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Abstract

Observed surface temperature trends over recent decades are characterized by (i) intensified warming in the Indo-Pacific Warm

Pool and slight cooling in the eastern equatorial Pacific, consistent with strengthening of the Walker circulation, and (ii) cooling

in the Southern Ocean. In contrast, state-of-the-art coupled climate models generally project Walker circulation weakening,

enhanced warming in the eastern equatorial Pacific, and warming in the Southern Ocean. Here we investigate the ability of

16 climate model large ensembles to reproduce observed sea-surface temperature and sea-level pressure trends over 1979-2020

through a combination of externally forced climate change and internal variability. We find large-scale differences between

observed and modeled trends that are very unlikely (<5% probability) to occur due to internal variability as represented in

models. Disparate trends are found even in regions with weak multi-decadal variability, suggesting that model biases in the

transient response to anthropogenic forcing constitute part of the discrepancy.
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Key Points:10

• The pattern of observed sea-surface temperature and sea-level pressure trends (1979–11

2020) differs significantly from climate model hindcasts12

• The ratio of Indo-Pacific Warm Pool to tropical-mean warming is particularly anoma-13

lous in observations compared to models14

• A signal-to-noise maximizing pattern analysis is used to isolate changes that oc-15

curred in observations that models do not reproduce16
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Abstract18

Observed surface temperature trends over recent decades are characterized by (i) intensified19

warming in the Indo-Pacific Warm Pool and slight cooling in the eastern equatorial Pacific,20

consistent with strengthening of the Walker circulation, and (ii) cooling in the Southern21

Ocean. In contrast, state-of-the-art coupled climate models generally project Walker cir-22

culation weakening, enhanced warming in the eastern equatorial Pacific, and warming in23

the Southern Ocean. Here we investigate the ability of 16 climate model large ensembles24

to reproduce observed sea-surface temperature and sea-level pressure trends over 1979–202025

through a combination of externally forced climate change and internal variability. We find26

large-scale differences between observed and modeled trends that are very unlikely (<5%27

probability) to occur due to internal variability as represented in models. Disparate trends28

are found even in regions with weak multi-decadal variability, suggesting that model biases29

in the transient response to anthropogenic forcing constitute part of the discrepancy.30

Plain Language Summary31

Regional climate change depends not only on the magnitude of global warming, but also32

on the spatial pattern of warming. We show that the spatial pattern of observed temperature33

changes since 1979 is highly unusual, and many aspects of it cannot be reproduced in current34

climate models, even when accounting for the influence of natural variability. We find a35

particularly large discrepancy in the rate of warming within the western Pacific Ocean and36

eastern Indian Ocean, which suggests that models have systematic biases in the transient37

response of ocean temperature patterns to anthropogenic forcing, because the contribution38

of natural variability to multi-decadal trends is thought to be small in this region. Our39

work raises the possibility that the recent trends towards more La-Niña-like conditions may40

be partly a response to anthropogenic forcing, even though existing climate model and41

paleoclimate evidence suggest that trends will eventually reverse towards more El-Niño-like42

conditions, with an associated reversal in regional climate impacts.43

1 Introduction44

Earth’s climatological pattern of sea-surface temperature (SST) plays a key role in45

shaping the large-scale atmospheric circulation and regional climate. In particular, the rel-46

ative warmth of the Warm Pool in the western Indo-Pacific compared to the Cold Tongue47

in the eastern equatorial Pacific drives the Walker circulation in the tropical atmosphere,48

which through its impact on the upper tropospheric divergence in the Warm Pool generates49

large-scale atmospheric Rossby waves that propagate into higher latitudes and impact cli-50

mate around the globe (Bjerknes, 1969; Sardeshmukh & Hoskins, 1988). This is part of a51

two-way coupling between the tropical atmosphere and ocean; the Walker circulation also52

helps shape the climatological SST pattern by driving upwelling of cold waters in the Cold53

Tongue and ocean heat-flux convergence in the Warm Pool (Bjerknes, 1969; Neelin et al.,54

1998).55

In response to anthropogenic greenhouse gas forcing, climate models generally show a56

weakening of the Walker circulation (Vecchi et al., 2006) and enhanced warming in the57

eastern equatorial Pacific (Meehl & Washington, 1996). In contrast, SST observations58

show enhanced warming in the Indo-Pacific Warm Pool and weak cooling in the eastern59

equatorial Pacific over the 20th century (Cane et al., 1997; Solomon & Newman, 2012;60

Coats & Karnauskas, 2017) as well as a pronounced strengthening of the east-west SST61

gradient across the tropical Pacific since the mid 1970s (Wills et al., 2020; Watanabe et al.,62

2021). Sea-level pressure (SLP) observations show a weakening of the Walker circulation63

over the twentieth century (Vecchi et al., 2006; Tokinaga et al., 2012), however, the Walker64

circulation has strengthened since 1979 (L’Heureux et al., 2013; Kociuba & Power, 2015;65

Ma & Zhou, 2016; Chung et al., 2019; Zhao & Allen, 2019), in contrast to climate model66

hindcasts over this period (Fig. 1). This period has also been characterized by Southern67
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ERSSTv5 SST Trend (1979-2020) ERA5 SLP Trend (1979-2020)

Multi-Model-Mean SLP Trend (1979-2020)Multi-Model-Mean SST Trend (1979-2020)
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Figure 1. Observed trends (per 41 yr) in annual-mean (a) SST and (b) SLP over 1979–2020

from ERSSTv5 (Huang et al., 2017) and the ERA5 reanalysis (Hersbach et al., 2020), respectively.

Modeled trends in (c) SST and (d) SLP over 1979–2020, from the multi-model mean of historical

simulations with 16 climate model LEs (Table 1). The SST trends in each LE have been rescaled

such that their global mean matches that in ERSSTv5. Observed trends in (e) SST and (f) SLP

over 1979–2020, expressed in ensemble standard deviations away from the multi-model mean (i.e.,

the difference in trends between observations and the multi-model mean divided by the square

root of the average variance in trends within LEs). Panels (c)-(f) are computed with the first 10

members of each large ensemble such that models are weighted equally. The ±2 standard deviation

contour is shown with a black line. The root mean square error (RMSE) of the maps in (e) and (f)

are shown in the upper right.

Ocean cooling and sea-ice expansion, in contrast to the anthropogenically forced changes in68

climate models (Turner & Overland, 2009; Fan et al., 2014).69

It remains an open question whether the differences in recent multi-decadal trends70

between observations and models resulted from anomalous multi-decadal variability or from71

aspects of the forced climate response not captured by models. Some studies suggest that72

these difference in Pacific and Southern Ocean trends could have resulted from internal73

atmosphere-ocean variability (Zhao & Allen, 2019; Chung et al., 2019; L. Zhang et al.,74

2019; Olonscheck et al., 2020; Watanabe et al., 2021; Chung et al., 2022), while others75

suggest they result in part from model biases in the pattern of response to external forcing76

(Thompson et al., 2011; Bintanja et al., 2013; Kohyama et al., 2017; Coats & Karnauskas,77

2018; D. P. Schneider & Deser, 2018; Kostov et al., 2018; Seager et al., 2019; Wills et al.,78

2020; Suarez-Gutierrez et al., 2021; Seager et al., 2022). It is critical to distinguish between79
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these hypotheses in order to predict future SST trends and their impact on the atmospheric80

circulation.81

2 Climate model large ensembles unable to reproduce observed trends82

Here we leverage a recent proliferation of climate model data from initial-condition large83

ensembles (Deser, Lehner, et al., 2020) to evaluate the potential for internal multi-decadal84

variability to explain the mismatch between observed and modeled trends in recent decades,85

focusing on the well-observed period since 1979 during which the Walker circulation and86

Pacific SST gradient trends are particularly anomalous. In initial-condition large ensembles87

(LEs), the same model is run multiple times with the same forcing but small differences88

in the initial condition, such that each ensemble member shows a different realization of89

internal variability. The ensemble mean thus shows the forced climate response, while the90

ensemble spread shows the range of possible realizations due to internal variability. We91

analyze annual-mean SST and SLP in simulations from 16 climate models that have at least92

10 ensemble members for the period 1979–2020 under historical and future forcing scenarios93

(Table 1). Historical simulations only extend to 2005 (CMIP5) or 2014 (CMIP6), and94

different ensembles use different scenarios afterwards, namely RCP8.5, SSP2-4.5, SSP3-7.0,95

and SSP5-8.5, but differences between these scenarios are small through the year 2020. We96

compare modeled trends against observational SST data from the Extended Reconstructed97

SST dataset v5 (ERSSTv5) (Huang et al., 2017), the COBE SST dataset (Ishii et al.,98

2005), and the Atmospheric Model Intecomparison Project SST boundary condition dataset99

(AMIPII) (Hurrell et al., 2008), and SLP data from the ERA5 (Hersbach et al., 2020) and100

JRA55 (Kobayashi et al., 2015) reanalyses. All model output and observational data are101

linearly interpolated to a common 1.5◦ analysis grid.102

Table 1. CMIP5 and CMIP6 LEs that cover the period 1979-2020, the scenarios used, and the

number of ensemble members (N , minimum of the two scenarios used). The experimental setups

and forcing scenarios for the CMIP5 (top) and CMIP6 simulations (bottom) are described in (Taylor

et al., 2012) and (Eyring et al., 2016), respectively.

Model Scenarios N Reference

CESM1.1 Historical, RCP8.5 40 Kay et al. (2015)
CanESM2 Historical, RCP8.5 50 Kirchmeier-Young et al. (2017)
CSIRO-Mk3.6 Historical, RCP8.5 30 Jeffrey et al. (2013)
GFDL-CM3 Historical, RCP8.5 20 Sun et al. (2018)
GFDL-ESM2M Historical, RCP8.5 30 Rodgers et al. (2015)
MPI-ESM Historical, RCP8.5 100 Maher et al. (2019)

ACCESS-ESM1.5 Historical, SSP2-4.5 13 Ziehn et al. (2020)
CanESM5 Historical, SSP3-7.0 25 Swart et al. (2019)
CESM2.1 Historical, SSP3-7.0 99 Rodgers et al. (2021)
CNRM-CM6.1 Historical, SSP2-4.5 10 Voldoire et al. (2019)
EC-Earth3 Historical, SSP5-8.5 50 Wyser et al. (2021)
GISS-E2.1-G Historical, SSP3-7.0 10 Kelley et al. (2020)
IPSL-CM6A-LR Historical, SSP3-7.0 11 Boucher et al. (2020)
MIROC6 Historical, SSP5-8.5 50 Tatebe et al. (2019)
MIROC-ES2L Historical, SSP2-4.5 30 Hajima et al. (2020)
NorCPM1 Historical, SSP2-4.5 30 Bethke et al. (2021)

The multi-model-mean SST trends over 1979–2020 (Fig. 1c) are relatively spatially103

uniform except for enhanced warming in the North Pacific and muted warming in the104
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North Atlantic warming hole and the Southern Ocean. Compared to the multi-model mean,105

observed SST trends (Fig. 1a) show much larger warming in the northwest Atlantic and106

southwest Pacific, cooling instead of warming in the Southern Ocean (Fig. 2c), and opposite107

trends in the zonal SST gradient in the tropical Pacific (Fig. 2a). Note that in this com-108

parison of modeled and observed SST trends over 1979–2020, we have rescaled SST trends109

in each model such that the global-mean SST trend matches that in ERSSTv5 over that110

period, effectively removing differences in global-mean warming rate and focusing instead111

of differences in the pattern of SST trends.112

The SLP trends over 1979–2020 in ERA5 reanalysis (Fig. 1b) and models (Fig. 1d)113

both show positive (anticyclonic) trends in the midlatitude oceans and negative (cyclonic)114

trends in the high latitudes, but the trends in the midlatitude oceans are much larger in115

observations than in models, and observations show a strengthening of the Walker circula-116

tion, as measured by the zonal SLP gradient across the equatorial Pacific, that is not seen117

in models (Fig. 2c). Global-mean SLP trends are retained in the analysis, because absolute118

surface pressure is one of many variables assimilated in ERA5. There is a global-mean SLP119

trend of 20.6 Pa (41 yr)−1 in ERA5, compared to -0.3 Pa (41 yr)−1 in the multi-model120

mean, potentially related to the lack of mass conservation in the reanalysis. Removing121

the global-mean SLP trend would serve to shift the observed trends towards more negative122

values, while preserving the range of values.123

To analyze how internal variability could have contributed to the differences in trends124

between observations and models, we calculate where the observations lie within the dis-125

tribution of trends simulated by the LEs (Fig. 1e,f). To do so, we divide the difference126

in trends (observations minus multi-model mean) by the multi-model ensemble standard127

deviation (i.e., the square root of the ensemble mean of the variance in trends within each128

LE). If the observations were consistent with the forced response and internal variability129

as represented in the models, and the distribution of anomalies due to internal variability130

is well-described by a Gaussian, then there would only be a ∼5% chance of observing a131

normalized difference more extreme than ±2 ensemble standard deviations. However, ob-132

served trends in many regions lie well in the tails of what is possible in models, including133

the strong observed warming in the Indian Ocean, West Pacific, South Pacific Convergence134

Zone (SPCZ), and Gulf Stream, the observed cooling in the Southern Ocean and south-135

east Pacific, and the observed increase in SLP in the eastern Pacific, the Caribbean, South136

America, and the Mongolian Plateau (note however that SLP over topography is sensitive137

to the surface air temperature used in the adjustment to mean sea level). Differences in138

trends (from the multi-model mean) this extreme are very unlikely (<5% probability) to139

occur within the models.140

The same basic patterns of trend differences (in ensemble standard deviations) can be141

found by comparing observations to each LE separately (Figs. S1 and S2, where CESM2142

and MPI-ESM show the smallest discrepancies from observations) or when using different143

observational products (Fig. S3). The pattern of SST trend differences can be found in144

both boreal winter and boreal summer (Fig. S4 and S5), though the SST trends in the145

South Pacific are more anomalous in austral winter. The pattern of SLP trend differences146

differs between boreal winter and boreal summer (Fig. S4 and S5), but both seasons show147

anomalous Walker circulation strengthening compared to the multi-model mean. Observed148

trends over a longer time period (1958-2021) are even more anomalous on average compared149

to the trends simulated by the LEs (Fig. S6), though the trends in the Southern Ocean SST150

and Walker circulation strength are more consistent with models over this time period.151

The unusual nature of the observed trends compared to what is possible in coupled152

climate models is also apparent in a number of key climate indices including the Pacific SST153

gradient (Fig. 2a), Walker circulation (Fig. 2d), and Southern Ocean SST (Fig. 2c). The154

relative rate of Indo-Pacific Warm Pool warming (per degree of tropical-mean SST change),155

which plays a key role in global radiative feedbacks (Dong et al., 2019), is particularly156

anomalous (Fig. 2b), with most models showing trends of near 1 ◦C (◦C)−1 (i.e., Warm Pool157
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Figure 2. Comparison of observed trends (1979–2020) in key SST and SLP indices with those

in all ensemble members from 16 LEs: (a) the Pacific SST gradient index used in Watanabe et al.

(2021), defined as the difference between the western equatorial Pacific (5◦S-5◦N, 110◦E-180◦) and

eastern equatorial Pacific (5◦S-5◦N, 180◦-80◦W); (b) the ratio of Indo-Pacific Warm Pool (30◦S-

30◦N, 50◦E-160◦W) SST warming to tropical-mean (30◦S-30◦N) SST warming; (c) Southern Ocean

SST (45◦S-75◦S); (d) Walker Circulation strength, defined as in Vecchi et al. (2006) as the difference

in SLP between the eastern equatorial Pacific (5◦S-5◦N, 160◦W-80◦W) and western equatorial

Pacific (5◦S-5◦N, 80◦E-160◦E); (e) and (f) the signal-to-noise maximizing pattern indices shown in

Fig. 3. Violin plots (Waskom, 2021) for each model can be compared with multiple observational

products, shown on the right-hand side. Ensemble average trends for each index and model are

shown with black circles. See Fig. S7 for a map of the averaging regions.

warming rate equal to the tropical average), whereas observations show trends of around 1.3158

◦C (◦C)−1, which are only reproduced in a few ensemble members of one model (CESM2).159
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Previous studies have also reported anomalous observed trends in related metrics such as the160

warming in tropical convective regions (Fueglistaler & Silvers, 2021) or the tropical inter-161

basin warming contrast (L. Zhang & Karnauskas, 2017). There are also large discrepancies162

between observed and modeled SST trends in the southwest Pacific (Fig. S8), a discrepancy163

which has not been previously identified. The observed trends in this region (which has been164

referred to as the Southern Blob) have been linked to Southern Hemisphere SLP trends and165

an ongoing drought in Chile (Garreaud et al., 2019, 2021).166

3 Isolating the observed pattern of change not reproduced in models167
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SST
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SST
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Figure 3. First and second multi-field (SST and SLP) signal-to-noise maximizing patterns,

from an analysis that maximizes the ratio of signal to noise in the leading patterns, where signal

is defined as the difference between observations and the multi-model mean on 5-year and longer

timescales and noise consists of inter-model differences, inter-ensemble-member differences, and

sub-5-year variability, with 20 EOFs included in the analysis (see Fig. S9 for the sensitivity to the

number of EOFs included). The orange (black) lines show the amplitude of anomalies in these

patterns in ERSSTv5/ERA5 (and other combinations of observational products) relative to the

multi-model mean. The grey lines show the amplitude of these patterns in each member of the

multi-model large ensemble. Normalization is such that the orange line has unit standard deviation

and the SST/SLP pattern shows the anomalies associated with a 1-standard-deviation anomaly in

the associated index.

To isolate the time varying SST and SLP anomalies contributing to the discrepancy168

between modeled and observed trends, we use a signal-to-noise maximizing pattern analysis169

(Déqué, 1988; T. Schneider & Griffies, 1999; Ting et al., 2009; Wills et al., 2020). Our goal is170

to identify the aspects of observed SST and SLP variability and trends over 1979-2020 that171

are not captured by any of the simulations in the multi-model large ensemble. In this way,172

we can highlight aspects of the observed trends that are least consistent with the variability173

and change simulated by models.174
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To do so we generate a difference ensemble, where each member is composed of the dif-175

ference between observations and an individual member of one of the LEs, with 10 ensemble176

members used from each model (160 members total). The ensemble mean of the difference177

ensemble is thus the difference between observations and the multi-model mean, and the178

ensemble variance arises from inter-model and inter-ensemble-member differences within the179

multi-model large ensemble. We then solve for patterns with the maximum signal-to-noise180

ratio (SNR), where signal is defined as the difference between observations and the multi-181

model mean on 5-year and longer timescales, and noise is defined as all other variance in the182

difference ensemble (i.e., due to inter-model differences, inter-ensemble-member differences,183

and sub-5-year variability). We use a 5-year Lanczos lowpass filter in defining the signal to184

focus on low-frequency differences between observations and models that could contribute185

to the multi-decadal trends. Unlike in the analysis for Fig. 1, we do not use an SST rescaling186

to account for differences in global-mean warming rate between models, because this would187

also modify the amplitude of internal variability. SST and SLP are normalized by their total188

variance such that they are weighted equally in the analysis.189

The leading SST/SLP pattern shows less warming than models in a triangular region190

in the eastern tropical and subtropical Pacific, the Pacific sector of the Southern Ocean,191

and the subpolar North Pacific; more warming than models in the Labrador and Irminger192

Seas and the southwest Pacific; strengthening of the Walker Circulation and weakening193

of the Aleutian Low compared to models; and anomalies associated with the Pacific-South194

American pattern (Fig. 3). The patterns of anomalies are similar to those in Fig. 1e,f but are195

expressed in absolute units instead of being normalized by the ensemble standard deviation196

of trends. They therefore show the actual magnitude of anomalies (compared to the multi-197

model mean) that occurred in the observational data. This SST/SLP pattern increased198

monotonically from 1979 through 2003, then has shown relatively little change since 2003199

(Fig. 3). Despite the lack of changes in this pattern since 2003, its trend over the full time-200

period is still highly anomalous compared to trends in this pattern in models (Fig. 2e), with201

none of the 598 ensemble members reproducing the observed trend in this pattern. Only202

one ensemble member of one model (GFDL-CM3) comes anywhere close to the observed203

trends, owing to the large amplitude of Southern Ocean multi-decadal variability in versions204

of the GFDL model (L. Zhang et al., 2017; Wills et al., 2021).205

The second pattern of SST anomalies is focused in the North Pacific and North Atlantic,206

potentially showing differences in the patterns of SST variability in these regions between207

observations and models (Fig. 3). There are also large SLP anomalies in the North Atlantic,208

indicating a long-term trend towards positive anomalies in the North Atlantic Oscillation209

(NAO) in observations compared to models, which is part of an anomalous trend in the210

NAO since the 1960s. Together, the SST and SLP anomaly patterns are consistent with211

the forcing of upper-ocean temperature anomalies by the atmosphere (Battisti et al., 2019).212

The time evolution of this SST/SLP pattern shows decadal variability, a trend over the full213

time-period that only a handful of ensemble members reproduce (Fig. 2f), and a particularly214

anomalous trend since 2005. This pattern thus shows how observed decadal variability differs215

from that in models, as well as including part of the observations-models difference in the216

monotonic trend over 1979-2020. Interestingly, the model that is closest to reproducing217

trends in pattern 1 (GFDL-CM3) is furthest from reproducing trends in pattern 2 and218

trends in the relative Warm Pool warming rate (Fig. 2).219

The signal-to-noise maximizing analysis used here is designed to identify patterns that220

are highly anomalous in observations compared to models, so a question naturally arises221

regarding the extent to which it is guaranteed to find something even if the models were222

capable of reproducing observations given enough realizations. To address this, we repeat223

this analysis on difference ensembles sampling inter-model differences and internal variabil-224

ity within the multi-model large ensemble (Supporting Information). We find that anomaly225

patterns with as high a SNR as that for pattern 1 in Fig. 3 commonly occur due to a com-226

bination of inter-model differences and internal variability within the LEs, but are unlikely227
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(<12.5% chance) to occur due to internal variability alone (Fig. S10). Even when patterns228

this anomalous do occur, they are different patterns than found for the difference between229

models and observations, and they rarely have such large trends over the full time period230

(<4% chance for internal variability alone).231

4 Summary and Discussion232

We have shown that observed SST and SLP trends over 1979–2020 are highly anomalous233

in several regions (Fig. 1) and indices (Fig. 2) compared to those simulated through a234

combination of forced response and internal variability within a multi-model large ensemble.235

Our results illustrate that there are systematic climate model biases in large-scale multi-236

decadal SST and SLP trends, despite the fact that climate models can reproduce observed237

SST trends over shorter time periods or when considering long-term trends in smaller-scale238

tropical climate indices with large amounts of internal variability (Coats and Karnauskas239

(2017); Chung et al. (2019); Olonscheck et al. (2020); Watanabe et al. (2021); Fig. 2a,d; see240

also Seager et al. (2019, 2022)). The anomalous trends can be encapsulated in large-scale241

SST and SLP patterns that are undoubtedly outside the range of what can be reproduced242

in climate models (Figs. 3, 2e, 2f). However, with only a single realization of the real243

climate system, it remains difficult to robustly identify the forced response in observations,244

meaning that these trend differences could result either from systematic model biases in the245

transient response to historical forcing (e.g., Seager et al. (2019)) or from model biases in246

the amplitude or pattern of multi-decadal variability (e.g., Laepple and Huybers (2014)).247

4.1 Possible Interpretations248

Many previous studies have invoked negative trends in the Pacific Decadal Oscillation249

(PDO) as an explanation for the anomalous pattern of trends in observations (e.g., Trenberth250

and Fasullo (2013); Chung et al. (2019)). However, with a return towards positive PDO251

conditions between 2013 and 2020, trends are no longer as anomalous in the North Pacific,252

while they remain anomalous in the South Pacific (Fig. 1e), suggesting that the PDO is not253

the primary driver of the trend discrepancy for the full 1979–2020 period.254

It has also been suggested that observed trends in the Southern Ocean could result from255

an anomalous phase of Southern Ocean multi-decadal variability (SOMV, e.g., L. Zhang et256

al. (2019)). This remains plausible, though its relevance for lower latitude SST trends257

depends on an active body of work to quantify the teleconnections from Southern Ocean258

SST changes (Hwang et al., 2017; Kang et al., 2019; X. Zhang et al., 2021; Dong et al.,259

2022). Furthermore, there are several mechanisms for how recent Southern Ocean cooling260

and sea ice expansion could result from anthropogenic forcing, including wind shifts due261

to a combination of greenhouse gas and ozone forcing (Thompson et al., 2011; Kostov et262

al., 2018) and increased surface stratification resulting from precipitation changes and/or263

ice-sheet melt (Bintanja et al., 2013; De Lavergne et al., 2014; Pauling et al., 2016; Purich264

et al., 2018), the latter of which is not included in CMIP models. Specifying observed265

winds or adding meltwater forcing to a climate model both shift the SST trend pattern266

closer to observations (Dong et al., 2022), but discrepancies in winds or meltwater forcing267

could result from a biased/missing forced response or from multi-decadal variability, so the268

ultimate cause of the observed Southern Ocean cooling trend remains an open question.269

The large difference in the relative Warm Pool warming rate between models and obser-270

vations (Fig. 2b) is particularly hard to explain with internal variability. CMIP models show271

little multi-decadal variability in Warm Pool SST, because the strong damping feedbacks272

in response to surface warming in this region precludes persistent SST anomalies without273

either large energy budget anomalies or compensating feedbacks in other regions (Wills et274

al., 2021). A bias in the transient response of the tropical Pacific to greenhouse gas forcing275

could result from an ocean dynamical thermostat mechanism (Clement et al., 1996) in the276

eastern equatorial Pacific that is too weak in models (Seager et al., 2019, 2022), model277
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biases in the response to geographic changes in aerosol optical depth over this time period278

(Smith et al., 2016; Deser, Phillips, et al., 2020; Heede & Fedorov, 2021; Shi et al., 2022),279

or remote influences of biases in the North Atlantic (McGregor et al., 2018) or Southern280

Ocean (as discussed in the previous paragraph). Another possibility is that multi-decadal281

variability of tropical and subtropical SSTs is much too weak in models, as suggested by282

a comparison to paleoclimate proxies (Laepple & Huybers, 2014). Further, we hypothesize283

that the damping feedbacks in response to Warm Pool warming could be too efficient in284

models (e.g., Keil et al. (2021)), which would reduce both the modeled warming rate and285

the modeled amplitude of multi-decadal variability in this region.286

Building on methods to isolate the forced response in observations (Wills et al., 2020),287

our analysis in Fig. 3 identifies the patterns that distinguish models and observations on long288

timescales, in an attempt to detect the difference in forced response between models and289

observations from amongst the noise of internal multi-decadal variability. There presum-290

ably remains an unquantifiable contribution of multi-decadal variability to these anomaly291

patterns. However, the large magnitude of multi-decadal trends in these patterns compared292

to what is found in models, together with the projection of pattern 1 onto the ratio of293

Indo-Pacific Warm Pool to tropical-mean warming, which shows little multi-decadal vari-294

ability in CMIP models, lead us to conclude that it is extremely unlikely that this pattern of295

trend discrepancies results entirely from internal variability. Our analysis provides a start-296

ing point for more detailed mechanistic analysis to understand where model biases in the297

forced response are contributing.298

4.2 Implications for Future Trends299

Regardless of whether the differences in observed and modeled trends results from300

internal variability or biases in the transient response to forcing, modeling and paleoclimate301

studies (Fedorov et al., 2015; Armour et al., 2016; Tierney et al., 2019; Heede & Fedorov,302

2021) suggest the East Pacific and Southern Oceans will eventually warm. Eventual warming303

in these regions favors more positive radiative feedbacks (Andrews et al., 2015; Dong et304

al., 2020), leading to an increase in effective climate sensitivity. That observations have305

shown much less warming in these regions than almost any model suggests that this so-306

called pattern effect on climate sensitivity could be even larger in the real world than in307

models, potentially leading to a shift towards much higher effective climate sensitivity at308

some unknown point in the future. Similarly, a future shift towards a more El-Niño-like309

warming pattern, with more warming in the eastern equatorial Pacific, would lead to major310

changes in the Walker circulation and shifts in the associated extratropical circulation and311

precipitation patterns. Without understanding why large-scale SST and SLP trends are so312

anomalous over the recent observational period or when and by how much delayed warming313

regions in the East Pacific and Southern Oceans will warm, we are left with a huge source314

of uncertainty in multi-decadal projections of regional and global climate.315

Data Availability Statement316

CMIP5 LE data were obtained from the U.S. CLIVAR Multi-Model Large Ensemble317

Archive, which can be downloaded following instructions at https://www.cesm.ucar.edu/318

projects/community-projects/MMLEA/. CMIP6 LE data were obtained from the CMIP6319

next-generation archive at ETH Zurich (Brunner et al., 2020). CESM2 LE data were320

obtained from the National Center for Atmospheric Research following instructions at321

https://www.cesm.ucar.edu/projects/community-projects/LENS2/data-sets.html.322

All observational data are publicly available. ERSSTv5 and COBE SST data were ob-323

tained from NOAA/OAR/ESRL PSL (https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html;324

https://psl.noaa.gov/data/gridded/data.cobe.html). ERA5 data were obtained from the325

Copernicus Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-326
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era5-single-levels-monthly-means). JRA55 data were obtained from the NCAR Research327

Data Archive (https://rda.ucar.edu/datasets/ds628.1/).328

The code used for the analysis in this paper is available at https://github.com/329

rcjwills/pattern-biases/ and will be transferred to Zenodo upon acceptance of the330

paper.331
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1. The probability of getting an anomalous pattern as large as observed within the

LEs

2. Figures S1 to S10

1 The probability of getting an anomalous pattern as large as observed
within the LEs

To quantify how likely it is to find a pattern of differences within the multi-model large

ensemble as large as that found between observations and the multi-model mean, we re-

peat the signal-to-noise maximizing analysis described in the main text for three types

of resampled difference ensembles constructed as follows:

• a random model simulation is taken as observations and compared to 10 members

each from the other 15 LEs (inter-model differences),

• a random model simulation is taken as observations and compared to the other

members of the same LE (intra-model differences),

• each member of the difference ensemble is composed of the difference between two

random simulations (random sampling), meaning that the ensemble mean of this

difference ensemble would be zero given sufficient ensemble size.

Corresponding author: Robert C. Jnglin Wills, rcwills@uw.edu
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We generate 80 of each of these types of resampled difference ensembles, perform the same

signal-to-noise maximizing pattern analysis on each resampled difference ensemble, and

compare the resulting signal fractions, signal-to-noise-ratios, and trend magnitudes with

those found when using the actual observations (Fig. S10). The signal-to-noise ratio (SNR)

is defined as in the main text as the ratio of signal variance to noise variance, where sig-

nal is defined as the difference between observations and the multi-model mean on 5-year

and longer timescales, and noise is defined as all other variance in the difference ensem-

ble. The signal fraction s is related to the SNR by SNR = s/(1 − s).

The results of this analysis (Fig. S10) show that the differences in low-frequency

variability and change between observations and models encapsulated in pattern 1 (Fig.

3) are comparable in magnitude to patterns that could arise from a combination of inter-

model differences and internal variability (i.e., comparing to the inter-model difference

ensembles), but are larger than are likely to occur due to internal variability alone (i.e.,

signal fractions as high as found in observations occur in only 12.5% of the intra-model

difference ensembles). This analysis shows that the magnitude of observations-model dif-

ferences is slightly larger than the average inter-model differences, larger than typically

occurs due to sampling of internal variability within a single LE, and much larger than

could occur due to random sampling. Furthermore, the magnitude of trends found in pat-

terns 1 and 2 are are at the upper end of those found in signal-to-noise maximizing pat-

tern analysis of the resampled difference ensembles, showing that the model bias in multi-

decadal trends compared to observations is about as large as can can be found by sub-

sampling inter-model differences and internal variability in the multi-model large ensem-

ble (Fig. S10c, d). As in Fig. 3, trends in Fig. S10c and d are shown for an index that

is normalized to have unit standard deviation in the ensemble mean of the difference en-

semble.

–2–



Geophysical Research Letters

ACCESS-ESM1-5

CESM1

CSIRO-Mk3-6

GFDL-ESM2M

MIROC6

CanESM2

CESM2

EC-Earth3

GISS-E2-1-G

MPI-ESM

CanESM5

CNRM-CM6-1

GFDL-CM3

IPSL-CM6A-LR

NorCPM1

ACCESS-ESM1-5

-6 -4 -2 0 2 4 6

N = 13 RMSE = 1.84 

Figure S1. Same as Fig. 1e, but computed separately for each model. Unlike in Fig. 1, all

ensemble members are used, and the number of ensemble members included is displayed in the

upper left of each panel.

–3–



Geophysical Research Letters

ACCESS-ESM1-5

CESM1

CSIRO-Mk3-6

GFDL-ESM2M

MIROC6

CanESM2

CESM2

EC-Earth3

GISS-E2-1-G

MPI-ESM

CanESM5

CNRM-CM6-1

GFDL-CM3

IPSL-CM6A-LR

NorCPM1

ACCESS-ESM1-5

-6 -4 -2 0 2 4 6

N = 13 RMSE = 1.84 

Figure S2. Same as Fig. 1f, but computed separately for each model. Unlike in Fig. 1, all

ensemble members are used, and the number of ensemble members included is displayed in the

upper left of each panel.
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Figure S3. (a, b) Same as Fig. 1a and e, except for AMIPII instead of ERSSTv5. (c, d)

Same as Fig. 1a and e, except for COBE instead of ERSSTv5. (e, f) Same as Fig. 1b and f,

except for JRA55 instead of ERA5.
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Figure S4. Same as Fig. 1, but for December-January-February (DJF) instead of annual

mean.
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Multi-Model-Mean JJA SLP Trend (1979-2020)
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Figure S5. Same as Fig. 1, but for June-July-August (JJA) instead of annual mean.
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Figure S6. Same as Fig. 1, but for longer-term trends (1958-2021) and using JRA-55 for SLP

instead of ERA5.

a bSST Averaging Regions SLP Averaging Regions

Figure S7. Same as Fig. 1e and f, but with the addition of the averaging regions used in Figs.

2 and S8. Dashed lines show the latitudes of 30◦N, 30◦S, 45◦S, and 75◦S.
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Figure S8. Comparison of observed trends (1979–2020) in key SST indices with those in

all ensemble members from 16 LEs: SST in the (a) Warm Pool (30◦S-30◦N, 50◦E-160◦W); (b)

southwest Pacific (30◦S-40◦S, 170◦W-150◦W); and (c) southeast Pacific (47◦S-62◦S, 140◦W-

70◦W). The southwest and southeast Pacific are regions of highly anomalous observed trends

(Fig. 1) . Violin plots (Waskom 2021) for each model can be compared with multiple observa-

tional products, shown on the right-hand side. Ensemble average trends for each index and model

are shown with black circles.
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Figure S9. Robustness of the analysis shown in Fig. 3 to the number of EOFs included. For

each choice of the number of EOFs (NEOFs), the pattern correlation with the patterns in Fig. 3

are shown for the pattern with the maximum pattern correlation. Only the absolute value of the

pattern correlation is considered.
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Figure S10. Eigenvalue spectrum of the signal-to-noise maximizing pattern analysis shown in

Fig. 3, shown both in terms of (a) signal fraction s and (b) signal-to-noise ratio SNR = s/(1 − s)

(black circles). Values that have a 5% chance of occurring due to random sampling of differences

within the multi-model ensemble are shown with a black dashed line. The range of pattern-1

values that could occur due to inter-model differences are shown with a purple violin plot. The

range of pattern-1 values that could occur due to internal variability within individual LEs are

shown with a cyan violin plot. (c) The range of trend magnitudes (per 41 yr) in signal-to-noise

maximizing patterns 1 and 2 in difference ensembles sampling inter-model and intra-model dif-

ferences, compared to the trends in patterns 1 and 2 for the analysis of observations compared

to models shown in Fig. 3 (black circle). (d) The amplitude of trends in patterns 1 and 2 (i.e.,

the radial distance in panel (c)) in observations (black circle) and the range of amplitudes that

could occur due to internal variability and inter-model differences (cyan and purple violin plots,

respectively). Resampling procedures are described in the text of the Supporting Information.
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