Sources of Uncertainty in Atmospheric Drag: The Drag Coefficient

Bernstein Valerie\textsuperscript{1}, Pilinski Marcin\textsuperscript{2}, and Knipp Delores\textsuperscript{3}

\textsuperscript{1}University of Colorado at Boulder
\textsuperscript{2}Atmospheric and Space Technology Research Associates LLC
\textsuperscript{3}University of Colorado

November 16, 2022

Abstract

Atmospheric drag describes the main perturbing force of the atmosphere on the orbital trajectories of near-Earth orbiting satellites. The ability to accurately model atmospheric drag is critical for precise satellite orbit determination and collision avoidance. Assuming we know atmospheric winds and satellite velocity, area and mass, the primary sources of uncertainty in atmospheric drag include mass density of the space environment and the spacecraft drag coefficient, \( CD \). Historically, much of the focus has been on physically or empirically estimating mass density, while \( CD \) is treated as a fitting parameter or fixed value. Presently, \( CD \) can be physically modeled through energy and momentum exchange processes between the atmospheric gas particles and the satellite surface. However, physical \( CD \) models rely on assumptions regarding the scattering and adsorption of atmospheric particles, and these responses are driven by atmospheric composition and temperature. Modifications to these assumptions can cause \( CD \) to change by up to \( \approx 40\% \). The nature and magnitude of these changes also depend on the shape of the spacecraft. We can check the consistency of the \( CD \) model assumptions by comparing densities derived from satellite drag measurements and computed \( CD \) values for satellites of different shapes orbiting in the same space environment. Since all of the satellites should see the same density, offsets in the derived densities should be attributable to inconsistencies in the \( CD \) model. Adjusting the \( CD \) model scattering assumptions can improve derived density consistency among the different satellites and inform the physics behind \( CD \) modeling. In turn, these efforts will help to reduce uncertainty in \( CD \), leading to improved atmospheric drag estimates.
Sources of Uncertainty in Atmospheric Drag: The Drag Coefficient

Valerie Bernstein, Marcin Pilinski, Delores Knipp

University of Colorado Boulder, Laboratory for Atmospheric and Space Physics, CU Space Weather Technology Research and Education Center

PRESENTED AT:

AGU 100 FALL MEETING
San Francisco, CA | 9–13 December 2019
SPACE TRAFFIC

Near-Earth orbit is crowded with satellites and debris.

[VIDEO] https://www.youtube.com/embed/O64KM4GuRPk?feature=oembed&fs=1&modestbranding=1&rel=0&showinfo=0
Video credit: Dr. Stuart Grey at University College London

- 1,700+ operational satellites
- 19,400+ debris objects larger than 10 cm orbiting Earth
- 0.5 million debris objects between 1 and 10 cm

The atmospheric drag force can perturb these orbits.
COLLISIONS IN SPACE

Uncontrolled orbit perturbations can lead to increased collision uncertainty in space.

[VIDEO] https://www.youtube.com/embed/_o7EKlgCE20?feature=oembed&fs=1&modestbranding=1&rel=0&showinfo=0

• In 2009, Iridium 33 and Cosmos 2251 unexpectedly collided at 12 km/s at 800 km altitude

• Collision generated 2100+ debris objects in space

• The number of orbital debris objects is increasing fast

Image credit: NASA Orbital Debris Program (2014), annotated by Mika McKinnon
Atmospheric mass density and the spacecraft drag coefficient are the primary sources of uncertainty in satellite drag.

Atmospheric mass density

- Most important for conjunction analysis
- Empirical and physics-based models
- Variability over many time scales (diurnal, seasonal, solar cycle)
- Responds to solar energy input

TIE-GCM model density - a global map at 344 km
DRAG COEFFICIENT

- Historically fitted or fixed (~2.2)
- Recent efforts use simple physical models
  - Momentum and energy exchange between the atmosphere and the satellite
  - Temperature and composition
  - Satellite geometry and orientation
  - Scattering dynamics

Drag coefficient variability with scattering assumptions:
Helium Atmosphere, 1500 K

- **GRACE**
- **Sphere**

- $C_D$ vs Quasi-specular to Diffuse

- Graph showing the relationship between $C_D$ and the transition from Quasi-specular to Diffuse for GRACE and Sphere.
TESTING DRAG COEFFICIENTS

- Method to validate scattering assumptions and inform current $C_D$ model uncertainties
- Take drag acceleration measurements $\rightarrow$ compute, modify and plug in drag coefficients $\rightarrow$ derive and compare normalized mass densities for satellites with similar orbits
- Differences in derived densities for satellites of different shapes point to $C_D$ model inconsistencies

![Graph showing 2003/6/13 - 2003/6/20 Normalized Densities]

- Mean normalized densities for our selected satellites with similar orbits are shown above, spatially organized by their perigee altitudes
- At higher altitudes, derived densities at dayside local times are more inconsistent than nightside densities
Largest density ratio discrepancies at the dayside low pressure, high altitude atmospheres

Modeling $C_D$ with diffuse reflection is inappropriate in this regime ▫ quasi-specular would be a better choice

- Largest density ratio discrepancies at the dayside low pressure, high altitude atmospheres
- Modeling $C_D$ with diffuse reflection is inappropriate in this regime ▫ quasi-specular would be a better choice
**IMPACTS**

- $C_D$ models yield inconsistent derived densities in low pressure, high altitude atmospheric regimes.
- Drag-derived densities at low pressures are likely underestimated by up to 30% due to current $C_D$ model scattering assumptions. Helium density estimates are likely underestimated by the same amount.
- We rely on $C_D$ for constructing and validating atmospheric models. Current $C_D$ modeling introduces biases into atmospheric models.

Sorry but time is up!