Trophic interactions decouple soil carbon temperature response from that of microbial decomposers

Sulman Benjamin1 and Gibert Jean P2

1Oak Ridge National Laboratory
2Duke University

November 16, 2022

Abstract

Soil organic carbon (SOC) stocks represent a large component of the global carbon cycle that is sensitive to warming. Modeling and empirical studies often assume that temperature responses of microbial physiological functions and extracellular enzymatic reactions are predictive of ecosystem-scale SOC decomposition responses to warming. However, temperature-dependent soil trophic interactions such as predation of microbial decomposers by other organisms have not yet been incorporated into quantitative SOC models. Here, we incorporated a microbial predator into a tri-trophic population ecology model and a global-scale predictive SOC model to determine how predation would affect soil community population dynamics and temperature sensitivity of SOC stocks. Predators increased SOC stocks and their dependence on substrate input rates. Top-down controls of predators on microbial biomass caused SOC warming responses to diverge from microbial temperature responses, with warming-induced SOC losses reduced or reversed when predators were more temperature-sensitive. Our results suggest that higher trophic levels can reduce the sensitivity of SOC to warming, and that differences in temperature sensitivity across trophic levels may be a key determinant of SOC warming responses.
Trophic interactions decouple soil carbon temperature response from that of microbial decomposers

Benjamin N. Sulman¹ and Jean P. Gibert²

1. Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA, sulmanbn@ornl.gov
2. Department of Biology, Duke University, Durham, NC, USA, jeangibert@duke.edu

Corresponding author:
Benjamin N. Sulman
Mail: P.O. Box 2008, MS6301, Oak Ridge, TN 37831, USA
Phone: (865) 576-0766
Fax: (865) 241-4088
Email: sulmanbn@ornl.gov

Statement of authorship: Both authors conceived the study, designed and conducted the mathematical modeling, analyzed and interpreted the results, and wrote the paper.

Data accessibility: All model code, driver data, and output are available at https://github.com/JPGibert/Microbial_munchers

Keywords: Soil, carbon, climate change, warming, food webs, modeling, trophic interactions

Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Abstract

Soil organic carbon (SOC) stocks represent a large component of the global carbon cycle that is sensitive to warming. Modeling and empirical studies often assume that temperature responses of microbial physiological functions and extracellular enzymatic reactions are predictive of ecosystem-scale SOC decomposition responses to warming. However, temperature-dependent soil trophic interactions such as predation of microbial decomposers by other organisms have not yet been incorporated into quantitative SOC models. Here, we incorporated a microbial predator into a tri-trophic population ecology model and a global-scale predictive SOC model to determine how predation would affect soil community population dynamics and temperature sensitivity of SOC stocks. Predators increased SOC stocks and their dependence on substrate input rates. Top-down controls of predators on microbial biomass caused SOC warming responses to diverge from microbial temperature responses, with warming-induced SOC losses reduced or reversed when predators were more temperature-sensitive. Our results suggest that higher trophic levels can reduce the sensitivity of SOC to warming, and that differences in temperature sensitivity across trophic levels may be a key determinant of SOC warming responses.
Introduction

Understanding how rapid global climate change may impact the structure and dynamics of food webs and associated ecosystem-level processes and services is a pressing but challenging issue in ecology. An important but often overlooked component of ecological dynamics lies beneath the ground in the form of soil food webs. Soils represent the largest cycling terrestrial carbon (C) pool on earth [1].

While soil organic carbon (SOC) stocks are thought to be vulnerable to warming [2], projected responses of SOC stocks to climate change are highly uncertain [3,4] and measured responses of SOC to warming have been inconclusive [5,6]. Recent work explicitly incorporating biological processes into SOC models [7] highlights important mechanisms and related uncertainties in SOC cycling, including differences in microbial carbon use efficiency (CUE) and its temperature sensitivity [8,9], rhizosphere priming effects [10], microbial dormancy [11,12], and density-dependent microbial biomass turnover [13]. Microbial processes are thus increasingly recognized as a major determinant of SOC stocks and are now being incorporated into global-scale studies of climate change impacts on soil C stocks [3,10,14,15], facilitating the incorporation of these processes into earth system model (ESM) projections of terrestrial C cycle responses to global climate change.

SOC models using explicit microbial processes have also produced seemingly unrealistic results like oscillations in SOC stocks and insensitivity to carbon input rates [16]. While model structures can mitigate these issues [10,13,17], variations in assumptions and parameterizations can drive wide differences in projected responses to ecosystem perturbations [6]. At the same time, measurements of microbial physiological and phylogenetic traits can be used to directly constrain model parameters [8,18,19]. Recent reviews have suggested that incorporating metagenomics information into microbial-explicit soil decomposition model parameterizations could improve model projections of SOC responses to changing environmental conditions [20–22]. To date, however, microbial-explicit SOC models have focused on the role of a single category of living organisms in the soil: microbial decomposers [7]. Such models, along with laboratory and field measurements of microbial physiological traits, however, may not completely reflect ecosystem dynamics if they ignore interactions with other components of the soil food web.

The role of trophic interactions

While microbial-explicit SOC models have yielded important insights about decomposition processes, other important mechanisms, such as trophic interactions between microbes and other organisms in the soil food web, have so far been excluded [23–27]. Food web structure can drive ecosystems dynamics in both terrestrial and aquatic systems [28]. Moreover, trophic interactions are temperature-dependent through physiological responses [29–31], changes in animal movement [32], and other trait responses to temperature [33–35]. For example, predation pressure on eel sea grass beds varies with temperature along latitudinal gradients [36], climate influences predator-prey ratios in bromeliad communities [37] and warming increases the strength of plant-herbivore interactions [38]. Trophic interactions can also alter SOC decomposition: the presence of microbe-eating isopods changes SOC responses to global change [39], grazing on microbes by organisms at higher trophic levels impacts microbial growth patterns [40], litter decomposition and C utilization vary with soil faunal community complexity [41], and interactions between predatory spiders and fungivorous Collembola change with warming to reduce litter decomposition [42]. Together, these results suggest important but largely overlooked interactions between warming, trophic interactions and SOC responses. Food web structure
and dynamics are susceptible to changes in temperature [43–45], but understanding of how food webs mediate the effects of temperature on decomposition, and the integration of these principles into SOC models, have so far been limited [23,46].

Integrating trophic interactions into SOC models is challenging due to the complexity of soil food webs and the difficulty of obtaining measurements that can constrain model parameters [47]. However, recent studies using microbial-explicit SOC models have demonstrated that biological interactions can be integrated into tractable models and can drive important differences in projected outcomes compared to models that treat biological processes implicitly [7,23,46]. To address these issues, and as a first step toward integrating food web interactions into quantitative SOC models, we developed two models of soil trophic interactions including SOC, microbial decomposers, and predators that feed on microbes. First, we modified a population ecology predator-prey model to demonstrate conceptually how soil microbe predators may determine SOC responses to temperature. Second, we modified a state-of-the-art, quantitative SOC cycling model – the Carbon Organisms Rhizosphere and Protection in the Soil Environment (CORPSE) model [10] – to show how incorporating microbe predators into simulated soil food webs impacts SOC projections under warming across gradients of climate and ecosystem productivity at a global scale. Given the premise that loss of SOC in response to warming is accelerated by microbial growth and SOC assimilation, we test the hypothesis that the presence of a higher trophic level that consumes microbial decomposers weakens the connection between the temperature sensitivity of microbial substrate consumption and the temperature sensitivity of SOC stocks. In addition, we evaluate the importance of local adaptation and differences in temperature sensitivity across trophic-levels in determining latitudinal patterns of these trophic interactions and their effects on SOC stocks.

Methods:

Trophic-chain food web models
The simplest approach to modeling SOC decomposition only considers carbon stock (C) naturally decaying over time at a temperature-dependent first-order rate k (Fig 1A) while being replenished at a constant rate I (Supplementary Information, eq S1). While global land surface models such as those used in the Climate Model Intercomparison Project Phase 5 (CMIP5) comparison predominantly use multiple-pool versions of this approach [48], studies [7] have suggested that model fidelity can be improved by explicitly simulating microbial biomass as the driver of decomposition (Fig 1B). We model the microbial effect on carbon as a classic type-II functional response, where the SOC decomposition rate depends on microbial biomass and carbon stocks (M and C, respectively), as well as on two parameters controlling the feeding process, the microbial attack rate (α) and handling time η [49,50]. Conversion of carbon into microbial biomass is determined by a conversion efficiency parameter (ε), and microbes die naturally at a per-capita rate dM (SI, eqs S2 and S3). Microbial attack rates are temperature-dependent, following an Arrhenius function of the form:

\[\alpha(T) = V e^{-\frac{E_a}{k_b T} \left(\frac{1}{T} - \frac{1}{T_0} \right)} , \]

where V is a pre-exponential rate constant (units of inverse time), k_b is the Boltzmann constant (8.62x10^(-5) electron-volts per degree Kelvin, eV K^{-1}), T is the temperature at which the process occurs (in K), T_0 is a
reference temperature (K), and E_A is the activation energy of the process (in eV), which is a measure of its temperature dependence [30,32,51].

To incorporate the effects of a microbial predator, we added a third trophic level, P, that preys on the microbial biomass, M, also following a type II functional response with an attack rate following the same temperature response as that of microbial biomass (Eq. 1). This microbe-predator model (Fig 1C) makes similar assumptions as the microbial model, and can thus be written as:

$$\frac{dC}{dt} = I - \frac{\alpha_1(T)CM}{1+\alpha_1(T)\eta_1C}$$

$$\frac{dM}{dt} = e_1 \frac{\alpha_1(T)CM}{1+\alpha_1(T)\eta_1C} - \frac{\alpha_2(T)MP}{1+\alpha_2(T)\eta_2M}$$

$$\frac{dP}{dt} = e_2 \frac{\alpha_2(T)MP}{1+\alpha_2(T)\eta_2M} - d_P P$$

For both microbe and microbe-predator models, steady-state solutions were found analytically. We determined solutions across a range of substrate inputs and temperatures and further analyzed model behavior using Wolfram Mathematica 11 (code available at https://github.com/JPGibert/Microbial_munchers). Parameter values used in our analyses are shown in Table S1 and were chosen so that equilibrium biomass in all non-warmed scenarios showed a regular biomass pyramid ($C>M>P$).

Quantitative SOC models

While the modeling approach described above illustrates the dynamical effects of an additional trophic level on microbe populations and SOC concentrations (Fig 1A), it was not designed to quantitatively reproduce observed SOC stocks or organismal biomass in soils, or to represent key mechanisms in soil biogeochemical cycling such as stabilization of SOC through physico-chemical interactions with minerals [52]. To incorporate the trophic interactions identified in the food web models into a quantitative SOC framework, we implemented a predator trophic level in the Carbon Organisms Rhizosphere and Protection in the Soil Environment (CORPSE) model, which includes SOC and microbial decomposer pools and has been previously applied and validated against measurements at both ecosystem and global scales [3,10,53]. Here, we refer to the modified model as CORPSE-Pred. CORPSE-Pred differs from the food web model in key aspects. First, CORPSE-Pred divides substrate C into multiple types representing simple, complex, and microbial-biomass-derived compounds. Second, microbial and predator populations in CORPSE-Pred are constrained not to decline below a minimum value, preventing their complete eradication. Third, decomposition and predation kinetics in CORPSE-Pred are calculated using the ratio of microbe to SOC carbon, or the ratio of predator to microbe carbon, rather than the absolute stocks or concentrations of those factors (an equivalent formulation in the predator-prey models would be to include ratio-dependent foraging rates or interference competition). Under these assumptions, changes in carbon stocks, C, over time can be calculated as:

$$\frac{dC_i}{dt} = I_i - V_i e^{-\frac{E_{al}}{k_b} \left(1 - \frac{1}{r_0}\right)} \times \theta^a (1 - \theta)^b k_\theta \times C_i \frac{M}{M + k_M C}.$$
where C_i is substrate carbon of type i (representing chemical classes with different decomposition rates and microbial CUEs), I_i is input rate of each substrate type, θ is volumetric soil water content as a fraction of saturation, a and b control moisture sensitivity of decomposition, k_a is a normalization constant for moisture sensitivity, M is microbial biomass, and k_M controls the relationship between microbial biomass and decomposition rate. The temperature dependence of the interaction between C and the microbes was modeled using Eq. 1 but with substrate-specific parameters, where V_i is the maximum microbial decomposition rate of substrate type i, and Ea_i is the activation energy for decomposition of each substrate type. Inputs (I) include a fraction (60%) of microbial and predator death (excluding microbial biomass loss from predation). The rate of change of the microbial biomass, M, can be modeled by:

$$\frac{dM}{dt} = \sum_i ([I_i e^{-\frac{Ea_i}{k_b \theta + \frac{1}{T_0}}} \times \theta^a (1 - \theta)^b k_a \times C_i \frac{M}{M + k_M C_i}] \times \epsilon_i) - (M - M_{\min} \sum_i C_i) \cdot d_M - V_p e^{-\frac{Ea_p}{k_b \theta + \frac{1}{T_0}}} \cdot M \cdot \frac{P}{p + k_p M}. \quad (6)$$

where ϵ_i is microbial carbon use efficiency associated with each substrate type, $B_{M,\min}$ is the minimum microbial biomass (expressed as a fraction of total substrate C), d_M is the background death rate for microbial biomass, V_p is maximum predation rate, Ea_p is the activation energy parameter for predation, and k_p is a parameter controlling the relationship between predation and predator biomass. Finally, the rate of change of predator biomass can be modeled as:

$$\frac{dP}{dt} = \epsilon_p [V_p e^{-\frac{Ea_p}{k_b \theta + \frac{1}{T_0}}} \times \frac{P}{p + k_p M}] - (P - P_{\min} M) \cdot d_P, \quad (7)$$

where ϵ_p is carbon use efficiency of predators, P_{\min} is minimum predator biomass, and d_P is death rate of predators. CORPSE-Pred also includes protected SOC stocks that are inaccessible to decomposition. We do not show the equations for protected SOC here for brevity (see SI for full model equations including those related to protected SOC).

We drove global SOC simulations using 10 years of monthly-average net primary production (NPP), soil temperature, and soil moisture from previous global simulations using the Geophysical Fluid Dynamics Laboratory (GFDL) global land model LM3 [54,55]. NPP was assumed to be equivalent to total carbon inputs to soil (thereby assuming plant biomass was at approximate steady state).

Meteorological forcing for the LM3 simulations used a gridded historical climate dataset over years 1958-1967 [56], which were repeated to drive simulations of any length. We numerically integrated the CORPSE-Pred model for 750 years to equilibrate all pools, then conducted control simulations and warming simulations with temperatures increased by 2 °C.

We conducted CORPSE-Pred simulations using two alternative assumptions concerning local temperature adaptation of predator physiology. With local adaptation, T_0 for predators was set to the control simulation mean annual temperature of each grid cell. With globally constant base temperature, T_0 for predators in each grid cell was equal to the mean global temperature (13 °C).

CORPSE-Pred simulations used parameter values from previous CORPSE simulations [10,57] where possible. Values of new parameters associated with predation-related processes were chosen to reproduce the same approximate global patterns under steady-state conditions but could not be further constrained due to the paucity of measurements directly comparable to model trophic levels. Parameters and values are shown in Table S2. Simulations were conducted at a five-day time step using an implementation of the model in python. Scripts, model code, forcing data, and model output are available at the aforementioned github repository.
Characterization of SOC temperature responses

To compare the temperature response of SOC stocks with the temperature dependence of microbe and predator growth rates, we used changes in SOC stocks under warming to calculate an equivalent SOC temperature sensitivity \((CE_a)\) in the same units as the temperature-dependence parameters in our models \((E_a)\), following an approach previously used to estimate equivalent \(Q_{10}\) values [58]. SOC temperature dependence can be approximated as:

\[
SOC_T = SOC_{T_0}e^{-\frac{CE_a}{k_B}(\frac{1}{T} - \frac{1}{T_0})},
\]

where \(SOC_T\) and \(SOC_{T_0}\) are carbon stocks at temperatures \(T\) and \(T_0\) respectively. This relationship can be solved for \(CE_a\):

\[
CE_a = k_B \ln \left(\frac{SOC_T}{SOC_{T_0}} \right) \left(\frac{1}{T} - \frac{1}{T_0} \right).
\]

\(CE_a\) represents the temperature sensitivity that would result in a given ratio of SOC stocks at steady state under two different temperatures. Assuming SOC stocks have approached a steady state following any temperature perturbation, \(CE_a\) values can be compared across simulations with different assumptions to quantify differences in SOC temperature responses.

Results:

Trophic-chain food web models

The population-based microbial model illustrated the fundamental impact of a third trophic level on SOC dynamics. A two-level model, including only substrate and microbial decomposers, reproduced dynamics shown in previous microbial decomposition models [16]: steady-state SOC was independent of substrate input rates \((I)\) while microbial biomass increased with \(I\) (Figure 2a). Warming reduced SOC concentration but did not affect microbial biomass. Adding a third trophic level fundamentally changed SOC dynamics (Figure 2b). With predators, SOC increased at an accelerating rate with greater \(I\) while microbial biomass was constant with respect to \(I\). Predator biomass did not persist below a minimal \(I\). Warming decreased SOC stocks while increasing microbial and predator biomasses.

SOC warming sensitivity varied with the relative temperature-dependence of microbes and their predators \((E_a, \text{Figure 2c})\). When microbes were more temperature-sensitive than their predators, warming depleted SOC. Above a critical predator \(E_a\), reduction of microbial biomass due to increased predation drove accumulation rather than loss of SOC under warming. The strength of this effect depended on substrate input rate, such that an increase in substrate inputs led to a larger effect of differences in temperature dependence across trophic levels (SI Fig S1).

When the two models (with and without predation) were directly compared, the temperature sensitivity of SOC stocks in the presence of predators \((CE_a)\) decreased compared to that of a model without predators, suggesting a weaker temperature dependence of SOC stocks in the presence of predators (Fig 2d). The difference in SOC temperature sensitivities between the two and three-level models was itself temperature dependent and increased with warming. The magnitude of the reduction in SOC temperature sensitivity...
due to predators was determined by the relative temperature sensitivity of microbes and predators:

increasing predator Ea reduced the temperature sensitivity of SOC when predators were present (Fig 2d).

Quantitative global SOC model

We used global simulations with the CORPSE-Pred model to investigate how predator activity would alter SOC responses to warming across gradients of climate and ecosystem productivity. CORPSE-Pred reproduces the key aspects of top-down control of microbial populations via predation predicted in the population-based approach (Fig. S2) as well as the effects of variable temperature sensitivities across trophic levels (Fig. S3) suggesting a fundamental level of agreement between both modeling approaches despite differences in model structure and assumptions. However, the structure of CORPSE-Pred facilitated simulations across large gradients of mean annual temperature and C inputs, allowing the investigation of microbe-predator interactions on SOC stocks across climate gradients, and facilitating comparison of alternative assumptions regarding local adaptation of predator populations.

Predator effects across latitudes

Variation in predator biomass across latitudes depended on alternative assumptions of local adaptation. With locally-adapted predator T_0, predator populations were significant across tropical, temperate, and boreal climate zones (Figure 3a). These larger populations led to significant top-down control on microbial populations, reducing microbial biomass by 10-20% in the tropics and by over 50% in higher latitudes (Figure 3b) relative to simulations without predators. By contrast, a globally constant T_0 led to higher predator populations in the tropics and lower populations in high latitudes (Figure 3c). Under this assumption, top-down control on microbial biomass was enhanced in the tropics and much weaker in high latitudes (Figure 3d).

With no predators, SOC temperature sensitivity (CE_a) varied moderately across latitude, with higher values (around 0.6 eV) in high latitudes and lower values (around 0.3 eV) in the tropics (Figure 4a). This variation was most likely due to the effect of protected C stocks that were not directly responsive to warming but still exchanged C with unprotected SOC pools. Predators lowered CE_a globally, indicating weaker temperature responses due to top-down control on microbial biomass. In the tropics, CE_a was reduced to about 0.2 eV with both locally-adapted and global constant predator T_0. With globally constant predator T_0, CE_a was reduced by about the same amount in high latitudes (Fig. 4c). However, with locally adapted predator T_0, CE_a in high latitudes was more strongly reduced, reaching negative values across northern areas that indicated a reversed temperature dependence with SOC stocks increasing under warming (Fig. 4b). Negative CE_a values occurred in desert regions with globally constant T_0, but SOC stocks were low in those regions under all conditions.
Discussion

Implications for SOC stocks and warming responses

Both the population-based and the quantitative modeling approaches suggested that higher trophic levels and their temperature dependence can strongly affect SOC stocks and their warming responses. Introducing a third trophic level in food web models also caused SOC to become dependent on the rate of substrate inputs, thus resolving a known flaw of some microbial-explicit SOC model formulations [16,17]. Our results thus suggest that top-down control of microbial biomass by predators can address this structural issue with a mechanistic justification.

In both population-based and quantitative models, microbial predators increased equilibrium SOC stocks by reducing the abundance of decomposers. Models that lack explicit representation of top-down controls may incorporate their effects implicitly into other parameter values such as microbial biomass turnover rates or SOC pool decomposition rate constants. However, explicitly representing top-down control on microbial biomass facilitates examination of key parameter values across climates and ecosystems, allows for better mechanistic understanding of underlying processes, and draws a clearer link between model parameters and empirical estimates of biological processes. Our results further suggest that laboratory measurements of microbial biomass turnover rates in the absence of predators could underestimate microbial mortality relative to field conditions. Furthermore, the divergence of SOC temperature response (CE_o) from microbial temperature response as a function of predator traits in our results suggests that temperature response measurements of microbial physiology and enzymatic reaction rates may not be directly applicable to SOC decomposition rates.

Our results further suggest that not only the structure of the food web, but differences in the temperature dependence of species across trophic levels can determine the integrated response of the soil system to changes in temperature. As predators became more sensitive to temperature, SOC losses under warming weakened. Under some circumstances an increase in top-down control under warming could overwhelm increases in microbial substrate consumption rates and increase SOC stocks with warming. In a recent meta-analysis [6], 47% of soil warming manipulations observed increases in SOC rather than losses. Previous explanations for these unexpected results have included changes in soil moisture [59], increases in plant C inputs [60], and shifts in microbial physiology [8,61]. Our results suggest that increasing SOC under warming could also be explained by enhanced top-down control by microbial predators that increase their activity under warmer temperatures. Alternately, predators with low or negative thermal sensitivities could accelerate SOC losses under warming due to weakening of top-down control on microbial biomass. Our results also corroborate recent empirical studies indicating that temperature dependence of upper trophic levels could cascade down the soil food web, ultimately affecting soil respiration [39,42,62]. These results highlight the need to hone our understanding of how species respond to warming across soil trophic levels, instead of focusing only on the microbial decomposer component.

A significant challenge for this model structure is parameterization of processes related to trophic interactions [47]. Many important parameters in the models were poorly constrained in these simulations, including predator growth rates and CUE. Even parameters for which there is strong empirical evidence, such as thermal sensitivities, can vary substantially across organisms [63]. The high sensitivity of SOC temperature responses to the presence and traits of predators suggests that developing observational constraints for these parameters should be a priority in soil organic matter research. This said, note that
while our two modeling approaches share some core structural assumptions (two or three trophic levels, density-independent substrate inputs), they also incorporate substantially different assumptions (e.g., ratio-dependent predation vs ratio-independent predation, existence of multiple C types vs only one type of C) and have different parameterizations. Given these important differences, the level of congruence between the results of the two modeling approaches suggests that these qualitative results may apply broadly.

Global patterns of soil food web structure

Our results suggest that differential thermal sensitivities could drive differences in soil food web structure at different latitudes, depending on whether predator temperature traits are adapted to local climate. Top-down control on microbial populations was strongest in the tropics under globally-constant predator traits, while local temperature adaptation strengthened top-down control in colder regions. When predators were not adapted to local conditions, cold temperatures at high latitudes prevented predators from adopting a significant role. These results suggest that soil food web and decomposition responses to warming may be highly dependent on a combination of climate and local adaptation [64]. Because predator sensitivity to temperature mediates the response of the system to warming, food webs in different latitudes with different fauna or trophic structures are likely to have different warming responses.

Understanding differences in temperature sensitivity across trophic levels is thus crucial for projecting SOC responses to warming, given that temperature sensitivities are known to vary broadly across taxa, trophic levels, and habitats [63] and to differ among predators and their prey [63,65]. Temperature sensitivities are strongly correlated with body size [43], which could lead to different community responses depending on the size structure of trophic levels. For example, the predator trophic level in our model formulations could represent organisms like nematodes and amoebae, which, being larger than their bacterial and fungal prey, could suffer greater metabolic penalties from warming and thus realize lower biomass gains even with increasing consumption rates [43,66]. Alternately, top-down control could be exercised by viruses or phages, which are physically smaller and biochemically simpler than bacteria and fungi and, thus, might have very different thermal responses than larger organisms. A more sophisticated version of our modeling approach could include multiple organismal types at each trophic level, including decomposers with different traits (e.g., bacteria and fungi) and different types of predators with different traits and temperature sensitivities (e.g., phages, amoebae, nematodes, and microarthropods). Such a model might be more directly comparable with observations of soil biological communities but would introduce more difficult-to-constrain parameters.

Conclusions

Using two complementary modeling approaches, we show that the presence of a microbial predator decouples SOC temperature response from that of microbial decomposers by exerting top-down control on the latter. Our results suggest that SOC stocks are sensitive to food web structure, particularly the presence or absence of microbial predators, and that temperature sensitivity of decomposition is likely to be reduced by the presence of higher trophic levels. This effect ultimately depends on the relative temperature dependence of the microbial communities and their predators, which can lead to different responses across latitudes. This implies that measurements of temperature sensitivities should be understood in the context of broader trophic interactions before they can be directly applied to soil C decomposition and soil respiration parameters. Variations in temperature sensitivity across trophic levels...
in soil food webs are therefore an important and underappreciated uncertainty in our predictive understanding of SOC dynamics and global change responses across climate zones and latitudes.

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research as well as support from Duke University through startup funds. BNS thanks Asmeret Asefaw Berhe and the University of California, Merced for their support. We thank Aimée Classen and Debjani Sihi for helpful comments on the manuscript.

References

35. Oezgul A, Childs DZ, Oli MK, Armitage KB, Blumstein DT, Olson LE, Tuljapurkar S, Coulson T. 2010 Coupled dynamics of body mass and population growth in response to environmental
change. Nature (doi:10.1038/nature09210)

Figure 1: Diagram of three approaches to SOC modeling. A first-order model has only one trophic level (SOC). A microbial model adds a second trophic level, and a microbe-predator model includes a third trophic level. Transfers from one level to the next are mediated by temperature and population of adjacent trophic levels.
Figure 2: Equilibrium densities of substrate (C), microbes (M), and predators (P) of population-based microbial (a) and microbe-predator (b) models over a range of substrate input rates and two temperatures. Dashed lines show simulations at 20 °C and solid lines show simulations at 25 °C. (c) Effect of relative microbial and predator temperature sensitivities on equilibrium SOC response to warming (relative to 20 °C). ΔEa is the difference between microbial and predator Ea parameters in electron-volts. (d) Difference in the temperature sensitivity of SOC between a three-level model (with predators) and a two-level model (without predators) at different levels of warming (as ΔT over ambient), for differences in temperature sensitivities between predators and microbes (blue-color coded).
Figure 3: Predator biomass distribution and impacts on microbial biomass at steady state. Panels a and b show simulations with locally-adapted predator T_0, and panels c and d show simulations with constant global T_0. Panels a and c show total simulated predator biomass carbon, and panels b and d show the percent difference in microbial biomass expressed as a fraction of total SOC compared to control simulations.
Figure 4: CE_a of unprotected SOC stocks under alternative assumptions of predator traits. (a): CORPSE model without predators. (b): Predators with T_0 equal to mean annual temperature in each grid cell, representing local adaptation. (c): Predators with a single global T_0 equal to global mean temperature.
First order and Microbial models

The simplest approach to modeling SOC decomposition only considers carbon stock (C) naturally decaying over time at a temperature-dependent first-order rate k (Fig 1A) while being replenished at a constant rate I:

$$\frac{dc}{dt} = I - k(T)C$$ (S1)

Here, we model the microbial effect on carbon as a classic type-II predator functional response, where the SOC decomposition rate depends on microbial biomass and carbon stocks (M and C, respectively), as well as on two parameters controlling the feeding process, the microbial attack rate (α) and handling time η [1,2]. We further assume that the conversion of carbon into microbial biomass is determined by a conversion efficiency parameter (ϵ), that carbon stocks are replenished at a constant rate I, determined by substrate input levels, and that microbes die naturally at a per-capita rate d_M. For simplicity, we assume that microbial deaths do not feed back into the SOC pool, but such a scenario can be taken into account by slightly altering substrate input levels. Together, the model calculates the rates of change of C stocks and M biomass over time through the following system of differential equations:

$$\frac{dc}{dt} = I - \frac{\alpha(T)CM}{1+\alpha(T)\eta C}$$ (S2)

$$\frac{dM}{dt} = \epsilon \frac{\alpha(T)CM}{1+\alpha(T)\eta C} - d_M M$$ (S3)

We further modified this model by assuming, for simplicity, that microbial attack rates, but no other model parameters, are temperature-dependent, following an Arrhenius function of the form:

$$\alpha(T) = Ve^{-\frac{E_\alpha}{k_B(T/T_\sigma)}},$$ (S4)

where V is a pre-exponential rate constant (units of inverse time), k_B is the Boltzmann constant (8.62×10^{-5} electron-volts per degree Kelvin, eV K$^{-1}$), T is the temperature at which the process occurs (in K), T_σ is a reference temperature (K), and E_α is the activation energy of the process (in eV), which is a measure of its temperature dependence [3–5].
The soil carbon model is an adaptation of the Carbon Organisms Rhizosphere and Protection in the Soil Environment (CORPSE) model (Sulman et al., 2014), modified to allow tracking of carbon isotopes. Organic matter is divided into three chemically-defined forms, which can be either protected or unprotected. Protected organic matter is inaccessible to microbial decomposition through chemical sorption to mineral surfaces or occlusion within micro-aggregates. Unprotected organic matter can be added as litter or root exudate inputs, decomposed by microbial action, or protected:

\[
\frac{dC_{U,i}}{dt} = I_{C,i} - D_i + T_M + T_P - \frac{dC_{P,i}}{dt}
\]

where \(C_{U,i}\) is unprotected C; \(I_{C,i}\) is external inputs of C (including litter deposition and root exudation); \(D_i\) is decomposition rate; \(T_M\) is microbial necromass production; \(T_P\) is predator necromass production; and \(\frac{dC_{P,i}}{dt}\) is net transfer of C to or from the protected state. \(i\) refers to chemically-defined types, which can be chemically simple plant-derived material (representing compounds like glucose or amino acids that are readily decomposed), chemically resistant (representing compounds like lignin or complex microbially-produced chemicals), or readily decomposable microbial and predator necromass.

Protected C is formed from unprotected organic matter and converted back to unprotected form at first-order rates:

\[
\frac{dC_{P,i}}{dt} = C_{U,i} \cdot \gamma_i - \frac{C_{P,i}}{\tau_{cp}}
\]

The decomposition flux is controlled by microbial biomass \((B_M)\), temperature \((T)\), and volumetric soil water content \((\theta)\):

\[
D_i = V_{max,i}(T) \cdot \left(\frac{\theta}{\theta_{sat}}\right)^a \left(1 - \frac{\theta}{\theta_{sat}}\right)^b \cdot \frac{C_i \cdot M/C_i}{M/C_i + k_M}
\]

where \(\theta_{sat}\) is the saturation level of \(\theta\). Note that decomposition rate is controlled by the ratio of total microbial biomass carbon (summed over isotope fractions) to substrate carbon (also summed over isotope fractions) on a substrate-specific basis. The maximum decomposition rate is controlled by the Arrhenius relationship, which describes the temperature dependence of enzymatic reactions:

\[
V_{max,i}(T) = V_{max,ref,i} \times \exp \left(-\frac{E_{a,i}}{RT} \right)
\]

where \(V_{max,ref,i}\) is a maximum decomposition rate specific to each chemically-defined organic matter type, \(E_{a,i}\) is activation energy for each organic matter type, and \(R\) is the ideal gas constant (8.31 J K\(^{-1}\) mol\(^{-1}\)).
Microbial growth is supported by uptake of decomposed organic matter, and biomass is lost through
turnover at a fixed rate:

\[
\frac{dB_M}{dt} = \sum_i (D_i \cdot CUE_i) - \max (M - M_{\text{min}} \cdot \sum_i C_{U,i}, 0) \cdot d_M - p \tag{5}
\]

Where \(M_{\text{min}}\) is minimum microbial biomass expressed as a fraction of total unprotected C and \(p\) is
predation rate. Turnover is divided into maintenance respiration, which is converted directly to CO₂, and
necromass production. The division between maintenance and respiration and necromass production is
controlled by a parameter \(\varepsilon_t\):

\[
R_{\text{maint}} = \max (M - M_{\text{min}} \cdot \sum_i C_{U,i}, 0) \cdot d_M (1 - \varepsilon_t) \tag{6}
\]

\[
T_{M,j} = \max (M - M_{\text{min}} \cdot \sum_i C_{d,i,j}, 0) \cdot d_M (\varepsilon_t) \tag{7}
\]

Predation rate is similar to decomposition rate, but controlled by predator biomass and, for simplicity,
assumed to be independent of soil moisture:

\[
p = V_{\text{max},p}(T) \cdot M^{\frac{p}{M+k_p}} \tag{8}
\]

\[
V_{\text{max},p}(T) = V_{\text{max},\text{ref},p} \times \exp \left(- \frac{E_{a,p}}{RT} \right) \tag{9}
\]

And predator growth and turnover are similar to their microbial counterparts, but depending on microbial
biomass rather than substrate C:

\[
\frac{dp}{dt} = p \cdot CUE_p - \max (P - P_{\text{min}} \cdot M, 0) \cdot d_p \tag{10}
\]

Where \(CUE_p\) is predator carbon use efficiency, \(P_{\text{min}}\) is minimum predator biomass as a fraction of
microbial biomass, and \(\tau_p\) is turnover time of predator biomass. As with microbes, predator biomass
turnover is divided into necromass production and maintenance respiration:

\[
R_{\text{maint},p} = \max (P - P_{\text{min}} \cdot M, 0) \cdot d_p (1 - \varepsilon_{t,p}) \tag{11}
\]

\[
T_p = \max (P - P_{\text{min}} \cdot M, 0) \cdot d_p (\varepsilon_{t,p}) \tag{12}
\]

Total CO₂ production rate is the sum of maintenance respiration and respiration derived from
decomposition processes:

\[
\frac{dCO_2}{dt} = R_{\text{maint}} + R_{\text{maint},p} + \sum_i ((1 - CUE_i)D_i) + (1 - CUE_p \cdot p) \tag{13}
\]

Model parameters

Table S1: Parameter values for the population-based models used in Figure 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_1</td>
<td>Microbial handling time</td>
<td>0.04</td>
<td>Time</td>
</tr>
<tr>
<td>η_2</td>
<td>Predator handling time</td>
<td>0.04</td>
<td>Time</td>
</tr>
<tr>
<td>ϵ_1</td>
<td>Microbial conversion efficiency</td>
<td>0.4</td>
<td>Unitless</td>
</tr>
<tr>
<td>ϵ_2</td>
<td>Predator conversion efficiency</td>
<td>0.2</td>
<td>Unitless</td>
</tr>
<tr>
<td>d_M</td>
<td>Microbial death rate</td>
<td>1.0</td>
<td>Time(^{-1})</td>
</tr>
<tr>
<td>d_P</td>
<td>Predator death rate</td>
<td>0.8</td>
<td>Time(^{-1})</td>
</tr>
<tr>
<td>V_1</td>
<td>Microbial attack rate</td>
<td>0.22</td>
<td>Time(^{-1})</td>
</tr>
<tr>
<td>V_2</td>
<td>Predator attack rate</td>
<td>0.22</td>
<td>Time(^{-1})</td>
</tr>
<tr>
<td>Ea_1</td>
<td>Microbial activation energy</td>
<td>0.65</td>
<td>eV</td>
</tr>
<tr>
<td>Ea_2</td>
<td>Predator activation energy</td>
<td>0.65</td>
<td>eV</td>
</tr>
<tr>
<td>T_0</td>
<td>Reference temperature</td>
<td>15</td>
<td>^\circ\text{C}</td>
</tr>
</tbody>
</table>

Table S2: CORPSE-Pred parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>Max decomposition rate for simple C</td>
<td>9.0</td>
<td>year(^{-1})</td>
</tr>
<tr>
<td>V_2</td>
<td>Max decomposition rate for complex C</td>
<td>0.25</td>
<td>year(^{-1})</td>
</tr>
<tr>
<td>V_3</td>
<td>Max decomposition rate for necromass C</td>
<td>4.5</td>
<td>year(^{-1})</td>
</tr>
<tr>
<td>Ea_1</td>
<td>Activation energy for simple C</td>
<td>0.052</td>
<td>eV</td>
</tr>
<tr>
<td>Ea_2</td>
<td>Activation energy for complex C</td>
<td>0.31</td>
<td>eV</td>
</tr>
<tr>
<td>Ea_3</td>
<td>Activation energy for necromass C</td>
<td>0.052</td>
<td>eV</td>
</tr>
<tr>
<td>k_M</td>
<td>Microbial decomposition saturation parameter</td>
<td>0.1</td>
<td>g microbial C g substrate C(^{-1})</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>(a)</td>
<td>Moisture sensitivity parameter</td>
<td>1.5</td>
<td>Unitless</td>
</tr>
<tr>
<td>(b)</td>
<td>Moisture sensitivity parameter</td>
<td>0.6</td>
<td>Unitless</td>
</tr>
<tr>
<td>(M_{\text{min}})</td>
<td>Minimum microbial biomass</td>
<td>0.001 g microbial C g substrate C(^{-1})</td>
<td></td>
</tr>
<tr>
<td>(d_M)</td>
<td>Microbial death rate</td>
<td>4.0 year(^{-1})</td>
<td></td>
</tr>
<tr>
<td>(\varepsilon_1)</td>
<td>Microbial conversion efficiency for simple C</td>
<td>0.6</td>
<td>Unitless</td>
</tr>
<tr>
<td>(\varepsilon_2)</td>
<td>Microbial conversion efficiency for complex C</td>
<td>0.05</td>
<td>Unitless</td>
</tr>
<tr>
<td>(\varepsilon_3)</td>
<td>Microbial conversion efficiency for necromass C</td>
<td>0.6</td>
<td>Unitless</td>
</tr>
<tr>
<td>(\gamma_1)</td>
<td>Protection rate of simple C</td>
<td>0.3 year(^{-1})</td>
<td></td>
</tr>
<tr>
<td>(\gamma_2)</td>
<td>Protection rate of complex C</td>
<td>0.001 year(^{-1})</td>
<td></td>
</tr>
<tr>
<td>(\gamma_3)</td>
<td>Protection rate of necromass C</td>
<td>1.5 year(^{-1})</td>
<td></td>
</tr>
<tr>
<td>(\tau_{C_P})</td>
<td>Turnover time of protected C</td>
<td>75 years</td>
<td></td>
</tr>
<tr>
<td>(V_P)</td>
<td>Max predation rate</td>
<td>4.0 year(^{-1})</td>
<td></td>
</tr>
<tr>
<td>(E_{aP})</td>
<td>Predator activation energy</td>
<td>0.31 eV</td>
<td></td>
</tr>
<tr>
<td>(P_{\text{min}})</td>
<td>Minimum predator C</td>
<td>0.001 g predator C g microbial C(^{-1})</td>
<td></td>
</tr>
<tr>
<td>(d_P)</td>
<td>Predator death rate</td>
<td>2.0 year(^{-1})</td>
<td></td>
</tr>
<tr>
<td>(\varepsilon_P)</td>
<td>Predator conversion efficiency</td>
<td>0.5</td>
<td>Unitless</td>
</tr>
<tr>
<td>(k_P)</td>
<td>Predation saturation parameter</td>
<td>0.5 g predator C g microbial C(^{-1})</td>
<td></td>
</tr>
</tbody>
</table>
Figure S1: Change in steady-state SOC stock under 4°C warming as a function of predator E_a, for three different substrate input rates using the population-based model.
Figure S2: Model pools as a function of substrate input using CORPSE-Pred. These plots are comparable to Fig. 2 in the main text. Microbial and predator pools are shown separately from SOC for better visibility due to the large differences in stock magnitudes.
Figure S3: (a) Effect of relative microbial and predator temperature sensitivities on equilibrium SOC response to warming, using CORPSE-Pred model. Dashed lines show simulations without predators. This figure is comparable to Fig. 2c in the main text. (b) Data from the top panel expressed as CE_a. Dashed lines show simulations without predators, and dotted red line shows the actual E_a parameter value of the slow-cycling component of unprotected SOC.