in organic matter, the isotope ratio of source water is key. In early studies, the δ¹⁸O values of precipitation were used as surrogate for source water. However, plants acquire water from a range of lateral and vertical distances with considerable δ¹⁸O (δ²H) gradients depending on the soil structure (Mueller et al., 2014; Sprenger et al., 2016; Goldsmith et al., 2019), resulting in a strongly dampened amplitude of the of the δ¹⁸O variability of the source water compared to that of precipitation. Thus, the xylem water represents a mixture of water bodies extracted from the soil, with the highest δ¹⁸O values generally at the soil surface and the lowest at the deepest rooting depth (Barbeta et al., 2020). Further issues arise with seasonal changes in δ¹⁸O of source water (Sauer et al., 2016). Brinkmann et al., 2018 and Allen et al., 2019, showed that the seasonal origin of the isotope signature of xylem water in summer originated in large part from winter precipitation. Thus, source water varies as a function of both time and space. This temporal shift in the isotope signal needs critical consideration: The source water δ¹⁸O signal represents a delayed value depending on its seasonal origin relative to δ¹⁸O in precipitation and the given climatic conditions (Brinkmann et al., 2018; Allen et al., 2019). On the other hand, the effect of the seasonal origin could be balanced under continuous humid climate conditions, as the impact of δ¹⁸O of water vapour diffusing from the ambient air into the leaf intercellular spaces could override the isotopic signal of the source water (Roden et al., 2004; Lehmann et al., 2019b).

While no significant isotope fractionation is assumed during H₂O uptake and transport in the xylem along a tree trunk (Barbeta et al., 2020), leaf water is generally enriched in ¹⁸O in the leaves during transpiration with its magnitude depending on the atmospheric evaporative demand (VPD) and the δ¹⁸O of ambient water vapour (Kahmen et al., 2011, Lehmann et al., 2018, Breakout Box 2). During photosynthesis, an exchange between the oxygen atoms originating from CO₂ and that of H₂O takes place imprinting the δ¹⁸O values of the leaf water on the assimilates because the amount of O-atoms of water is much larger than that of assimilated CO₂ (Lehmann et al., 2017; Barbour et al., 2007; Barbour & Farquhar, 2000). Thus, freshly assimilated carbohydrates always reflect both the isotopic variations of source and leaf water. Biosynthetic fractionation causes sugars to be about 27water used for photosynthesis (Sternberg & DeNiro, 1983; Yakir & Deniro, 1990). During carbohydrate transport via phloem and concurrent cellulose synthesis, a partial O
exchange with unenriched xylem water occurs. This exchange, resulting in a ca. 40% O-exchange, dampens the leaf water $\delta^{18}O$ signal (Roden & Ehleringer, 1999, Barbour et al., 2007), likely the largest modification of the $\delta^{18}O$ signal in assimilates between the leaves and tree rings.

To summarize: For the $\delta^{13}C$ values, the mixing of old stored carbohydrates (starch and sugar synthesis and remobilization) likely has the strongest dampening effect, probably stronger than phloem loading and (heterotrophic) stem and root respiration. Therefore, we recommend for tree ring analyses to distinguish between early and latewood wherever possible to minimize the inclusion of isotopic signals from old carbohydrates from previous years. For the $\delta^{18}O$ values, the O-exchange during carbohydrate transport in the phloem and during tree-ring cellulose synthesis probably impacts the oxygen isotope signal the strongest, which might also be amplified by the seasonal origin of the source water (Brinkmann et al., 2018; Allen et al., 2019). To minimize the post-photosynthetic fingerprints on C and O isotope ratios, it is recommended to use late wood in tree rings whenever possible. However, in spite of these modifications and dampening of the C and O isotope values during the carbohydrate transport from leaves to whole plant and cellulose synthesis, the leaf level isotope signal is largely maintained in the wood (Saurer et al., 1997, Song et al., 2011).

Overview of research engaging the model

We identified 261 studies citing Scheidegger et al., 2000 (ISI Web of Knowledge, September, 2018). Of these studies, we excluded review and commentary articles and identified 184 containing new plant carbon and oxygen isotope data (Appendix S1). Studies after this date were considered in the text. These studies covered a broad range of plant life forms, although the majority (89%) comprised woody (tree or shrub) species. Most studies were performed in temperate regions, but a few were from tropical (dry or moist), polar, and/or dry regions. Gymnosperms and angiosperms from evergreen and deciduous species were similarly represented. Notably, although the DI-model was originally applied to leaf isotope ratios, studies applying the model to wood are more numerous. Only a few studies combined leaf gas exchange and wood measurements.

Paired measurements of leaf gas exchange (i.e. A_{net} and g_s) and isotopes ($\delta^{13}C$, $\delta/\Delta^{18}O$) serve as the basis for validating the DI-model to interpret plant functional response to environment; we identified 17 studies with such paired measurements (Table S1). The majority of these studies comprised broadleaf and coniferous trees of temperate and Mediterranean climate regions. Additionally, three studies were performed on grasses and one on herbs. Most of the measurements were carried out at the leaf level on field grown, mature plants, while some studies were performed under controlled conditions on saplings. Four studies compared leaf gas exchange with the isotope pattern of tree stem tissue.

Within the 17 studies with isotopes and leaf gas exchange, we identified 29 different conditions for which the model scenarios had been evaluated (Table 1S, Figure 2). In 18 of the 29 cases (62%), the gas exchange measurements were fully consistent with the observed isotope patterns, clearly validating the DI-model. In a few cases (21%), the scenarios of gas exchange and isotope patterns did clearly not match (e.g. under the influence of air pollutants, extreme droughts and various nitrogen regimes, see also section 5). However, when grouping the responses into situations of improved versus reduced resource availability, rather than individual scenarios, a consistent pattern emerged (Figure 2): Studies that resulted in improved plant resource availability (e.g. light, water, nutrients and CO$_2$) clustered around scenarios # 6 and 7, both with respect to isotopes and gas-exchange (Figure 2a), consistent with an increase in photosynthesis (A_{net}) and/or stomatal conductance (g_s, Figure 2b). In contrast, a limitation or reduction of resource availability (e.g. increased competition, reduced water/nutrient supply, or temperature stress) commonly reflected scenarios #2 to 4 (Figure 2a). Following the model, plants show a decrease in A_{net} and/or g_s (Figure 2b). For both groups, these model interpretations are generally well confirmed by gas exchange measurements. As a consequence, this means that an isotope pattern can give reliable information about resource limitation also in the absence of gas-exchange data.

Nevertheless, the DI-model cannot resolve all cases, as it is based on generally accepted plant physiological gas exchange responses to the environment and the well-accepted isotope fractionation models. As indicated
by the grey arrow in Figure 2b, the original DI-model does not predict all \(A_{\text{net}}/g_s \) cases, particularly not a negative relationship between \(A_{\text{net}} \) and \(g_s \). The two “missing” \(A_{\text{net}}/g_s \) scenarios are only observed in rare situations; for instance, a change from cold and wet to moderate and dry conditions, scenario #2 (Figure 1) might cause a decrease in \(g_s \) and increase in \(A_{\text{net}} \). A similar pattern is observed for increasing ambient CO\(_2\), where \(A_{\text{net}} \) is stimulated with a constant or concomitant decline in \(g_s \), corresponding to scenario #8 (Figure 1 and 2). Scenario #5 can be found for plants growing under very humid conditions and (opened stomata) decreasing light (decrease in \(A_{\text{net}} \) e.g. understory plants in the tropics). The DI-model can also yield non-plausible results for extreme stress conditions such as drought and air pollution. Under such conditions the assumptions of the isotope fractionation models are violated (i.e. See Section 5a and 5e), as the metabolic changes are not considered relative to known fractionation and gas exchange principles.

Model Applications – Environmental Effects on Plant Carbon and Oxygen Isotopes

Here we describe how the DI-model has been applied to infer plant functional responses to common environmental factors over time and space. We explain, which isotope responses would be expected for a certain dominant driving variable, like drought, and review the most common applications of the DI-model as found in the literature, both at the scale of the leaf and that of the whole plant, with some representative examples. A summary of the physiological responses to these environmental drivers, as reflected in the C and O isotope ratios, is given in Table 2.

a) Water Supply and Demand

Drought stress primarily affects plants through diminished soil water availability and increased atmospheric moisture demand, i.e. VPD (Grossiord et al., 2020) that increases non-linearly with rising temperatures (Breshears et al., 2013). Generally, stomata close with increasing drought stress to mitigate leaf turgor loss or stem hydraulic failure and desiccation. This often leads to reduced photosynthetic rates due to limited CO\(_2\) diffusion (Flexas et al., 2008). The strong stomatal response mostly results in increased \(\delta^{13}\text{C} \) (Farquhar et al., 1989). Similarly, \(\delta^{18}\text{O} \) is expected to increase, particularly when air is getting dry. The increase in VPD (decrease of RH) also causes stomatal closure (reduced \(g_s \)) diminishing transpiration. Thus, the Péclet effect is reduced due to a reduced replenishment with H\(_2^{18}\text{O}\) depleted xylem water minimizing the dilution of the H\(_2^{18}\text{O}\) enriched leaf water (Farquhar & Lloyd, 1993; Cernusak et al., 2016). Furthermore the back diffusion of ambient \(^{18}\text{O}\) depleted water vapour via stomata into the leaf intercellular spaces is reduced (Lehmann et al., 2018), corresponding to scenario #2 for the isotopes. However, when both \(A_{\text{net}} \) and \(g_s \) are reduced to similar degrees, this may result in a constant \(c_i/c_a \) (Ehleringer & Cerling, 1995, Saurer et al., 2004b) and no change in \(\delta^{13}\text{C} \), as reflected in scenario #3 (Tab. 2).

Leaf-level isotope and gas exchange studies focused on functional response to water supply and demand have frequently observed scenario #2, including for black poplar plants under various VPD regimes (Rasheed et al., 2015); for conifer species along a wet-dry gradient in Australia (Brodribb et al., 2013), and for leaves and phloem sap in beech trees along a climatic gradient in Europe (Keitel et al., 2006). Therefore, the DI-model generally works for explaining drought-related physiological responses.

However, an isotopic decoupling between leaf-level and tree rings can sometimes result in implausible isotope patterns. During hot and dry summers with low precipitation, water availability is often insufficient for plant growth. Although some CO\(_2\) assimilation is still measurable, no tree growth occurs during these dry, but climatically relevant periods. Thus, there is a mismatch between the period of interest and the period in which the tree ring tissue of interest was formed. Therefore, the DI-model often demonstrates an increase in \(A_{\text{net}} \) and \(g_s \) (scenarios # 7 & 8, Tab 2), which is not a plausible response for hot and dry conditions (high VPD, low soil moisture; (Sarris et al., 2013)). What is observed in the tree rings is actually the \(\delta^{18}\text{O} \) signal from cooler, more humid springtime periods, with lower \(\delta^{18}\text{O} \) values of precipitation (thus mimicking high \(g_s \) see Figure 3). Since most growth occurs during spring time, the remaining tree ring signal is not representative for a hot summer period with little or no growth (Sarris et al., 2013). This has also been observed in a controlled drought experiment with *Quercus robur* and *Quercus petraea* seedlings (Pflug et al., 2015).
In contrast, conditions with high air humidity (RH \([?]%\) 90\%) and high stomatal conductance allow for high bidirectional water vapour fluxes from leaf-intercellular cavities to the ambient atmosphere and vice versa (Goldsmith et al., 2017, Lehmann et al., 2018). As a result, the isotopic leaf water enrichment is very small and often not detectable. Thus we can assume that, the \(\delta^{18}O\) of leaf water is close to that of the source water (Barbour et al., 2004, Roden et al., 2005). This is mostly the case under long lasting rain and fog conditions, often found in tropical rain forests or given orographic precipitation and persistent fog at the mountainous tree line. Under such conditions, the variability in \(\delta^{18}O\) of leaf water and consequently in cellulose tends toward zero and limits any conclusions regarding \(g_s\) (Roden & Siegwolf, 2012).

To summarize: While there may be considerable utility at the leaf scale, the application of the DI-model to tree rings for scenarios involving considerable drought stress or conditions with high humidity must be addressed carefully. Ultimately, changes in water availability and demand are generally well reflected in isotope patterns (scenario 2 & 3, Table 2), as long as plants operate under non-extreme conditions, i.e. severe drought, near saturated air humidity, or at temperature extremes (see section 5b below).

b) Temperature

Temperature plays a critical role in plant function by mediating photosynthesis and post-photosynthetic processes, water use, and ultimately growth. Increases in global temperature have been associated with decreased growth and increased tree mortality in a number of vegetation studies (Allen et al., 2010). Assuming that water supply and VPD are not a limiting factor and thus the stomatal response and \(\delta^{18}O\) values remain unchanged, then temperature primarily affects plant photosynthetic activity at the biochemical level. Consequently, when approaching their optimum temperature range, plants get closer to maximum values remain unchanged, then temperature primarily affects plant photosynthetic activity at the biochemical level. Consequently, when approaching their optimum temperature range, plants get closer to maximum.

Outside of highly controlled experimental conditions, however, a change in the daily air temperature is probably always accompanied by a change in air humidity and thus VPD. A change in \(g_s\) due to a possible change in VPD can therefore not fully be excluded and humidity often masks potential temperature effects on gas exchange and thus on isotope fractionation, particularly under warm and dry conditions (Martin-Benito et al., 2010, Moreno-Gutierrez et al., 2012, Liu et al., 2014). In the field, as temperature increases VPD also increases, which affects stomatal conductance much more than temperature (Grossiord et al., 2020). Thus, what is often described as temperature effects is in fact a VPD effect. This may explain the highly equivocal results with both gas exchange and stable isotopes in leaf-level and tree-ring studies; most studies on the effect of temperature did not show any significant response. What further complicates the evaluation of the temperature response of the isotope fractionation is the ability of plants for photosynthetic acclimatization, i.e. that plants shift their photosynthetic temperature optimum with increasing/decreasing temperature.

Studies at tree lines may be useful for assessing temperature effects on plant isotope ratios in the field (Streit et al., 2013), as water availability is not limiting (yearly precipitation > 1000 mm) and atmospheric water demand (VPD) is low. A strong temperature and CO\(_2\) driven relationship was observed between isotope ratios and growth in conifers at the tree line of the Austrian Alps (Wieser et al., 2016), reflecting scenario #6. An often-overlooked condition is low temperatures (0\(°\)C to 7\(°\)C). Although water is hardly limiting under such conditions, the fact that growth at low temperatures is very slow (Körner, 2015) results in small tree rings. Consequently, the proportion of tree-ring biomass that would contain an isotopic low temperature signal is very small compared to that of the remaining tree ring mass, which was formed under warmer conditions. Therefore, the low temperature signal is hardly visible. So far, only a few studies on low temperature effects to date have matched the predicted scenarios #1 and #5 (Tab. 2).

To summarize: Since changes in temperature are mostly accompanied by changes in VPD, but also light intensities, seasonality, and nutrient availability, a single factorial assessment with regard to temperature is only possible in controlled experiments. Evaluating the impact of temperature must always include the effect
of other factors. Nevertheless, there seems to be a temperature driven impact on isotopic fractionation above 15°C and below 40°C on average (see v. Caemmerer, and Evans, 2015).

c) Light

Light drives the variations of c_i/c_a by mediating A_{net} and for variations in e_a/e_t by mediating g_s, directly, and indirectly via leaf energy balance, changing the leaf temperature particularly with the given variability of responses under non-light saturated conditions (e.g. shaded plants). The theoretical $\delta^{13}C$ response is rather straightforward given the strong A_{net} effects on c_i/c_a and thus on $\delta^{13}C$ values (Ehleringer & Cerling, 1995). Therefore, the $\delta^{13}C$ would follow the light response curve for A_{net}. However, experimental evidence is somewhat controversial because light effects on carbon isotope discrimination have often been inferred from canopy height gradient studies where other factors may interfere, like VPD gradients and hydraulic constraints for tall trees (Farquhar et al., 1989, Waring & Silvester, 1994). Moreover, the apparent ^{13}C fractionation increases considerably in the low light range (near light compensation point, Barbour et al., 2017a, Busch et al., 2020; Liu et al., 2021; see also Breakout Box 1). Yet the large part of carbon acquisition occurs mostly under high light and biomass production under non-limiting growth conditions (Körner, 2015; Zweifel et al., 2021). Therefore, except for understorey plants the low light impact on ^{13}C fractionation is hardly visible in tree rings. In comparison to $\delta^{13}C$, changes in $\delta^{18}O$ might be rather low or follow the inverse g_s direction of the A_{net} response given constant water supply and VPD conditions.

Studies with both gas-exchange and dual-isotope data that considered the influence of light are rare. Boegelein et al. (2012) and Roden & Farquhar (2012) show that “pure” light effects may be faithfully described by the DI-model Scenario 7 or 8 (Tab. 2), but that there are often overlapping abiotic effects. Studies focused on understanding the effect of thinning (Ginggiola et al., 2016) using tree rings showed that changes in soil water $\delta^{18}O$ due to evaporation or changes in transpiration may complicate the application of the model, as soil water availability may become the dominant driver and lead to Scenario 1 or most likely 2 (Tab. 2).

To summarize: What might appear straightforward at first sight turns out to be more complex, as water, temperature, or nutrient regimes can confound interpretations of light as a sole driver of plant physiological responses. The strongest impact of light on isotopic fractionation is found under non-saturated light conditions where A_{net} and g_s show its greatest variability (i.e. in the understory); with decreasing light intensity the fractionation of photo- and day respiration has an increasing impact on the net fractionation (Tcherkez et al., 2017; Busch et al., 2020), which is in support of generally lower $\delta^{13}C$ values of understorey or shaded leaves in contrast to sun lit leaves (see Breakout Box 1).

d) CO_2

Understanding the influence of increasing CO_2 concentration on plant gas exchange and carbon allocation is essential for a correct interpretation of the isotope ratios and to improving carbon cycle models (Schimel et al., 2001). Tree-ring isotope studies, particularly when applied in large spatial networks, can provide unique information on how forests have responded to increases in CO_2 since the start of the industrialization (Frank et al., 2015, Voelker et al., 2016). Based on $\delta^{13}C$ trends over the last 100 years, presumably caused by increasing CO_2, three types of gas-exchange responses caused by a variable g_s and A_{net} interaction have been inferred (Sauer et al., 2004b): a) $c_i =$ constant, i.e. the supply function (g_s) decreases and demand functions (A_{net}) stays constant; b) $c_i/c_a =$ constant, g_s and A_{net} change proportionally; c) $c_a/c_i =$ constant, g_s stays constant and A_{net} increases. If we assume that $\delta^{18}O$ remains constant (no stomatal conductance response) or increases (stomatal conductance decreases), we can deduce the following from the DI-model: for case a) we find either scenario #1 or #2, and for cases b) and c) we find scenarios #4 or #5 (Table 2). However, these are theoretical assumptions and applications of the DI-model to CO_2 responses are relatively rare, particularly in combination with leaf gas-exchange measurements. A 9-year study at an alpine site with a free air CO_2 enrichment (FACE) experiment observed an increase in A_{net} in two conifer species, but no stomatal response to CO_2 (no changes in $\delta^{18}O$), which is consistent with scenario #1 (Streit et al., 2014). At three FACE sites, (Battipaglia et al., 2013) found changes in intrinsic water-use efficiency between tree
species growing at ambient atmospheric (control) and elevated CO₂ treatments. An increase in δ¹³C of tree-ring cellulose for all species at all CO₂ elevated study sites was observed, but elevated CO₂ resulted in only a slight increase in δ¹⁸O for some species during some years of the experiment (scenario #1 or #2, Tab. 2).

Natural springs emitting geological CO₂ can be used as long-term CO₂ fertilization experiment with a source isotopic signal similar to atmospheric air, thus facilitating the application of the DI-model. Oak trees in a Mediterranean ecosystem in Italy exposed to ca. 800 ppm CO₂ during their lifetime demonstrated increased Δ¹³C values (decreased δ¹³C) and unchanged δ¹⁸O values (scenario #1), indicating a down-regulation of Aₙₑₜ and constant gₛ for these rather harsh conditions in a dry and nutrient-limited environment (Saurer et al., 2003).

To summarize: The wide variety of isotopic patterns in response to CO₂ changes reflects the variability of species-specific responses to elevated CO₂. This includes a) stimulation of Aₙₑₜ under high CO₂ levels (Bader et al., 2013; Streit et al., 2014), b) down regulation of photosynthesis (Grams et al., 2007, Sharma & Williams, 2009), c) reduction in stomatal conductance, or d) no stomatal response to changes in CO₂ (Keelet al., 2007; Bader et al., 2013; Streit et al., 2014; Klein et al., 2016) as summarized in Table 2. Therefore, each isotope data set should be analysed for its response to increasing CO₂ before drawing any further conclusion

e) Atmospheric Pollution

Ozone (O₃): Atmospheric pollution has been shown to affect plants on local and global scales (Omsa et al., 2005; Mills et al., 2018). At the regional scale, O₃ is the most relevant phytotoxic air pollutant (Ashmore, 2005; Ainsworth et al., 2012). Species respond differently to elevated O₃ depending on uptake, mesophyll exposure, detoxification capacity, and plant age (Fuhrer & Booker, 2003, Matyssek & Sandermann, 2003, Paolletti et al., 2020). A unique DI-model study observed that young, but not adult, beech trees were affected by elevated O₃ concentrations (Grams et al., 2007), with an increase in δ¹⁸O and δ¹³C in leaf cellulose (scenario #2). Increasing δ¹⁸O values in response to O₃ exposure have also been observed in other studies with various species; this was explained by reduced gₛ values (Gessler et al., 2009b, Grams & Matyssek, 2010). However, the response of δ¹³C and thus in Aₙₑₜ was more variable (scenario #2 and #3). Aₙₑₜ responses to O₃ might potentially be biased by the increased enzymatic activity of phospho-enol pyruvate carboxylase (PEPC) (Saurer et al., 1995; Doubnerova & Ryslava, 2011). In contrast to RuBisCo, the net PEPC isotope effect results in a net enrichment of ¹³C, as PEPC uses bicarbonate as substrate rather than CO₂ (Vogel 1993). Since the equilibrium effect between bicarbonate and CO₂ is, larger than the relatively small isotope effect associated with PEP carboxylation, the plant tissue is increased in δ¹³C relative to the RuBisCo fractionation. This observation would intuitively be the result of a reduced cᵢ/cₛ ratio, thus suggesting an increased Aₙₑₜ. However, this is in contrast to observed, reduced leaf gas-exchange fluxes with higher cᵢ/cₛ ratios in plants exposed to O₃, which should result in more negative δ¹³C values (Farquhar et al., 1989). The impact of O₃ on C-isotope fractionation demonstrates that once the traditional fractionation model for C₃ plants is no longer applicable, the model will yield physiologically implausible results.

Sulphur dioxide (SO₂): Since high ambient SO₂ concentrations have been a rather common problem in the industrialized countries, particularly before the mid-1980s, this pollutant may have had a stronger impact on the stable isotope ratios of plant organic matter than previously recognized. Wagner & Wagner (2006) report that the long-term trend in tree ring δ¹³C showed an extraordinary increase between 1945 and 1990 and a rapid decrease after 1990, mirroring trends in atmospheric SO₂ concentrations. Savard et al. (2004; 2020) showed that sulphur dioxide emissions from smelters induced an increase in δ¹³C by up to 4 solely be explained by a reduction of stomatal conductance. SO₂ exposure impacts δ¹⁸O of leaf water only to a minor degree by reducing stomatal opening (Farquhar & Lloyd, 1993, Sensula & Wilczynski, 2017). Thus, the combined physiological response to high pollution levels is far more pronounced in δ¹³C (Martin et al., 1988, Wagner & Wagner, 2006). Based on the reported isotope patterns, we expect scenarios #1 and #2, i.e. a strong increase in δ¹³C and none-to-moderate change in δ¹⁸O. However, gas exchange responses
suggested by the model do not correspond with published CO$_2$ and H$_2$O gas exchange values. Atkinson & Winner, (1987), Kropff et al., (1990), Wedler et al., (1995); Douan et al., (2019) unanimously report a reduction in A_{net} and g_s, which would match Scenarios #3 and #4 (Table 2). The impact of enzymatic detoxification mechanisms, (Randewig et al., 2012), or a possible enhanced PEP-carboxylase activity as found for Ozone, lead to a considerable 13C enrichment, which outweights the standing model of C-isotope fractionation.

The isotope effects on 13C induced by SO$_2$ detoxification are not taken into account by the C-isotope fractionation model for C3 plants. Thus, the DI-model output does not correspond with the plant physiological response. It is critical to keep these SO$_2$ effects in mind when analysing isotopic chronologies from tree ring that originate from regions and periods with large SO$_2$ emissions (i.e. smelter industries, coal burning, etc.).

Gaseous nitrogen, (NO$_2$): We cannot exclude effects of gaseous NH$_x$ or NO on plant metabolism and C and O isotope fractionation. Since we found no literature or data describing isotopic effects resulting from these compounds, we discuss only the effects of NO$_2$ on plant physiology (Sparks, 2009; Wellburn, 1990). Plants demonstrate a proportional increase in δ^{13}C with increasing NO$_2$ concentrations (Siegwolf et al., 2001; Bukata & Kyser, 2005). An increase in δ^{13}C with a concomitant decrease of δ^{18}O, irrespective of the soil nitrogen supply, has also been observed in a growth chamber NO$_2$ fumigation experiment on *Populus euramericana* (Siegwolf et al., 2001). The interpretation of the C and O isotopic patterns (increase in A_{net} and g_s) corresponded with measured CO$_2$ and H$_2$O gas exchange (scenario #8, Tab 2). This was subsequently confirmed by field studies (Saurer et al., 2004a; Guerrieri et al., 2009), but the pattern might be changed when drought occurs. Obviously, protection against drought has the higher priority for plant survival, thus the drought response outweights the influence of NO$_2$(Guerrieri et al., 2010).

To summarize: Air pollutants have remarkable effects on isotopic fractionation, particularly O$_3$ and SO$_2$. Specific changes of enzyme activities mostly result in altered isotope fractionation, which do not agree and are not plausible in the context of well-accepted isotope fractionation and gas exchange principles. While NO$_2$ can have a fertilizing effect, it can also be toxic for plants at higher concentrations.

f) Soil-N fertilization (NH$_4^+$NO$_3^-$):

The significance of N-depositions and incorporation into the plants is described in Savard et al., (2019) and Etzold et al., 2020. An increase in soil N supply generally reduces δ^{13}C and δ^{18}O (scenario #6), even while exposure to atmospheric NO$_2$ increases δ^{13}C and reduces δ^{18}O (Siegwolf et al., 2001). These two different nitrogen sources, NO$_2$ compared to soil N supply, can have opposite effects on carbon and water relations. One experiment has demonstrated that the addition of N to the soil increases the ratio of A_{net} to g_s, in favour of A_{net}, indicating a N-fertilization effect (Guerrieri et al., 2011). This is consistent with the response for resource improvement. However, it has also been observed that a change in the soil N supply to subalpine species resulted in isotopic patterns that were specific to plant functional groups (Bassin et al., 2009). For instance, in the sedge *Carex sempervirens*, both leaf C and O isotope values increased, suggesting a decrease in g_s and a slight increase or constant A_{net} (scenario #2). In contrast, both isotopes declined in forb species, suggesting a constant A_{net} at an increasing g_s (scenario #6). Talhelm et al.(2011) and Marshall et al., (2022) also observed a diversity of isotope responses as a result of soil N supply. In their study, *Acer saccharum* foliage and leaf litter material from four different sites was analysed, resulting in four different DI-scenarios (#1, #6, #7 and #8).

To summarize: While plants exposed to atmospheric NO$_2$ showed a consistent isotope pattern (scenario #8), we find highly diverse isotope responses for soil N supplied plants (Table 2), with a slight trend towards scenario #6. This high diversity of responses may be a result of variable soil conditions (pH, soil moisture and structure, acidic or loamy soil etc.) or it is coupled with other environmental effect. But it also reflects that increased soil N input is not always beneficial, but can shift the competitive balance between species resulting in “winners” and “losers” that respond very differently.

Reconciling Theory and Reality, General Conclusions
The theories of CO₂ and H₂O leaf gas exchange are explicitly linked with those of C and O isotope fractionation, as both isotopic patterns occur concurrently in leaves (Dongmann et al., 1974, Farquhar et al., 1982, Farquhar et al., 1989, Farquhar & Lloyd, 1993, Cernusak et al., 2016). However, when applying the DI-model to real measurements, our review reveals that we sometimes find deviations between measurements and theory.

What is the cause for such deviations between measured data and measured values?

While measured data are mostly analysed given one or maybe two driving variables, a whole spectrum of environmental factors of varying intensities impact gas exchange processes, plant metabolism, and isotopic fractionation in the field. Often these impacts are difficult to identify or to disentangle, e.g. temperature and air humidity (VPD) (see section 5a and 5b). With increasing air temperature, VPD also increases. Changes in isotopic ratios in plants may have been attributed solely to temperature, whereas the major impact was in fact VPD. The effect of varying CO₂ is often difficult to detect depending on site conditions, nutrients, species or climate. This is especially true given that studies of CO₂ in this context are generally carried out retrospectively on tree rings. While stomata respond readily to changes in CO₂ in lab experiments, hardly any stomatal response to CO₂ was observed in field and FACE studies (Körner et al., 2005, Bader et al., 2013, Streit et al., 2014, Klein et al., 2016). As for O₃ exposed plants, the C-fractionation model for C₃ plants is no longer valid because PEPC activity is increased, resulting in a considerable increase in δ¹³C of plant organic matter (Saurer et al., 1995). A similar effect is found for SO₂. Thus, studies focusing on a specific plant-environment interaction may easily overlook the concurrent impact of other factors.

Does this invalidate the DI-model?

Whenever the DI-model “fails to fulfil our expectations” the first conclusion is that the DI-model does not work. However, the mechanistic basis of the conceptual model makes it a powerful diagnostic tool. Analysing isotope data in a physiologically mechanistic context facilitates the detection of anomalies or non-plausible responses, which otherwise would not be recognized if δ¹³C or δ¹⁸O data were studied and interpreted independently from each other. A good example is the tree-ring chronologies from a period and location with heavy SO₂ pollution (Wagner & Wagner, 2006). The anomaly of the carbon isotope values would hardly be detectable by evaluating the δ¹³C time series separately. With the application of the DI-model, the physiologically unrealistic interpretation became apparent and demands further exploration (See section 5e, SO₂). Yet, for a plausible diagnosis of such data constellations, a thorough analysis of plant functional response to specific environmental impacts is essential. Expecting a “plug and play tool,” which can be blindly applied without the essential physiological background can lead us astray and result in wrong conclusions, as also found in the literature. To counteract such misinterpretations, Roden & Siegwolf (2012) published a list of points to consider when the DI-model is applied. Furthermore, the data analysis with the DI-model can be extended by including additional parameters, such as growth data (e.g. tree-ring width: Gessler et al., 2018), or anatomical parameters (Churakova et al., 2019), or adapting the C-isotope fractionation model by considering other enzymatic fractionation processes e.g. including the C₄ plant fractionation approach as suggested by Farquhar et al., 1989 and Ubierna et al., 2018.

The use of the DI-model showed that certain isotope patterns can be indicative for an increase or decrease of resource limitation in a wide range of conditions. Based on various studies, we found that scenarios 2-4 (Figure 2) mostly reflect a decrease of resource availability or more stressful conditions that is consistent with gas-exchange results. In this interpretation, there is no need for a perfect match between isotope and gas-exchange scenarios, but rather a range of scenarios is considered. Regarding the application of the DI-model, this re-iterates the qualitative nature of the model, but also its wide-ranging application.

To conclude: Ultimately, whether conceptual (qualitative) or mechanistic (quantitative), models are a synthesis of our current knowledge and provide a powerful platform to test and interpret our measured data. Inconsistencies reveal the lack of consideration of a certain mechanism or reveal knowledge gaps in our understanding of metabolic plant processes. Mismatches between models (representing our current understanding) and reality open doors for further research and enhance our understanding of plant-environment interactions.
interactions. Given these considerations, the DI-model has proven to be a successful and powerful tool in plant ecophysiological research.

Authors contributions

R.T.W.S., and G.R.G. planned, and together with M.M.L. and M.S. designed the study. All authors collected the literature, and drafted a first manuscript during a workshop (Stans, CH), which was completed by R.T.W.S., M.S., M.M.L., and G.R.G. All authors commented and accepted the last version of the manuscript.

Acknowledgements

R.T.W.S. acknowledges financial support from the Swiss National Science Foundation under grant numbers CRSII3_136295/1 and 31003A_153428/1. G.R.G. was supported by funding from the European Community’s Seventh Framework Program (FP7/2007-2013) under grant agreement 290605 (COFUND: PSI-FELLOW). M.M.L was supported by the SNF Ambizione grant (“TreeCarbo”, No. PZ00P2_179978). O.C-S. was supported by the Russian Science Foundation (RSF) Grant number 21-17-00006 (https://rscf.ru/en/project/21-17-00006/) granted to O.C-S. We thank Milena Scandella and Lola Schmid for assistance in assembling the data and in conducting the literature research.

Conflict of interests: None

References

Bigeleisen J. (1965) CHEMISTRY OF ISOTOPES. *Science*, 147, 463–+

Saurer M., Cherubini P., Ammann M., De Cinti B. & Siegwolf R. (2004a) First detection of nitrogen from NO\textsubscript{x} in tree rings: a15N/14N study near a motorway. *Atmospheric Environment*, **38**, 2779-2787.

Table 1: Summary of research studies containing plant¹³C and ¹⁸O measurements that cite and apply the DI-model of Scheidegger et al., (2000). Information listed contains the type of material analysed, the availability of gas-exchange data and the region where the study was carried out. Controlled conditions indicate greenhouse or growth chamber studies.

<table>
<thead>
<tr>
<th>Plant functional type</th>
<th>No. of studies</th>
<th>Wood isotopes only</th>
<th>Leaf isotopes only</th>
<th>Leaves & wood or phloem isotopes</th>
<th>Plant gas exchange measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gymno-sperms</td>
<td>78</td>
<td>59</td>
<td>15</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Angio-sperms</td>
<td>79</td>
<td>30</td>
<td>43</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>Both</td>
<td>27</td>
<td>13</td>
<td>11</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

23
Table 2: Impact of the dominant environmental drivers on tree physiological parameters and stable C and O isotope fractionation: the theoretical responses might deviate from field observations, since other environmental factors impact gas exchange and isotopic fractionation besides the dominant drivers, which does not always correspond with all responses from field observations. \(g_s \) ... stomatal conductance; \(A_{\text{net}} \) ... net photosynthesis; \(c_i/c_a \) ... ratio between leaf intercellular versus ambient CO\(_2\) mole fractions; \(\Delta^{13}\text{C} \) ... net carbon isotope fractionation; \(e_a/e_i \) ... ratio between ambient and substomatal partial water vapour molfractions; \(\Delta^{18}\text{O} \) ... oxygen isotope fractionation; VPD ... Vapour Pressure Deficit; LAVPD ... Leaf to Air Vapour Pressure Deficit; FACE Free air CO\(_2\) exposure. DI-Model scenario corresponds with the scenario numbers in Figure 1. The red scenario numbers indicate non-plausible gas exchange responses, as derived from the C and O isotope values.

<table>
<thead>
<tr>
<th>Dominant driving variables</th>
<th>(g_s)</th>
<th>(A_{\text{net}})</th>
<th>(c_i/c_a)</th>
<th>(\delta^{13}\text{C} / \Delta^{13}\text{C})</th>
<th>(e_a/e_i)</th>
<th>(\delta^{18}\text{O} / \Delta^{18}\text{O})</th>
<th>DI-Model Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPD</td>
<td>Decreasing with increasing VPD. The degree of decrease is species dependent</td>
<td>Initially constant, then decreasing with increasing VPD</td>
<td>Progressively decreasing with increasing VPD</td>
<td>(\delta^{13}\text{C}): increases with (\Delta^{13}\text{C}): decreases with increasing VPD</td>
<td>Both increase with increasing VPD</td>
<td></td>
<td>2, 3, 7, 8 (isotopic decoupling Sect. 5a)</td>
</tr>
<tr>
<td>Temperature</td>
<td>High at low temperatures, (\pm) constant over the temperature range between 15°C and 40°C, given that VPD stays constantly low (VPD (\leq 0.5) kPa). Decreasing with increasing temperature, mostly due to increasing VPD</td>
<td>Follows an optimum curve increasing from low to higher temperatures decreasing at higher temperatures with an average optimal range between 15°C –30°C. Temperature compensation points on average at 3°C and 40°C</td>
<td>Follows an inverse curve of (A_{\text{net}}); with increasing temperature the ratio decreases to remain constant for the optimal range of (A_{\text{net}}), then increases with decreasing (A_{\text{net}}).</td>
<td>(\delta^{13}\text{C}): Follows an optimum curve, and is decreasing in the low and high temperature ranges. (\Delta^{13}\text{C}): Follows an inverse curve of (A_{\text{N}}), with increases in the low and high temperature ranges.</td>
<td></td>
<td></td>
<td>1 & 5</td>
</tr>
</tbody>
</table>

\(^{1} \& ^{5} \)
<table>
<thead>
<tr>
<th>Dominant driving variables</th>
<th>g_s</th>
<th>A_{net}</th>
<th>c_i/c_a</th>
<th>$\delta^{13}\text{C} / \Delta^{13}\text{C}$</th>
<th>e_a/e_i</th>
<th>$\delta^{18}\text{O} / \Delta^{18}\text{O}$</th>
<th>DI-Model Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR</td>
<td>Increasing, following a saturation curve</td>
<td>Increasing, following a saturation curve; light saturation is species and light exposition (sunlit shade) dependent</td>
<td>Declines logarithmically (x-axis mirrors the saturation curve) depending on the A_{net}/g_s ratio</td>
<td>$\delta^{13}\text{C}$: increases, following the A_{net} curve $\Delta^{13}\text{C}$: decreases, following an inverse curve of A_{net}</td>
<td>Constant or decrease with increasing PAR</td>
<td>Both constant or decrease with increasing PAR</td>
<td></td>
</tr>
<tr>
<td>CO_2 Lab conditions: decreasing with increasing CO_2 Field studies: (FACE) minimal decrease to no response (see Sect. 5d)</td>
<td>Lab conditions: increasing, following a saturation curve, degree of CO_2 saturation is species- and nutrient-specific.</td>
<td>Lab conditions: decreasing if c_i/c_a constant c) increasing if c_a-c_i constant</td>
<td>Lab conditions: $\delta^{13}\text{C}$ increasing $\Delta^{13}\text{C}$ decreasing</td>
<td>Field studies a) $\delta^{13}\text{C}$ increasing $\Delta^{13}\text{C}$ decreasing b) $\delta^{13}\text{C}$ decreasing $\Delta^{13}\text{C}$ constant c) $\delta^{13}\text{C}$ decreasing $\Delta^{13}\text{C}$ increasing</td>
<td>$\delta^{18}\text{O}$ and $\Delta^{18}\text{O}$: Lab conditions: increasing with increasing CO_2 Field studies (FACE) constant or slight decrease</td>
<td>a) 1 or 2 b, c) 4, 5 1, (2) (see Sect. 5d)</td>
<td></td>
</tr>
<tr>
<td>Ozone Initially decreases, but with increasing duration stomata become non-functional</td>
<td>Decreases with progressive duration of exposure (depending on the O_3 concentration)</td>
<td>Increases with progressive duration of exposure (depending on the O_3 concentration)</td>
<td>Increases with progressive duration of exposure decreases as a consequence of increased PEP carboxylase activity</td>
<td>Decreases with progressive duration of exposure (depending on the O_3 concentration)</td>
<td>1 & 2 (PEP-carboxylase driven isotope patterns) 3 (supported by gas exchange measurements)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dominant driving variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Effect</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_s</td>
<td>Initially decreases, but with increasing duration stomata become non-functional</td>
<td>Decreases with progressive duration of exposure (depending on the SO$_2$ concentration)</td>
</tr>
<tr>
<td>A_{net}</td>
<td>Increases with progressive duration of exposure (depending on the concentration)</td>
<td>Increases with progressive duration of exposure (depending on the concentration)</td>
</tr>
<tr>
<td>c_i/c_a</td>
<td>Increases or decreases</td>
<td>Increases or decreases</td>
</tr>
<tr>
<td>$\delta^{13}C / \Delta^{13}C$</td>
<td>$\delta^{13}C$: decreases; possibly as a consequence of increased PEP carboxylase activity and other detox. mechanisms</td>
<td>$\delta^{13}C$: increases</td>
</tr>
<tr>
<td>e_a/e_i</td>
<td>Decreases</td>
<td>Decreases</td>
</tr>
<tr>
<td>$\delta^{18}O / \Delta^{18}O$</td>
<td>Increases with progressive duration of exposure (depending on the SO$_2$ concentration)</td>
<td>Increases with progressive duration of exposure (depending on the SO$_2$ concentration)</td>
</tr>
</tbody>
</table>

geological exchange

<table>
<thead>
<tr>
<th>Model Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 6</td>
</tr>
<tr>
<td>c) 1</td>
</tr>
<tr>
<td>e) 8</td>
</tr>
</tbody>
</table>
Figure 1: The updated dual C-O isotope model according to Scheidegger et al., (2000). Arrows compare “two varying situations: A and B” as explained in the text. The symbol “[?]” indicates no significant change. Arrows pointing up (—) or down (—) stand for an increase/decrease of the respective values. $\Delta^{18}O$ is the isotopic fractionation for ^{18}O vs. ^{16}O; $\delta^{13}C$ is the value for the stable carbon isotope; c_i/c_a is the ratio between the intercellular vs. ambient CO$_2$ mole fractions; A_{net} is the net photosynthesis (sensu Larcher, 2003); and g_s the stomatal conductance. Red dotted arrows show intermediate A_{net}-g_s-responses not covered in the original model.

Figure 2: Stable C/O isotope and A_{net}/g_s scenarios and their environmental drivers as observed from experimental studies, including a) Isotope patterns reflecting DI-model scenarios #1-8 and b) corresponding observed gas exchange scenarios #1-8. The yellow and grey areas reflect scenarios with generally increasing

Table 1: Comparison of scenarios for $\delta^{13}C$, $\Delta^{18}O$, c_i/c_a, A_{net}, and g_s.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta^{13}C$</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>$\Delta^{18}O$</td>
<td>≈</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>≈</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>c_i/c_a</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>≈</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>≈</td>
</tr>
<tr>
<td>A_{net}</td>
<td>↑</td>
<td>≈</td>
<td>↑</td>
<td>≈</td>
<td>↑</td>
<td>≈</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>g_s</td>
<td>≈</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>≈</td>
</tr>
<tr>
<td>Selection</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

and decreasing resource availability, respectively.

Hosted file

Figure 3: Pattern of carbon and oxygen isotopes in a) leaves and b) tree-ring cellulose of *Quercus robur*. Black arrows indicate the directional trend in isotopic patterns due to drought treatments. Open circles represent irrigated plants (control) and open triangles irrigated and warmed plants. Filled circles represent drought treatment and filled triangles stand for drought treatments and warmed plants. Data are means ± SE, n = 8, experiment from 2009 (Pflug et al., 2015). The red arrow and symbols represent the expected values, according to the isotopic pattern in the leaves, whereas the black arrow and symbols are measured data.

Breakout Box 1

Figure 4: The mechanistic linkages between plant physiology and isotopes of carbon at leaf level. c_a and c_i stand for ambient and intercellular CO$_2$ mol fractions respectively, g_s and g_m for stomatal and mesophyll conductance; a is the fractionation of CO$_2$ in the air and through stomata, b the fractionation during carboxylation and A_{net} is the net photosynthesis.

Carbon Isotopes: Figure 4 above shows a situation with increasing environmental stress from left to right, e.g. increasing drought. The variability of the 13C/12C isotope ratio in organic matter is predominantly determined by the extent of CO$_2$ and H$_2$O gas exchange during photosynthesis (Farquhar et al., 1989, Farquhar et al., 1982, Vogel, 1980). The degree of the stomatal opening regulates the water loss (i.e. transpiration). This leads to a concomitant decrease in the diffusion of CO$_2$ along the gradient between the ambient air, (c_a) and the leaf intercellular spaces (c_i). Thus, depending on the stomatal conductance (g_s) and the drawdown of [CO$_2$] by photosynthesis (A_{net}), c_i will decrease along with the c_i/c_a ratio (see Fig 4). Farquhar et al., (1989; 1982) showed that a reduction in c_i/c_a, decreases the fractionation between 13C and 12C ($\delta^{13}C$). This results in a higher 13C/12C ratio because the partial pressure of 12CO$_2$ decreases faster, as a consequence of the isotopic effect, (Bigeleisen, 1965) than that of the 13CO$_2$, resulting in an increase of the 13CO$_2$ relative to the12CO$_2$ partial pressure. This higher 13CO$_2$ partial pressure ratio leads to a higher incorporation rate of 13C, expressed in decreased δ^{13}C (or less negative δ^{13}C) values of organic matter synthesized under the respective conditions. Consequently, δ^{13}C values reflect the interplay between g_s and A_{net}, which is controlled by environmental variations in water supply and demand, as well as photosynthetically active radiation,
temperature or CO₂ concentration. This isotope ratio is transferred to sugars, the primary photosynthetic product, and used for metabolic processes and biomass synthesis (see also Cernusak et al., 2013).

However, the observed (net) fractionation \(\Delta^{13}C_{\text{observed}} \) is a composite of numerous, complex biochemical and physical processes, and can be summarized as \(\Delta^{13}C_{\text{observed}} = \Delta_b - \Delta_{gs} - \Delta_{gm} - \Delta_e - \Delta_f \), where each fractionation term is flux-rate weighted, (Ubierna et al., 2018). A range of fractionation values are provided by Ubierna & Farquhar (2014). \(\Delta_b \) is the fractionation associated with the carboxylation of CO₂ via RuBisCo, in the absence of any respiratory fractionation. \(\Delta_{gs} \) is the fractionation associated with diffusion of CO₂ through the boundary layer and the stomata. \(\Delta_{gm} \) is the fractionation associated with mesophyll conductance \(g_m \). \(\Delta_e \) reflects fractionations associated with the day respiration rate \(R_d \) (cytoplasmatic decarboxylation, mitochondrial metabolism, C-remobilization and respiration of the heterotrophic tissues, Tcherkez et al., 2017). Since \(\Delta_b \) and \(\Delta_{gs} \) are linked to the largest C-flux and they reflect the largest part of the observed fractionation in the biomass, while \(\Delta_e \) and \(\Delta_f \) are associated with the small respiratory C-fluxes and are often neglected. Thus, the \(\Delta^{13}C_{\text{observed}} \) can be described by the simplified equation \(\Delta^{13}C_{\text{observed}} = a + (b-a) \cdot \frac{c_i}{c_a} \), with \(a \), the fractionation of CO₂ in the air and through stomata, \(b \) the fractionation during carboxylation and \(c_i \) and \(c_a \) are the mol fractions for the inter cellular and ambient CO₂ concentration. (Ubierna & Farquhar, 2014; Cernusak et al., 2016). However, for plants operating at low light conditions, (e.g. understory plants) the respiratory fractionations might become more relevant (Barbour et al., 2017; Busch et al., 2020; Liu et al.; 2021). A comprehensive overview on day respiration and its impact of \(\epsilon \) is given in Tcherkez et al., (2017). Moreover, after entering the intercellular spaces the CO₂ molecules traverse the mesophyll cell walls and chloroplast membranes with their diffusional resistance \(r_{mb} \) and \(r_{c} \) respectively, which is summarized as \(g_m = \frac{1}{r_{mb} + r_{c}} \). As \(g_m \) can contribute significantly to the limitation of photosynthesis by regulating the chloroplast CO₂ concentration \(c_c \), it impacts the ¹³C-isotope fractionation \(\Delta_{gm} \) accordingly (Evans 2021, Evans & Von Caemmerer, 2013; Sharkey et al.; 2012). Yet its experimental determination is challenging and often not possible therefore mostly a model based estimation.

What are the implications of \(\Delta_{gm} \), \(\Delta_e \) and \(\Delta_f \) with regard to the use of the Dual C and O isotope approach? Mostly the observed fractionation, \(\Delta^{13}C_{\text{observed}} \) or \(\delta^{13}C_{\text{observed}} \) is used, which is driven by the most dominating C-flux that is controlled by \(A_{\text{net}} \) and \(g_s \) with its associated fractionation \(\Delta_b \) and \(\Delta_{gs} \). Therefore \(\Delta_{gm} \), \(\Delta_e \) and \(\Delta_f \) can be neglected. However, as soon as any of these components are separately studied, or derivatives of the fractionation model, e.g. intrinsic water use efficiency (iWUE, Wei et al., 2021, Gimeno et al., 2020) it is essential that the respective fractionation components are taken into account accordingly.

Breakout Box 2

Figure 5: The mechanistic linkages between plant physiology and isotopes of oxygen at the leaf level. \(e_a \) and \(e_i \) stand for ambient and inter cellular water vapor mol fractions respectively, \(g_s \) and \(g_m \) for stomatal and mesophyll conductance. \(\varepsilon_e \) and \(\varepsilon_k \) are the equilibrium and kinetic fractionation factors respectively.
Oxygen Isotopes: We must keep in mind that major 18O fractionation processes occur on two different levels: 1st processes, which alter the isotope ratio before water is taken up by plants and 2nd changes, which are a result of 18O fractionation processes during H_2O and CO_2 gas exchange and assimilate incorporation into plant organic matter.

1. The isotope ratio of precipitation water varies depending on i) its origin. i.e. water vapour from warm regions like the Mediterranean is more enriched in $\text{H}_{2}^{18}\text{O}$ than northern vapour masses (Rozanski et al., 1993). Furthermore continental (Bowen et al., 2005, 2014) or altitudinal (Poage MA & Chamberlain CP, 2001) effects change δ^{18}O of precipitation significantly. ii) Seasonality of the precipitation is another source of variation in δ^{18}O of precipitation water. That, however, is closely linked to the temperature dependence of δ^{18}O resulting in an annual sinusoid pattern (Daansgard, 1964, Gat et al., 2001). Further fractionations occur during atmospheric transport, rainfall, canopy throughfall and infiltration in the soil. Depending on the soil structure, season and climate, δ^{18}O of soil water shows a great vertical variability (Sprenger et al., 2016), with typically higher δ^{18}O values in upper soil layers due to evaporative effects. iii) As plant roots seem to take up water from any soil depth, where its accessibility enables its uptake under a minimum of energy, roots potentially have a large range in soil depths from where they absorb water. Brinkmann et al., (2018) Allen et al., (2019) and Goldsmith et al., (2022) found that considerable amounts of absorbed soil water originate from winter water, resulting in temporal shifts (described as temporal origin) of soil δ^{18}O. Accordingly this leads to a strongly dampened variability of the source water isotope signal (xylem water), the isotopic basis for leaf water $\text{H}_{2}^{18}\text{O}$ enrichment in leaves.

2. The variability of the δ^{18}O values in leaf organic matter is predominantly determined by the extent of leaf H_2O gas exchange during photosynthesis. Cernusak et al, (2016) and Song et al., (2022) with literature therein provide a summarizing overview of the various aspects of leaf water enrichment. Therefore, we cover only briefly the most important aspects on leaf water enrichment. While leaf water transpires out of the stomata, the lighter H_2^{16}O evaporates more readily than the heavier H_2^{18}O molecules, leaving the remaining leaf water enriched in H_2^{18}O (Craig & Gordon, 1965; Dongmann et al., 1974) (See Figure 5). These authors (CG & D) described leaf water enrichment ($\delta^{18}\text{O}_{\text{LW}}$) at the location of evaporation as a function of the ratio of the ambient versus the leaf the intercellular water vapor mole fraction, e_a/e_i ([?][RH]), the δ^{18}Osource of source (xylem) water and δ^{18}Oambient of ambient water vapor. The extent to which leaf water is enriched in H_2^{18}O is inverse proportional to the ratio e_a/e_i as indicated in the above Figure 5. However, the calculated values according to CG & D tend to overestimate $\delta^{18}\text{O}_{\text{LW}}$ relative to observed values. As a consequence, Farquhar and Lloyd (1993) took the transpiration rate into account by i) introducing the Pécellet effect. It describes the diffusional flux of enriched water from the location of enrichment into the leaf water body as opposed to a convective water flux of unenriched water molecules from the xylem into the leaf, replenishing the transpired water loss (E). Thus, with increasing E a decrease in $\delta^{18}\text{O}_{\text{LW}}$ is observed (see Figure 5), which results for numerous species in a negative relationship between stomatal conductance (g_s) versus $\delta^{18}\text{O}_{\text{LW}}$ (see
Barbour et al., 2021). A so called pathlength (L) stands for a transport distance of water molecules from the intracellular (through the cell wall) to the leaf inter cellular spaces. This path length (L), however, scarcely represents a real leaf trait and often unrealistic values were used to match predicted versus observed data. The applicability of the Péclet approach is likely tied to the hydraulic leaf design (Zwieniecki et al., 2007) for which three designs “with different pathways for water movements and levels of mesophyll connectedness were defined” (Barbour et al., 2021). Another approach was the application of ii) a two-pool model (Song et al., 2015a; Yakiret et al., 1990) yielding better estimates for some species, in particular for plants where the leaf was strongly compartmented into a pool with non-enriched and a pool linked to the location of enrichment. Roden et al., (2015) found improved estimates for coniferous plants when the two-pool model was combined with the Péclet correction. Based on a study on 27 species Barbour et al (2021) made recommendations how to consider the hydraulic design for the Péclet correction or the two-pool model or the combination of both. In this context it is also useful to consider the spatial patterns of isotopic composition within leaves, as the isotopic composition tends to be more enriched towards the tip of the leaf or at greater distance from the mid-vein (Cernusak et al., 2016). Farquhar & Gan (2003) considered such effects by expanding the one-dimensional Péclet model, separating convection-diffusion effects in the leaf xylem and lamina.

Another process, which significantly impacts δ\text{18}O_LW is iii) the back diffusion of ambient water vapor into the substomatal cavities (bidirectional fluxes, Seibt et al., 2006, Farquhar et al., 2021), depending on g_s, the ambient water vapor mole fraction (e_a) and its isotopic value (δ\text{18}O_{att.-av}+ε_e). Particularly at high ambient humidity conditions and high g_s (but low E), facilitate a high bidirectional diffusion rate of water molecules (Lehmann et al., 2018; 2020; Kagawa, 2022), impacting δ\text{18}O_LW considerably and thus δ\text{18}O_{organic}. Similar to the Péclet effect, the influx of \text{18}O depleted water vapor into the leaf intercellular spaces diminishes the δ\text{18}O_LW enrichment, with an increasing water vapor influx resulting in a negative relationship between g_s and δ\text{18}O_LW (Farquhar et al., 2021). This process is often overseen, probably due to the assumption that the isotopic values of source water and ambient water vapor are in equilibrium, which is rarely the case in the field (Boegelein et al., 2019).

iv) Mostly, for the prediction of δ\text{18}O_LW Isotopic Steady State (ISS) conditions are assumed, yielding often good agreements between observed and predicted values. Changes of ISS / NSS (non-steady state) occur when the transpired water has an isotopic composition differing from that of source water (Farquhar & Cernusak 2005). As the diurnal dynamic of environmental drivers (RH, T_leaf, PaR) is considerable, as the prevalent conditions are isotopic NSS. For temporal short-term analyses various studies found remarkable improvements when comparing observed with predicted δ\text{18}O_LW values applying the NSS approach (Farquhar & Cernusak, 2005; Seibt et al., 2006, Dubbert et al., 2014). In recent years the combined use of gas exchange systems coupled to isotope laser spectrometers allowed for an online monitoring of the isotopic fractionation of δ\text{18}O_LW under NSS. Song et al., (2015) extended the NSS approach of Farquhar & Cernusak, (2015) considering the mixing of the transpired water with the prevalent cuvette vapor with their respective isotopic values. In a next step Dubbert et al., (2017) included leaf traits such as g_s, stomatal density and leaf water content. Farquhar et al., (2021) provides a good discussion on the latest developments on ISS and NSS leaf water enrichment.

v) In contrast to leaf water enrichment, the ISS assumption yields suitable results for organic matter, since the transport of sugars in the phloem and the synthesis of organic material, i.e. cellulose are much slower processes than leaf water enrichment. Note that the organic assimilates (δ\text{18}O_{organic}) are enriched in \text{18}O relative to the leaf water by 27biochemical fractionation ε_{pho} (Sternberg et al., 1983, Lehmann et al., 2017). The assimilates are a mixture of carbohydrates formed under various environmental conditions, representing an integration of the short-term isotope signal variation within a time frame of hours to days (Andre-Hayles et al., 2022). Furthermore, reserve carbohydrates mix with freshly formed assimilates (Gessler et al., 2014). The mechanistic coherence between leaf water enrichment and sucrose synthesis is summarized in Barbour and Farquhar (2000) and the mathematical description of the oxygen exchange between the carbonyl group and the source water during cellulose synthesis and its application is given in Barbour et al., (2007). HirL et al., (2021) described the climate sensitivity of these exchange processes and ε_{pho} and its significance for the interpretation in climate reconstructions and physiological processes.
Supporting Information

Table S1: Reviewed studies containing both isotope and gas exchange measurements. DI-model scenarios are given for isotope patterns (ISO) and for the gas exchange (GAS). RH = relative humidity, WSOM = Water soluble organic matter, A_{net} = net photosynthetic assimilation rate, A_{sat} = light-saturated photosynthetic assimilation rate. RH = relative humidity. VPD = Vapour pressure deficit. Leaf material: 1= lower, inner canopy, 2=lower, outer canopy, 3=upper, inner and outer canopy.

<table>
<thead>
<tr>
<th>ISO</th>
<th>GAS</th>
<th>TREATMENT</th>
<th>SPECIES TREATED</th>
<th>SPECIES TYPE</th>
<th>GASEX TYPE</th>
<th>TISSUE</th>
<th>BIOME</th>
<th>CLASSIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>control to weed removal</td>
<td>Corymbia citri-odora</td>
<td>tree</td>
<td>A_{sat} and g_s</td>
<td>leaf bulk material(^1)</td>
<td>Temperate Broadleaf and Mixed Forests</td>
<td>angiosperm</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>control to increased temperature (under low RH)</td>
<td>Eucalyptus globulus Labill.</td>
<td>tree</td>
<td>A_{net} and g_s</td>
<td>stem cellulose</td>
<td>Controlled conditions</td>
<td>angiosperm</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>control to defoliation (across growing periods)</td>
<td>Abies balsamea</td>
<td>tree</td>
<td>A_{sat} and g_s</td>
<td>stem cellulose</td>
<td>Controlled conditions</td>
<td>gymnosperm</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>control to low light (across both RH)</td>
<td>Eucalyptus globulus Labill.</td>
<td>tree</td>
<td>A_{net} and g_s</td>
<td>stem cellulose</td>
<td>Controlled conditions</td>
<td>angiosperm</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>grass/herb to shrub/tree</td>
<td>various</td>
<td>various</td>
<td>A_{net} and g_s</td>
<td>leaf cellulose</td>
<td>Mediterranean, both Forests, Woodlands and Shrub</td>
<td>both Moreno-Gutierrez et al, 2012b</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>low to high VPD (across genotypes)</td>
<td>Populus nigra</td>
<td>tree</td>
<td>A_{sat} and g_s</td>
<td>leaf bulk material and sugar</td>
<td>Controlled conditions</td>
<td>angiosperm</td>
</tr>
<tr>
<td>ISO</td>
<td>GAS</td>
<td>TREATMENT</td>
<td>TREATED SPECIES</td>
<td>TREATED TYPE</td>
<td>TREATED TYPE</td>
<td>BIOME</td>
<td>CLASSIFICATION</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----------</td>
<td>----------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>low to high intraspecific competition intensity</td>
<td>Stipa tenacissima</td>
<td>grass</td>
<td>A_{net} and g_s</td>
<td>leaf bulk material</td>
<td>Mediterranean angiosperm</td>
<td>Ramirez et al., 2009</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>open to dense forest</td>
<td>Pinus halepensis</td>
<td>tree</td>
<td>A_{net} and g_s</td>
<td>stem cellulose</td>
<td>Mediterranean gymnosperm</td>
<td>Moreno-Gutierrez et al., 2012a</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>control to increased temperature (under high RH)</td>
<td>Eucalyptus globulus Labill.</td>
<td>tree</td>
<td>A_{net} and g_s</td>
<td>stem cellulose</td>
<td>Controlled conditions</td>
<td>Roden & Farquhar, 2012</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>control to nitrogen deficiency (across both RH)</td>
<td>Eucalyptus globulus Labill.</td>
<td>tree</td>
<td>A_{net} and g_s</td>
<td>stem cellulose</td>
<td>Controlled conditions</td>
<td>Roden & Farquhar, 2012</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>control to weed removement</td>
<td>Corymbia citriodora</td>
<td>tree</td>
<td>A_{sat} and g_s</td>
<td>leaf bulk material</td>
<td>Temperate angiosperm</td>
<td>Huang et al., 2008</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>ambient to high NO$_3$</td>
<td>Acer saccharum</td>
<td>tree</td>
<td>A_{net} and g_s</td>
<td>leaf bulk material</td>
<td>Temperate angiosperm</td>
<td>Talhelm et al., 2011</td>
</tr>
<tr>
<td>ISO</td>
<td>GAS</td>
<td>Treatment</td>
<td>Species</td>
<td>Species Type</td>
<td>Tissue Type</td>
<td>Tissue Type</td>
<td>Biome</td>
<td>Classification</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----------</td>
<td>-----------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>control to irrigation</td>
<td>Triticum durum</td>
<td>grass</td>
<td>A_{net}</td>
<td>leaf and g_s</td>
<td>Mediterranean</td>
<td>angiosperm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Forests, Woodslands and Scrub</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>ambient to high soil N (across NO₂ exposures)</td>
<td>Populus x eurameriana</td>
<td>tree</td>
<td>A_{net}</td>
<td>leaf and g_s</td>
<td>Controlled conditions</td>
<td>angiosperm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mediterranean Forests, Woodslands and Scrub</td>
<td>Siegwolf et al., 2001</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>moderate to heavy thinning</td>
<td>Pinus halepensis</td>
<td>tree</td>
<td>A_{sat}</td>
<td>leaf and g_s</td>
<td>Mediterranean</td>
<td>gymnosperm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Forests, Woodslands and Shrub</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>shift in time (over years)</td>
<td>Larix decidua</td>
<td>tree</td>
<td>A_{sat}</td>
<td>stem cellulose</td>
<td>Temperate</td>
<td>gymnosperm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coniferous Forests</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>low to high RH (across treatments: drought, nitrogen, light)</td>
<td>Eucalyptus globulus</td>
<td>tree</td>
<td>A_{net}</td>
<td>stem cellulose</td>
<td>Controlled conditions</td>
<td>angiosperm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mediterranean Forests, Woodslands and Shrub</td>
<td>Roden & Farghaly, 2012</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>base to top canopy gradient</td>
<td>Pseudotsuga menziesii</td>
<td>tree</td>
<td>A_{net}</td>
<td>leaf and phloem</td>
<td>Temperate</td>
<td>gymnosperm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Broadleaf and Mixed Forests</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>control to weed removement</td>
<td>Corymbia citriodora</td>
<td>tree</td>
<td>A_{sat}</td>
<td>leaf bulk material</td>
<td>Temperate</td>
<td>angiosperm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Broadleaf and Mixed Forests</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>base to top canopy gradient</td>
<td>Fagus sylvatica</td>
<td>tree</td>
<td>A_{net}</td>
<td>leaf and phloem</td>
<td>Temperate</td>
<td>angiosperm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Broadleaf and Mixed Forests</td>
<td></td>
</tr>
<tr>
<td>ISO</td>
<td>GAS</td>
<td>TREATMENT</td>
<td>TREATED TYPE</td>
<td>SPECIES</td>
<td>SPECIES TYPE</td>
<td>GASEX TYPE</td>
<td>TISSUE</td>
<td>BIOME</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----------</td>
<td>--------------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>low to high NO₂ at low soil N</td>
<td>Populus x eurameri-cana</td>
<td>tree</td>
<td>A_{net} and g_s</td>
<td>leaf bulk material</td>
<td>Controlled conditions</td>
<td>angiosperm</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>low to high NO₂ at high soil N</td>
<td>Populus x eurameri-cana</td>
<td>tree</td>
<td>A_{net} and g_s</td>
<td>leaf bulk material</td>
<td>Controlled conditions</td>
<td>angiosperm</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>temperature</td>
<td>H. squa-matum</td>
<td>shrub</td>
<td>A_{net} and g_s</td>
<td>leaf bulk material</td>
<td>Arid</td>
<td>angiosperm</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Drought 2014</td>
<td>Triticale</td>
<td>crop</td>
<td>A_{net} and g_s</td>
<td>leaf bulk material</td>
<td>Arid</td>
<td>angiosperm</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>Drought 2013</td>
<td>Triticale</td>
<td>crop</td>
<td>A_{net} and g_s</td>
<td>leaf bulk material</td>
<td>Arid</td>
<td>angiosperm</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>Drought</td>
<td>Capsicum an-num</td>
<td>herb</td>
<td>A_{net} and g_s</td>
<td>leaf bulk material</td>
<td>Controlled conditions</td>
<td>angiosperm</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>drought</td>
<td>Lycopersicon esculentum</td>
<td>L</td>
<td>A_{net} and g_s</td>
<td>leaf bulk material</td>
<td>Controlled conditions</td>
<td>angiosperm</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>nitrogen</td>
<td>Lycopersicon esculentum</td>
<td>L</td>
<td>A_{net} and g_s</td>
<td>leaf bulk material</td>
<td>Controlled conditions</td>
<td>angiosperm</td>
</tr>
</tbody>
</table>

References for Table S1

Hosted file

Hosted file
