The Combined and Individual Effects of the North Atlantic Oscillation and the Atlantic Meridional Mode on Early Rainfall Season Precipitation in the Insular Caribbean

Moraes Flavia¹, Kooperman Gabriel¹, and Mote Thomas²

¹University of Georgia
²Univ Georgia

November 16, 2022

Abstract

The insular Caribbean is a region influenced by Atlantic Ocean climate variability. Effects of low-frequency atmospheric circulation patterns on the precipitation of the Caribbean have been well documented. However, individual modes of variability are usually only considered in isolation. Here we analyse the combined and individual effects of the North Atlantic Oscillation (NAO) and the Atlantic Meridional Mode (AMM) on insular Caribbean precipitation. This work focuses on the Early Rainfall Season (ERS, April-July), which explains much of the interannual variability in precipitation for this region, from 1960-2016. Correlation analysis compare monthly NAO and AMM indices from the National Oceanic and Atmospheric Administration (NOAA) against monthly Caribbean precipitation from the Climate Research Unit (CRU) year-by-year climate variables by country. Sea surface temperature (SST) and sea level pressure (SLP) composites using NOAA data were also created to analyse regional patterns. Analysis of the results show that the NAO and AMM presented a correlation of opposite signs and affected the Eastern Caribbean (from Dominican Republic to Grenada) during ERS, resulting in precipitation anomalies above/below ±10%. The combined and individual effects of NAO and AMM indicate that Feb-Mar NAO and AMM are significant correlated to May-Jun Eastern Caribbean precipitation anomalies. More frequent and consistent regional effects on precipitation anomalies, and more regionally spread and persistent SLP and SST were registered when both NAO and AMM occurred together in the previous winter. These results could be helpful in seasonal forecasting, by indicating whether a wetter or drier ERS would be expected based on the previous season NAO and AMM activity.
The Combined and Individual Effects of the North Atlantic Oscillation and the Atlantic Meridional Mode on Early Rainfall Season Precipitation in the Insular Caribbean

Flavia D. S. Moraes*, Gabriel Kooperman, and Thomas L. Mote
Climate Research Laboratory, Department of Geography, University of Georgia, Athens, GA, USA

Introduction

The insular Caribbean is a region influenced by North Atlantic climate variability. Effects of low-frequency atmospheric circulation patterns on the precipitation of the Caribbean have been well documented. However, individual modes of variability are usually only considered in isolation. Here we analyse the combined and individual effects of the North Atlantic Oscillation (NAO) and the Atlantic Meridional Mode (AMM) on insular Caribbean precipitation. This work focuses on the Early Rainfall Season (ERS, April-July), which explains much of the interannual variability in precipitation for this region, from 1960-2016.

Data and Methods

- Used Climate Research Unit (CRU, V4.1) precipitation dataset to calculate monthly precipitation anomaly (%), from 1960-2016.
- Correlated monthly precipitation anomaly (%) from each country (19) with monthly NAO and AMM indices (NOAA Earth System Research Laboratory).
- Analyzed which months presented more spatially distributed and statistically significant correlation (p-value <0.05) between NAO/AMM and precipitation anomalies (%) (Figure 1).

This indicated the Eastern Caribbean islands (from Dominican Republic to Grenada) as the region where NAO and AMM (Feb-Mar) were correlated with precipitation anomalies (May-Jun).

- Created sea surface temperature (SST) and sea level pressure (SLP) anomalies composites based on the same statistically significant correlated months (NOAA Monthly Climate Composites).

Conclusions

The combined and individual effects of NAO and AMM indicate that the Early Rainfall Season Precipitation of the Eastern Caribbean is where precipitation anomalies (May-Jun) and NAO/AMM (Feb-Mar) are correlated. More frequent and consistent regional effects on precipitation anomalies, and more regionally spread and persistent SLP and SST were registered when both NAO and AMM occurred together in the previous winter. These results could help in seasonal forecasting, for regional drought or precipitation prediction.

*Contact information: flavia.moraes@uga.edu

References


