Characterization of Environmental Seismic Signals in a Post-Wildfire Environment: Examples from the Museum Fire, AZ

Porter Ryan C1, Joyal Taylor1, Rebecca Beers2, Ann Youberg3, Joseph Loverich4, Schenk Edward5, and Peter R. Robichaud6

1Northern Arizona University
2Arizona Geological Survey, University of Arizona
3Arizona Geological Survey
4JE Fuller Hydrology and Geomorphology
5Flagstaff Water Services, City of Flagstaff
6USDA Forest Service

February 22, 2024

Abstract

The 2019 Museum Fire burned in a mountainous region near the city of Flagstaff, AZ, USA. Due to the high risk of post-wildfire debris flows and flooding entering the city, we deployed a network of seismometers within the burn area and downstream drainages to examine the efficacy of seismic monitoring for post-fire flows. Seismic instruments were deployed during the 2019, 2020, and 2021 monsoon seasons following the fire and recorded several debris flow and flood events, as well as signals associated with rainfall, lighting and wind. Signal power, frequency content, and wave polarization were measured for multiple events and compared to rain gauge records and images recorded by cameras installed in the study area. We use these data to demonstrate the efficacy of seismic recordings to (1) detect and differentiate between different energy sources, (2) estimate the timing of lightning strikes, (3) calculate rainfall intensities, and (4) determine debris flow timing, size, velocity, and location. This work confirms the validity of theoretical models for interpreting seismic signals associated with debris flows and rainfall in post-wildfire settings and demonstrates the efficacy of seismic data for identifying and characterizing debris flows.
Characterization of Environmental Seismic Signals in a Post-Wildfire Environment:
Examples from the Museum Fire, AZ

Ryan Porter¹, Taylor Joyal¹, Rebecca Beers², Ann Youberg², Joseph Loverich³, Edward Schenk⁴, Peter R. Robichaud⁵

1School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, United States
2Arizona Geological Survey, University of Arizona, Tucson, AZ, United States
3JE Fuller Hydrology and Geomorphology, Inc., Flagstaff, AZ, United States
4Flagstaff Water Services, City of Flagstaff, Flagstaff, AZ, United States
5US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Moscow, ID, United States

Corresponding author: Ryan Porter (ryan.porter@nau.edu)

Key Points:
- Seismic monitoring of debris flows is effective in post-wildfire environments
- Rainfall, wind, and lightning can be detected and characterized with seismic data
- Existing theoretical work provides important context for understanding debris flows in post-wildfire settings
Abstract

The 2019 Museum Fire burned in a mountainous region near the city of Flagstaff, AZ, USA. Due to the high risk of post-wildfire debris flows and flooding entering the city, we deployed a network of seismometers within the burn area and downstream drainages to examine the efficacy of seismic monitoring for post-fire flows. Seismic instruments were deployed during the 2019, 2020, and 2021 monsoon seasons following the fire and recorded several debris flow and flood events, as well as signals associated with rainfall, lighting and wind. Signal power, frequency content, and wave polarization were measured for multiple events and compared to rain gauge records and images recorded by cameras installed in the study area. We use these data to demonstrate the efficacy of seismic recordings to (1) detect and differentiate between different energy sources, (2) estimate the timing of lightning strikes, (3) calculate rainfall intensities, and (4) determine debris flow timing, size, velocity, and location. This work confirms the validity of theoretical models for interpreting seismic signals associated with debris flows and rainfall in post-wildfire settings and demonstrates the efficacy of seismic data for identifying and characterizing debris flows.

Plain Language Summary

Wildfires are a growing hazard as the size and frequency of high-severity fires are growing globally. Following containment, post-fire flooding and debris flows can put downstream communities at risk, particularly as communities expand within the wildland-urban interface and close to fire-prone mountains. In this work, we use seismic instruments to measure ground vibrations created by rainfall, lightning, debris flows and floods as they move downstream and compare these recordings to game camera photos and rainfall records. This dataset allows us to detect and better understand hazards in post-wildfire areas. Observations
from these instruments show a high potential for detecting these events and the validity of using seismic data as a tool for understanding debris flow behavior.

1 Introduction

1.1 Wildfires are a growing risk globally as the size and frequency of high severity events are increasing due to climate change (Abatzoglou & Williams, 2016; Jolly et al., 2015; Westerling, 2016; Westerling et al., 2006). In the western US, wildfire risk is particularly acute as a century of excessive fire suppression resulted in high fuel loads in many forests, which, when combined with climate change effects, has led to several catastrophic fires in recent years (Parks et al., 2015; Steel et al., 2015). Further, wildfires are becoming an increasing threat to people, property, and infrastructure as communities expand into the wildland-urban interface (Radeloff et al., 2018). Beyond the threat of wildfires themselves, post-fire debris flows and floods present a risk to downstream communities that can persist for years following fire containment. In this work, we present an analysis of seismic data recorded during post-fire debris flow and flood events emanating from the 2019 Museum Fire scar. This fire and the landscape’s post-fire response are characteristic of what we may expect following future wildfires within the southwestern United States (Sankey et al., 2017). We use these data to demonstrate the efficacy of using seismic instruments and analysis techniques to detect and characterize post-fire debris flows and flooding. We compare our observations to debris-flow seismic models in order to provide a framework for future work using seismic data in post-fire settings.

1.2 The Museum Fire, located in the Dry Lake Hills and Mount Elden immediately north of Flagstaff, AZ (Figure 1) ignited July 21, 2019 during an abnormally dry monsoon season due to a rock strike by heavy equipment during forest thinning activities (Museum Fire BAER Team, 2019). The fire occurred in ponderosa pine (Pinus ponderosa) and mixed conifer forest at
elevations between ~2200 and ~2750 m. Full containment was achieved on August 12, 2019 with an estimated burned area of ~8 km². Post-fire assessment of the burn area estimated that 12% of the soil burn severity was very low, 48% was low, 28% was moderate, and 12% was high (Figure 2; Museum Fire BAER Team, 2019). Most of the burn area drains into the Spruce Wash Watershed (SWW), an ephemeral drainage that flows through communities in eastern Flagstaff. The watershed is located on mountainous terrain comprised of Pleistocene-age dacitic lava domes with steep flanks (Holm, 1988; Figure 1). It is susceptible to post-fire flooding due to its steep slopes, vegetation loss due to fire, and increased soil hydrophobicity. Alluvial C14 chronology from the Schultz Creek Watershed, an adjacent watershed, show that sediment has been accumulating in the ephemeral channel for approximately 7,000 years without major fires or flooding (Stempniewicz, 2014). Regional channel geometry observations support this chronology, with the majority of bankfull channel area in forested watersheds being undersized for the area of the watershed indicating complacent rainfall-runoff conditions (Schenk et al., 2021). A similar absence of recent fire and flooding is also expected for the SWW, leaving significant quantities of sediment available to mobilize during storms.

1.3 Northern Arizona’s climate makes it susceptible to post-fire debris flows and flash flooding. The climate is characterized by four distinct seasons, a cold snow-dominated winter, a dry and windy late-spring/early summer, a wet late summer, and a temperate fall. Most of the region’s precipitation occurs during the winter, in the form of snow, and in summer, when convective monsoonal storms occur (Jurwitz, 1953). Wildfire season typically extends from late May to early July, when conditions are commonly dry, hot, and windy. However, from July to September, precipitation from monsoonal storms raises the soil moisture and lowers the region’s fire risk (Nauslar et al., 2019). These summer convective storms are characterized by high
intensity, short-duration rainfall events that are capable of producing flash-flooding even in
unburned terrain (Adams & Comrie, 1997). When these storms occur over recently-burned,
hydrophobic soils, the risk of post-fire runoff (i.e., debris flows and flooding) is greatly increased
(DeBano, 2000). Climate change projections for the southwestern United States predict drier
conditions, reduced snowpack, higher temperatures, and increased extreme weather events
(Barnett et al., 2005, 2008; Brown et al., 2004; Cook et al., 2004). These changing conditions
will likely lead to increased wildfire frequency and severity across the region, as well as, extreme
weather events which together increase the likelihood of catastrophic mass-wasting events.

The occurrence of monsoonal storms immediately following wildfire season makes
Arizona extremely susceptible to post-fire flooding (Staley et al., 2020). This risk is particularly
acute when wildfires occur in regions of steep topography adjacent to population centers. For the
Museum Fire, the high likelihood of flooding and debris flows from the burn area and the
proximity to a population center led us to deploy a network of seismometers and other
monitoring equipment to detect and characterize these events. The 2019 monsoon season was the
driest on record at the time until it was surpassed by the 2020 season. Because the 2019 and 2020
monsoon seasons were abnormally dry, only a few convective storms occurred which produced
few debris flows and flood events. Damage from these events was limited to USDA Forest
Service land. The 2021 monsoon season was substantially wetter than average and several major,
high-intensity storms occurred during July and August (Table 1). These storms triggered
multiple episodes of flooding and debris flows. The debris flows repeatedly caused significant
damage to the main Forest Service road to the area, but were limited to Forest Service lands.
However, flood flows continued downstream, impacting numerous properties and buildings
within the City of Flagstaff including an elementary school.
1.3 Post-fire debris flow detection and monitoring present observational challenges. It is difficult to predict when and where convective precipitation will occur within a large burned area and where slopes will destabilize. Currently, most monitoring of post-fire debris flows is done using cameras, rain gauges, and stream gauges (e.g., Kean et al., 2001; McGuire and Youberg, 2020; Raymond et al., 2020). Seismic monitoring is a promising tool that can supplement these observations and allow us to better understand debris flow and flood initiation conditions and track propagation through a watershed. Seismic observations are ideal for this purpose as the instruments are designed to work in a range of extreme weather conditions, are unaffected by light levels, record debris flow energy from 10s to 100s of meters away in most cases, and do not have to be located within or aimed at a specific hillslope or segment of channel. Further, these instruments are frequently telemetered from remote locations with a latency of <1 minute between data collection and public availability (Benson et al., 2012; Trabant et al., 2008). The rapid availability of data from seismic monitoring systems, which are often designed for near real-time earthquake detection, location, and early warning, make seismic instruments an ideal candidate for debris flow and flash flood detection and early warning.

1.4 The use of seismic monitoring for detecting and characterizing debris flows is part of a recent expansion in the use of seismic analyses for non-traditional applications. These applications include using seismic data to monitor surface processes including estimating bed load in rivers and characterizing mass wasting events (Bessason et al., 2017; Arnaud Burtin et al., 2008, 2009, 2014; Arnaud Burtin et al., 2011, 2013; Cornet et al., 2005; Coviello et al., 2019; Ekstrom & Stark, 2013; Kean et al., 2015; Lai et al., 2018; Marineau et al. 2019; Roth et al., 2014, 2016; Schmandt et al., 2013; Tsai et al., 2012; Walter et al., 2017). In this work we apply and build on previous theoretical and observational work applying seismic observations to better
understanding debris flow properties (Allstadt, 2013; Bessason et al., 2017; Coviello et al., 2019; Farin et al., 2019; Kean et al., 2015; Lai et al., 2018; Zhang et al., 2021).

The primary source of seismic energy during debris flows and floods is the collision of sediment particles with the channel bed (Kean et al., 2015; Lai et al., 2018; Tsai et al., 2012). Theoretical work shows that the amplitude and frequency content of a debris flow seismic signal is controlled by a combination of flow properties, the nature of the impacts, distance from the seismic instrument, channel properties, and subsurface properties. Debris flow properties include particle size and density, flow area (length and width), flow depth, velocity, and the ratio of solids to liquid within the flow (Farin et al., 2019; Lai et al., 2018; Roth et al., 2016; Tsai et al., 2012). Of these many factors, debris flow velocity, magnitude, particle size, distance from the station, and channel and subsurface properties have the greatest impact on the observed signal (Farin et al., 2019). In the following sections we discuss how we can constrain these factors to better understand post-fire debris flows, floods, and other seismic signals in post-fire environments.

2 Data and Methods

2.1 Seismic instruments were deployed to detect and characterize debris flows for three summers following the Museum Fire (2019, 2020, and 2021). Stations consisted of either L-22 short period instruments deployed using IRIS PASSCAL quick deployment boxes or Nanometrics Meridian Compact systems. In 2019 and 2020 15 and 12 instruments were deployed, respectively, in arrays designed to record events in as many drainages as possible. All seismic data are archived at the IRIS DMC and a summary of the data and its availability for the 2019 and 2020 deployments is described in Porter et al. (2021). In 2021, efforts were scaled back
with only four Nanometrics instruments deployed for the monitoring efforts. These four stations were installed along the main drainages within the burn area. We deployed two in the upper watershed, and two in the lower watershed along the main stem of the SWW (Figures 1 and 2). We focus analyses on our observations of multiple debris flows in the upper watershed from the 2021 monsoon season.

In addition to seismometers, a network of cameras and rain gauges were also installed within the burn area for debris flow and flood detection and early warning (Figures 1 and 2). The camera network consisted of four telemetered cameras and six non-telemetered cameras. These cameras were aimed at the drainages where flooding was considered likely and are used to corroborate our seismic observations. Three rain gauges were installed within the burn area as part of a broader telemetered rain and stream gauge network operated by the City of Flagstaff. One existing rain and stream gauge within the burn area was upgraded after the fire. This publicly-available rain gauge network consists of 37 gauges designed to identify flood risks during monsoonal storms in the Flagstaff vicinity (Schenk et al. 2021).

2.2 We compare seismic data to rain gauge and radar observations to better constrain debris flow initiation and behavior. We identify major rain events using data from four rain gauges located within the burn area. Based on observations from the 2019 and 2020 monsoon season, debris flows were deemed likely to occur during events that had 15-minute intensities greater than 30 mm or 60-minute intensities greater than 15 mm. Table 1 lists every storm that met at least one of those criteria at a minimum of one rain gauge within the burn area. Storm start times and durations are based on the timing that these thresholds are first and last exceeded by any gauge within the array. Table 1 highlights the localized nature of these convective monsoonal storms as extreme variations in rain intensity and storm total are observed over scales
of hundreds of meters to a few kilometers. For example, rain gauges Museum Fire North and Museum Fire East are located ~1 km apart and, in most storms, recorded significantly different peak intensities and total rainfall amounts.

Data from the National Weather Service Doppler-radar station (NEXRAD, WSR-88D) KFSX, located ~75 km SSE of Flagstaff, were integrated with gauge data to more accurately estimate the spatial extent and quantity of rainfall derived from radar data. To accomplish this, level-3 NEXRAD base reflectivity data, collected at a 0.5-degree angle, were downloaded and compared to rain intensities recorded at the rain gauges. A non-linear least squares fit was used to calculate the power law relationship between radar reflectivity \(Z \) in \(\text{mm}^6 \text{ m}^{-3} \) and rainfall intensity \(R \) in \(\text{mm hr}^{-1} \) by solving for \(a_r \) and \(b_r \) in the \(Z-R \) relationship equation (e.g., Marshall et al., 1947):

\[
R = \left(\frac{1}{a_r} \right)^{(1/b_r)} Z^{(1/b_r)}
\]

for each storm. This was accomplished by calculating intensity at 5-minute increments at each rain gauge \(R \) and comparing these to radar power \(Z \) for the same time period and location. Using all \(Z \) and \(R \) data available, we determine \(a_r \) and \(b_r \) values for each storm using a non-linear least squares fit for \(Z \) values less that 60 db. In this fit, data were weighted by the inverse of the distance from the center of the Museum Fire burn area to ensure that rainfall estimates were most consistent with rain gauge data in the study area. Using the calculated \(a_r \) and \(b_r \) values for each storm, radar-derived intensities were summed to calculate rainfall totals. Rainfall amounts and intensities from radar were then compared to the timing of debris flow initiation determined from seismic data.
2.4 Seismic data were processed to assess the efficacy of purpose-built arrays for detection and characterizing post-fire debris flows. Data were archived at the IRIS DMC and then downloaded for debris flows that occurred during the 2021 monsoon season. Raw data were tapered, detrended, demeaned, filtered between 1 and 99 Hz, and the instrument correction was applied to transfer the signal to ground velocity using the IRIS DMC data services. The data were then downloaded and resampled to 200 Hz. To better quantify the seismic signal associated with debris flows, we calculated signal power and short-time Fourier transforms of the processed data to generate spectrograms of the signals. Using these short-time Fourier transforms we estimate the peak frequency (f_{max}) and spectral centroid (f_{cent}) over a moving window to assess how these observations and wave polarizations change based on the type of seismic source.

Wave polarization characteristics were calculated using the following equations (Jones et al., 2016; Jurkevics, 1988; Vidale, 1986):

$$P = 1 - \left(\frac{2\lambda_3}{\lambda_1 + \lambda_2}\right)$$

$$I = \left(\frac{\sqrt{Re(v_{12}^2)} - Re(v_{13}^2)}{Re(v_{11})}\right)$$

$$\theta = \left(\frac{Re(v_{13})}{Re(v_{12})}\right)$$
Where P is planarity, I is incidence angle, θ is the azimuth, and λ_i and v_{ij} are the eigenvalues and eigenvectors for a time window, respectively. The variables i and j can equal 1, 2, or 3 and represent the different eigenvalues and the three components of the eigenvectors in the coordinate frame, respectively. Planarity values can range from 1 to 0, with 1 representing a wavefield polarized into a plane and 0 representing a wavefield with motion equally distributed in three directions. Incidence angle and azimuth range from -90° to 90° and 0° to 180°, respectively, and give insight into the orientation of the first eigenvector. This provides information into the orientation of ground motion, which is useful for discerning the source of the seismic signals.

2.5 We calculate synthetic models of the seismic signal power and spectral content associated with noise, rainfall, and debris flows in order to better interpret our results. Though we do not attempt to match our observations exactly, these calculations are useful for providing context to our observations and for exploring the sensitivity of seismic data to variations in debris flow properties.

Approximations of background noise, much of which was likely due to wind interacting with trees, were calculated by using recordings of the seismic signal in the hours preceding storms. We transformed these data to the frequency domain where we applied a spline interpolation to calculate frequency envelopes of these data. We then selected random amplitudes in the frequency domain between the frequency envelope minimum and maximum values. These values were then inverse Fourier transformed back to the time domain. This resulted in a pseudo-random signal with a frequency content and amplitude similar to the
background noise observed at the seismic station. This signal was input as the background signal in our synthetic models to represent noise.

2.6 To model rainfall, we follow a similar methodology to Bakker et al., (2022) where we assume consistent rainfall in all directions from the seismic instrument. For reasonable rain drop size of 0.1-8 mm, an impact should occur over less than 0.001 second and can be assumed as an infinite frequency source for seismic purposes. We calculate the signal power density (PSD) as a function of frequency (f) using the equation:

\[PSD(f) = (2\pi f)^2 \int_0^\infty 2\pi J_p G(f,r)^2 dr \]

Where \(r \) is the distance from the station, \(J_p \) is the impulse flux, and \(G(f,r) \) is the Green’s function.

We calculate impulse flux by summing the impact forces for a distribution of raindrop sizes described by \(p(d) \) using the following equation:

\[J_p = \left(\frac{4}{3\pi \rho_w} \right)^2 \gamma \sum (0.5p(d))^6 v(p(d))^2 \]
Where d is drop diameter, ρ_w is the density of water, γ describes the elasticity of the impact, and $v(p(d))$ is the velocity of drops as a function of diameter. We assume an inelastic impact with the ground which gives us a γ value of 1. We estimate $p(d)$ to calculate the impact rate per unit area following (Uijlenhoet & Stricker, 1999) where raindrop size distribution is a function of rain intensity.

$$p(d) = \frac{\Lambda^{1+\beta}}{\Gamma(1+\beta)} d^B e^{-\Lambda d}$$

Where $\Lambda = 4.1R^{-0.21}$, Γ is the gamma function, and $\beta = 0.67$ (Uijlenhoet & Stricker, 1999).

Drop velocity is calculated as $v(d) = ad^B$ (Atlas & Ulbrich, 1977) with constants a and B equal to 3.778 and 0.67, respectively (Uijlenhoet & Stricker, 1999). In this relationship, we set 9.5 m/s as a maximum raindrop velocity (Bakker et al., 2022). This assumption has little effect on the results, as even at high intensities where large drops are expected, few rain drops are large enough to exceed this velocity.

Surface waves are expected to dominate the observed environmental signals, so we use a near-field approximation of the Rayleigh wave Green’s function (Aki & Richards, 2002; Bakker et al., 2022; Gimbert et al., 2014) which is calculated as follows:
\[G(f, r) = N_{jz} \frac{f}{\delta p_0 v_c^2 v_u} \left(1 + \left(\frac{\pi^2 f r}{v_c^2} \right)^3 \right)^{-1/6} e^{-\pi f r / v_u Q} \]

Where \(f \) is frequency, \(\rho_0 \) is the density at the surface, \(v_c \) is the phase velocity, \(v_u \) is the group velocity, \(r \) is the source-receiver distance, \(Q \) is the quality factor, and \(N_{jz} \) is a unitless value that described the relative amplitudes of the three components (the z subscript indicates the vertical component). At high frequencies, where rain is observed seismically, \(N_{jz} \) is near unity (Tsai & Atiganyanun, 2014) so we assumed a value of 1 for rain. Phase \((v_c) \) and group velocities \((v_u) \) are calculated for Rayleigh waves following Tsai & Atiganyanun (2014) where:

\[v_c(f) = v_{c0} \left(\frac{f}{f_0} \right)^{-\xi} \]

\[v_u(f) = v_c(f)^{1+\xi} \]

Where \(\xi \) describes the velocity change with depth, \(f_0 \) is a reference frequency set to 1 Hz and \(v_{c0} \) is a reference phase velocity.

2.7 Debris flow signal power was calculated using an equation to estimate seismic energy for a thin flow (Farin et al., 2019):
\[PSD(f, r, D) = \int (2\pi f)^2 N_{jz} I_j^2 R_{\text{impact}} W G(f, r)^2 \, dr \]

Where \(f \) is frequency, \(r \) is distance from the station to points along the channel, \(W \) is channel width, and \(G \) is the Green’s function defined above. \(R_{\text{impact}} \) is the impact rate calculated as

\[R_{\text{impact}} = \frac{u_x \phi p(D)}{D_b D^2} \]

where \(u_x \) is the velocity of the flow, \(\phi \) is fraction of the flow volume that consists of solids, \(p(D) \) is the grain size distribution, \(D_b \) is the bed bump-diameter, and \(D \) is grain size. The impulse \(I_j \) is defined as

\[I_j = (1 + e_b) u_x m f_j, \]

where \(e_b \) is the basal coefficient of restitution, \(m \) if the particle mass, an \(f_j \) is a unitless value related to speed change during particle impact.

Assuming a linear channel oriented in the x direction located at a distance \(r_0 \) from the station at its closest point and the same Green’s function as above. This equation becomes:

\[PSD(f, r_0, x, D) = R_{\text{impact}} W N_{jz} I_j \frac{2 \pi^4 f^4 (1+e_b)^2 m^2 u_x r_{r_0}}{4 p_D^2 u_x^2 r_{r_0}^2} \int_{x_{\text{min}}/r_0}^{x_{\text{max}}/r_0} \left(1 + \left(\frac{n^2 f_{r_0}^2 (1+y)^2}{v_x} \right) \right)^{n-1} e^{-2nf_{r_0}^2 (1+y)^2} \, dy \]

Where \(y = \frac{x}{r_0} \) and \(x = 0 \) at the closest point in the channel to the station.

We follow previous work and use a log-raised cosine grain size distribution (Farin et al., 2019; Tsai et al., 2012) with a standard deviation of 0.5 to calculate the grain size distribution (\(p(D) \)) of the flow, which is input for \(D \) in Equation 11.
Rather than assume a constant mean grain size (D_{mean}) for the snout and body of the debris flow, we calculate mean grain size as a function of x by combining a decay function with a decaying sine function:

$$D_{\text{mean}} = 0.05 + 0.1 \ e^{-0.01 \left(\frac{x_{\text{max}}}{r_0} - y \right)} + 0.2 \ e^{-0.1 \left(\frac{x_{\text{max}}}{r_0} - y \right)} \left(\frac{2\pi r_0}{x} \left(\frac{x_{\text{max}}}{r_0} - y \right) \right)$$

This mean grain size equation was chosen to simulate short duration increased signal power due to pulses of coarse grain sediment moving down channel and the decay of the signal in the observed data.

3 Results and Discussion

3.1 Seismic records from our deployment affirm the efficacy of seismic monitoring in post-wildfire settings. These instruments can be installed rapidly following wildfires in locations that are safe from inundation (i.e., hillslopes or bedrock away from a channel). They produce clear recording of debris flows and related phenomena regardless of lighting or weather conditions. During monsoonal storms, we commonly observe signals associated with wind, lightning, storm precipitation, and storm-induced debris flows and flood flows. Each signal is associated with distinct signal powers, frequency content, and ground motion polarizations. We show ground velocity, signal power, and spectrograms for vertical component seismic data in both our synthetic and observed data, though the signals can also be observed in the horizontal components. In analyzing these seismic signals, we can differentiate between the different
sources, estimate the timing of lightning strikes, rainfall intensity, rainfall kinetic energy, and debris flow timing, size, velocity, and location.

3.2 The seismic signal from wind is frequently site specific and can vary over short spatial scales due to differences in aspect, vegetation, and infrastructure (Johnson et al., 2019). To explore the site-specific wind signal, we use seismic recordings of windy days in the early summer where no precipitation occurred. Figure 3 shows the seismic signal observed on June 27, 2021 when wind speeds recorded at the Flagstaff airport between 10:00 and 18:00 h, local time, ranged between 10 and 13.2 m/s with a maximum gust of 23.2 m/s. (Visual Crossing, 2022). At site E19A, located in the upper watershed, we observe wind as a low frequency signal ($f_{\text{max}} < 20$ Hz) on that day. The mean signal power during that recording period was \sim142 dB, which is substantially lower than signal powers associated with lightning, precipitation, and debris flows. Energy polarization of wind recordings at E19A shows variable azimuthal directions, planarity values of \sim0.65, and incidence angles near horizontal.

3.3 Lightning is observed as impulsive, short duration (generally < 10 s) signals that excite a wide range of frequencies (Figure 4). These are most easily observed prior to debris flow and rainfall signals. We compare seismic recordings to records of lightning strikes from National Lightning Detection Network (NLDN; Cummins & Murphy, 2009; Murphy et al., 2021; Orville, 2008). Seismic detection of lightning is likely impacted by topography and atmospheric conditions. Lightning tends to have high incidence angles and variable planarity and azimuth values associated with it (Figure 4). It is distinguishable from rain due by its short duration, frequency content, and high amplitudes.

3.4 During storms, we commonly observe relatively high frequency (> 50 Hz) signals due to precipitation (Figure 4). The amplitudes of these signals correlate temporally with estimates of
rainfall intensity observed at nearby rain gauges. However, given the highly localized nature of monsoonal storms in the southwestern US (Table 1), if the instruments are not co-located, there is often a lag between seismic and rain gauge observations associated with storms moving across the landscape. Theoretically the seismic signal of rain is controlled by the Green’s function, rain drop quantity, and drop size distribution (which also controls the distribution of drop velocities; Bakker et al., 2022). Peaks in seismic signal power correlate well with increases in rainfall intensity (R) at nearby rain gauges. For station E19A, polarization analysis shows that rainfall has high incidence angles, moderate (~0.5) planarity, and variable azimuths, which is consistent with measurements of rainfall recorded at other stations. The high frequency content of the signal is due to the proximity of rainfall to the station. Work by Bakker et al. (2022), shows that, due to signal attenuation, over half of the energy observed at a station due to rainfall come from raindrops within 10 m of the station and 90% from drops within 25 m.

3.5. Debris flows are observed as high amplitude signals that may excite a range of frequencies (Figures 5 & 6). The signal power at a station increases rapidly as the debris flow approaches the station and then gradually decreases as the flow velocity and grain size decrease over time. Consistent with theoretical work, the frequency content of these flows appears to be controlled by the distance between the station and the debris flow and subsurface properties (i.e., the Green’s function; Farin et al., 2019; Lai et al., 2018). We observe a decrease in seismic frequency (f_{max} and f_{cent}) as the snout of the flow first approaches the station followed by an increase, which is consistent with a signal frequency content dominated by attenuation (Farin et al., 2019; Lai et al., 2018; Tsai et al., 2012). The initial decrease in f_{max} and f_{cent} is due to the increased contribution of the debris flow to the seismic signal relative to rain, wind, and other background noise. Once the debris flow is the dominant signal, the increase in frequency content
is due to the debris flow snout approaching the station. Within individual debris flows, we
observe multiple changes in frequency content and signal power over short periods of time.
Values measured for f_{max} and f_{cent} often produce a sawtooth pattern. These changes in amplitude
and in frequency content are likely due to pulses of coarse-grained sediments moving through the
system and approaching the seismometer. The peaks in amplitude and f_{max} occur when coarse
sediment is in closest proximity to the station.

In Figures 5 and 6 we show records of two storms and associated debris flows recorded at
station E19A, located in the steeper upper watershed (Figure 1). This station was installed ~20 m
due north of a drainage that was deemed likely to experience debris flows. As an example of the
data recorded at this station, on July 16, 2021 we observed two separate debris flows in a short
period between 13:00 and 14:00 h local time. Prior to the flows, we observe several lightning
strikes (Figure 4) followed by a signal we associate with rainfall. Rainfall intensity at the
Museum Fire north gauge peaked at ~13:14, which coincides temporally with a peak in high
frequency seismic energy (> 50 Hz) at the station. At 13:16 a low frequency signal (< 20 Hz) is
first recorded that is likely caused by flow in the channel. There is also a higher frequency signal
(> 30 Hz) observed at this time from an ambiguous source. The energy that produced this signal
may have been caused by sediment transport in the channel, however we would not expect a
“gap” in energy at ~25 Hz or an f_{max} with a higher frequency than observed when the debris flow
snout is in closest proximity to the station if that were the case. Alternately, this signal was
possibly caused by sheet flow on the hillslope near the station, which would result in a higher
frequency signal due to the proximity of the station to the flow.

The low frequency signal, first observed at 13:16, begins increasing in amplitude and
frequency at ~13:17 (Figure 4). This is likely due to the snout of the debris flow approaching the
station. This signal peaks in amplitude just after 13:18, which is when the snout reaches its closest point in the channel to the station. Following the initial debris flow snout signal, we observe multiple high amplitude pulses between 13:18 and 13:24. These signals produce a sawtooth pattern in observed f_{max} and f_{cent} values. These power and frequency patterns are likely due to multiple pulses of coarse sediment, separated by finer grained flow, traveling down the channel. After the initial high amplitude signal, the overall amplitude of the debris flow signal power decreases, which is likely due to decreases in discharge, velocity, and grain size. The debris flow produces the largest signal power at the station until ~13:27 when an increase in rainfall intensity occurs. This change in signal source is inferred based on a change in frequency content and energy polarization that occurred at that time. Rainfall is the highest amplitude signal until ~13:29 when a second debris flow is observed in the seismic data. The signal from this second flow is similar to the first. It exhibits increased signal power initially followed by multiple pulses of increased amplitudes and sawtooth changes in f_{max} and f_{cent}. After peaking, this signal gradually decays back to baseline (pre-storm) values.

On August 17, 2021, we observe a similar signal to the July 16th events (Figure 6) at station E19A, demonstrating the consistency of debris flow signal at the station. For this August debris flow, a remote game camera installed ~90 meters upstream recorded sediment transport (Figures 6b and 6c). Photos were taken at 5 minutes intervals with an uncertainty of ~1 minute on the timestamp. These images capture high intensity rainfall and sheet flow prior to the debris flow which is observed in the second image. Due to the uncertainty on the game photo timings and the difference in locations, we cannot precisely tie the photos directly to seismic observations. However, based on these timings, it seems probable we are observing sheet flow or
similar in the initial higher frequency energy followed by sediment pulses (including downed trees) during the main flow.

Based on an analysis of multiple events recorded at station E19A, debris flows at this station are characterized by a low incidence angle, a high planarity, and an azimuth measurement oriented roughly NS. This NS azimuth is the direction from the station to the nearest point in the channel. Polarization measurements at this station are more-consistent than those observed at other stations, but in general, we observe consistent azimuths, moderate planarities and low incidence angles in debris flow signals regardless of the station.

3.6 Using the equations in section 2, we generate synthetic models of signal power and spectral content for sources that include background noise, rainfall, and debris flow signals. For the Green’s function, inputs were selected to match the frequency content of rain and the debris flows recorded at station E19A on July 16th (Figure 5). In our synthetic models (Figure 7) we reproduce the initial high frequency signal associated with rain using a rainfall intensity of 100 mm/hr for the first 450 seconds of the signal. As the modeled debris flow approaches the station, we observe a decrease in \(f_{\text{max}} \) and \(f_{\text{cent}} \) which occurs when the debris flow becomes the dominant signal. The subsequent increase in \(f_{\text{max}} \) and \(f_{\text{cent}} \) and the sawtooth patterns observed in the data are modeled using a sine function (Equation 13) to represent pulses of increased sediment size moving down the channel. As this sine function decays, the \(f_{\text{max}} \) value becomes more stable and is consistent with the strongest seismic signal originating from the closest point in the channel to the seismometer. Finally, the decay in signal amplitude is produced by decreasing the mean grain size. In reality, this is a simplification of the process as the decay in amplitude observed in our recorded data is likely due to decreases in mean grain size, flow velocity, and flow volume.
Results from this work confirm the validity of theoretical models for understanding post-wildfire debris flow behavior. Observed and model results are consistent with signal power correlating with the velocity and the grain size of a flow (D_{mean}). The highest amplitude observed in most flows corresponds to the snout passing by the station. Additional high-amplitude peaks likely are indicative of sediment pulses within the flow passing by the station. The peak in signal power within these pulses occurs when the coarse sediment is in closest proximity to the station. The frequency content of debris flow is primarily controlled by the distance of the flow from the station. However, this frequency content can also provide insight into the behavior of a flow. The sawtooth pattern in frequency content (f_{max} and f_{cent}) observed during debris flow events is likely due to coarse sediment pulses moving down the channel. Pulses with large grain sizes produce higher amplitude seismic signals, so even when they are farther from the station than smaller-grain sized flows, they still may produce a large enough signal to lower the f_{max} and f_{cent} measurements. For a long flow with consistent grain size distribution and velocity, we would expect a signal with consistent frequency content. This is often observed later in flows when the f_{max} measurements become fairly consistent, likely indicating that the debris flow is no longer moving downslope in pulses or has evolved into a finer-grained flow. The f_{cent} measurement continues to change later in flows as the grain size decreases and there are less contributions from sediment transport further away in the channel to the recorded signal.

3.7 Debris flow velocity can be estimated by examining the frequency content of the seismic signal or the cross-correlation of signals between stations based on equation 11. At station E19A, we estimate velocities of the debris flow’s snout following Lai et al. (2018) who show that debris flow frequency content is controlled by the Green’s function and source-flow distance. To accomplish this, we calculate $dP/df = 0$ for Equation 11 and solve for r using f_{max} as
the input frequency. We then use the Pythagorean theorem to calculate the along-channel x location of the front of the flow, with \(r \) as the hypotenuse and \(r_0 \) and \(x \) as the legs. In this calculation, \(x = 0 \) at the point in the channel closest to the station. To calculate smoothed \(f_{\text{max}} \) values from our data, we use least squares fit to the observed \(f_{\text{max}} \) values as the flow approaches the station. The linear fit is used for simplicity in both estimating \(f_{\text{max}} \) and velocity. Using this approach, we estimate a velocity of \(\sim 6 \) m/s for the first debris flow that occurred on July 16th (Figure 8). While we apply this technique to calculate the velocity of the initial debris flow snout, this also can be applied to calculate the velocity of individual sediment pulses which can be used to estimate changes in flow velocity over time.

The four stations used during the 2021 deployment did not allow us to measure debris flow velocities using cross correlation as we did not have multiple stations within any drainage in the upper watershed. However, we show an example from lower in the watershed downstream of where a majority of the coarse material was deposited (Figure 9). We normalize and then cross correlate the signal between stations COCB and CFSG, which were located \(\sim 1.2 \) km from each other along the channel (Figure 9). The lag time of the cross correlations for an event on July 13, 2021 was 360 seconds yielding an estimated velocity of 3.3 m/s for the flood in that reach of the channel. Applying this to multiple events over the summer led to velocity estimates between 2.6 m/s and 4.1 m/s for the reach.

3.8 Constraining the Green’s function at a station can present a challenge, especially in post-wildfire settings where stations are frequently deployed on steep unstable slopes and access may be limited due to hazards to personnel. However, if the rainfall rate is well-constrained by rain gauge data and the drop size distribution can be estimated, the frequency content and power of the rainfall seismic signal could provide a mechanism for calculating local high-frequency
Green’s functions. Future work will explore methodologies for better calculating these Green’s functions using rainfall data. Given that debris flows can alter the subsurface through scouring and deposition, an analysis of the rainfall may provide a mechanism for assessing these changes. Additionally, examining the frequency content of a debris flow signal can provide insight into the Green’s function. The highest frequency \(f_{\text{max}} \) value associated with the debris flow will be observed when the debris flow is at the point in the channel that is in closest proximity to the station. If the distance between the station and the channel is known, this value can then be used as a constraint on the Green’s function values. Though we do not attempt to replicate this exactly, the input values for our forward model were selected to roughly match the signals produced by rainfall and debris flow at station E19A.

3.9 Initial results indicate that wave polarization may be a good differentiator between seismic sources in post-fire settings. At station E19A, the signal azimuth, calculated using equation 4, is oriented towards the closest point in the channel to the station during debris flows. The signal associated with debris flows exhibits a higher planarity than other environmental events (i.e., wind, rain, lightning, etc.). The incidence angle is high during rain and low during debris flows, which may be related to the frequency content of the two signals. Work by Tsai & Atiganyanun (2014) shows that \(N_{ij} \) approaches unity at high frequencies while the amplitudes of horizontal components are diminished. Lower frequency surface waves have more energy on the horizontal components and less on the vertical. This is consistent with what we observe with rain \((f > 50 \text{ Hz})\) and debris flows \((f > 5 \text{ Hz})\).

3.10 Comparison to earthquakes and other energy sources affirms that debris flows produce a signal that is easily distinguishable from other sources of seismic energy even in sites hastily installed in suboptimal condition (steep slopes, shallow burial etc.). Over the course of
our monitoring, debris flows produce the highest amplitude signal observed in the 1-50 Hz
frequency range. Additionally, the signal is much more emergent and longer duration than a
typical earthquake signal. Simply measuring the short-term average to long-term energy averages
works well for detecting events with the thresholds set depending on the size of the drainage and
the flood/debris flow risk to downstream communities. If installed and telemetered, these
instruments would complement existing monitoring which is frequently done with rain and
stream gauges, cameras, and non-vented pressure transducers that, incidentally, are often lost or
destroyed when a debris flow passes.

4 Conclusions

In this study we show data and interpretations for storms and debris flows recorded by
seismic equipment in a post-fire setting. Results from this work affirm the validity of theoretical
models of debris flow seismic energy generation and their applicability to quantifying debris
flow characteristics in post-fire environments. Further, this work demonstrates the applicability
of seismic monitoring for debris flow detection in this setting. Using seismic data, we are able to
detect and distinguish seismic energy due to wind, lightning, rainfall, and debris flows/floods,
demonstrating the efficacy of seismic data for event characterization and flood detection and
early warning in these settings. Future work will build on this effort and better constrain and
characterize post-wildfire debris flow behavior using seismic data.

Acknowledgments, Samples, and Data

The datasets generated for this study can be found in the following online repositories:
https://doi.org/10.7914/SN/1A_2019, https://www.flagstaff.az.gov/4111/Rainfalland-Stream-
Gauge-Data. Data availability and access is described in detail in a data report on the project available here: https://doi.org/10.3389/feart.2021.649938. National Lightning Detection Network (NLDN) were made available by Vaisala.

The funding for this project was provided by a National Science Foundation Grant: RAPID: Seismic Monitoring of Post-Fire Debris Flows Associated with the Museum Fire, Northern Arizona EAR 1946321, the US Department of Agriculture, Forest Service, Coconino National Forest (20-CS-11030400-101), the City of Flagstaff, AZ and Coconino County, AZ.

The seismic instruments were provided by the Incorporated Research Institutions for Seismology (IRIS) through the PASSCAL Instrument Center at New Mexico Tech and by Northern Arizona University. Seismic data are available through the IRIS Data Management Center. The facilities of the IRIS Consortium are supported by the National Science Foundation’s Seismological Facilities for the Advancement of Geoscience (SAGE) Award under Cooperative Support Agreement EAR-1851048.

Author JL is employed by the company JE Fuller Hydrology and Geomorphology, Inc.
Figure 1. Location map of the study area showing the burn area (shaded gray), seismic station locations, rain gauges, camera locations, drainages, and watershed boundaries. Colors indicate slopes.

Figure 2. Burn severity map for the Museum Fire (Museum Fire BAER Team, 2019; Figure 1). Shaded area denotes areas with moderate to high severity burn designations and slopes greater than 22° where debris flows are most likely.

Figure 3. Seismic recording of wind at station E19A. Panel a) shows ground velocity, storm rainfall total and 15-minute rainfall intensity (no rain occurred during this time period). Panel b) shows decibel signal power. Panel c) is a spectrogram of the seismic velocity, black diamonds indicate the frequency with the maximum energy \(f_{\text{max}} \). Panel d) shows the spectral centroid \(f_{\text{cen}} \), color indicates the total signal power. Panel e) show the planarity, the absolute value of the cosine of incidence angle (0 is horizontal and 1 is vertical), and the normalized azimuth of the signal between 0 to 180°m where 0 is equal to 0° (due North) and 1 is equal to 180° (due south).

Figure 4. Seismic recording of lightning at station E19A. Panels are the same as Figure 3, except the amplitude scale in panel a) vertical black lines in panels b) and the timing of lightning strikes from the National Lightning Detection Network (NLDN) occurring within 12 km of the station.
in panel c). Timings are adjusted from the NLDN timing to the estimated arrival time of thunder at the station using a velocity of 330 m/s.

Figure 5. Seismic recording of debris flows at station E19A on July 16, 2021. Panels are the same as Figure 3, except for amplitude scale in panel a).

Figure 6. Seismic recording of debris flow at station E19A on August 21, 2021. Top panels are the same as Figure 3, except panel a) amplitude scale. Panels f) and g) show game camera images of the channel before and during a debris flow. Images were taken at 12:14 and 12:19 local time, respectively.

Figure 7. Spectrogram for synthetic debris flow model. Blue circle are spectral centroid (f_{cent}), black diamonds and the frequency with the maximum energy (f_{max}).

Figure 8. Panel a) shows changes in f_{max} over time beginning at 13:17:48 on July 16, 2022 at station E19A. Red line is least-squares fit to the data. Panel b) shows along channel distance of the debris flow snout calculated from f_{max} least squares fit in panel a). Red line is fit to the data, slope of the red line is the velocity of the debris flow snout ~5.96 m/s.

Figure 9. Normalized signal power recorded at stations COCB and CFSG for an event on July 13, 2021. Cross correlating the signals results in a lag of 360 seconds between the two stations.

Table 1. Timing, Estimated Flow, Total Rain, Peak Intensity, Storm Direction and location, Peak Flow at lower drainage for storms from 2019 to 2021.

Supplementary Table 1. List of symbols used in equations.

Characterization of Environmental Seismic Signals in a Post-Wildfire Environment: Examples from the Museum Fire, AZ

Ryan Porter¹, Taylor Joyal¹, Rebecca Beers², Ann Youberg², Joseph Loverich³, Edward Schenk⁴, Peter R. Robichaud⁵

¹School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, United States
²Arizona Geological Survey, University of Arizona, Tucson, AZ, United States
³JE Fuller Hydrology and Geomorphology, Inc., Flagstaff, AZ, United States
⁴Flagstaff Water Services, City of Flagstaff, Flagstaff, AZ, United States
⁵US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Moscow, ID, United States

Corresponding author: Ryan Porter (ryan.porter@nau.edu)

Key Points:

- Seismic monitoring of debris flows is effective in post-wildfire environments
- Rainfall, wind, and lightning can be detected and characterized with seismic data
- Existing theoretical work provides important context for understanding debris flows in post-wildfire settings
Abstract

The 2019 Museum Fire burned in a mountainous region near the city of Flagstaff, AZ, USA. Due to the high risk of post-wildfire debris flows and flooding entering the city, we deployed a network of seismometers within the burn area and downstream drainages to examine the efficacy of seismic monitoring for post-fire flows. Seismic instruments were deployed during the 2019, 2020, and 2021 monsoon seasons following the fire and recorded several debris flow and flood events, as well as signals associated with rainfall, lighting and wind. Signal power, frequency content, and wave polarization were measured for multiple events and compared to rain gauge records and images recorded by cameras installed in the study area. We use these data to demonstrate the efficacy of seismic recordings to (1) detect and differentiate between different energy sources, and (2) estimate the timing of lightning strikes, rainfall intensity, and debris flow timing, size, velocity, and location. This work confirms the validity of theoretical models for interpreting seismic signals associated with debris flows and rainfall in post-wildfire settings and demonstrates the efficacy of seismic data for identifying and characterizing debris flows.

Plain Language Summary

Wildfires are a growing hazard as the size and frequency of high-severity fires are growing globally. Following containment, post-fire flooding and debris flows can put downstream communities at risk, particularly as communities expand within the wildland-urban interface and close to fire-prone mountains. In this work, we use seismic instruments to measure ground vibrations created by rainfall, lightning, debris flows and floods as they move downstream and compare these recordings to game camera photos and rainfall records. This dataset allows us to detect and better understand hazards in post-wildfire areas. Observations
from these instruments show a high potential for detecting these events and the validity of using seismic data as a tool for understanding debris flow behavior.

1 Introduction

1.1 Wildfires are a growing risk globally as the size, and frequency of high severity events are increasing due to climate change (Abatzoglou & Williams, 2016; Jolly et al., 2015; Westerling, 2016; Westerling et al., 2006). In the western US, wildfire risk is particularly acute as a century of excessive fire suppression has resulted in high fuel loads in many forests, which, when combined with climate change effects, has led to several catastrophic fires in recent years (Parks et al., 2015; Steel et al., 2015). Further, wildfires are becoming an increasing threat to people, property, and infrastructure as communities expand into the wildland-urban interface (Radeloff et al., 2018). Beyond the threat of wildfires themselves, post-fire debris flows and floods present a risk to downstream communities that can persist for years following fire containment. In this work, we present an analysis of seismic data recorded during post-fire debris flow and flood events emanating from the 2019 Museum Fire scar. This fire and the landscape’s post-fire response are characteristic of what we may expect following future wildfires within the southwestern United States (Sankey et al., 2017). We use these data to demonstrate the efficacy of using seismic instruments and analysis techniques to detect and characterize post-fire debris flows and flooding. We compare our observations to debris-flow seismic models in order to provide a framework for future work using seismic data in post-fire settings.

1.2 The Museum Fire, located in the Dry Lake Hills and Mount Elden immediately north of Flagstaff, AZ (Figure 1) ignited July 21, 2019 during an abnormally dry monsoon season due to a rock strike by heavy equipment during forest thinning activities (Museum Fire BAER Team, 2019). The fire occurred in ponderosa pine (Pinus ponderosa) and mixed conifer forest at
elevations between ~2200 and ~2750 m. Full containment was achieved on August 12, 2019 with an estimated burned area of ~8 km2. Post-fire assessment of the burn area estimated that 12% of the soil burn severity was very low, 48% was low, 28% was moderate, and 12% was high (Figure 2; Museum Fire BAER Team, 2019). Most of the burn area drains into the Spruce Wash Watershed (SWW), an ephemeral drainage that flows through communities in eastern Flagstaff. The watershed is located on mountainous terrain comprised of Pleistocene-age dacitic lava domes with steep flanks (Holm, 1988; Figure 1). The watershed is susceptible to post-fire flooding due to its steep slopes, vegetation loss due to fire, and increased soil hydrophobicity. Alluvial C14 chronology from the Schultz Creek Watershed, an adjacent watershed, show that sediment has been accumulating in the ephemeral channel for approximately 7,000 years without major fires or flooding (Stempniewicz, 2014). Regional channel geometry observations support this chronology, with the majority of bankfull channel area in forested watersheds being undersized for the area of the watershed indicating complacent rainfall-runoff conditions (Schenk et al. 2021). A similar absence of recent fire and flooding is also expected for the SWW, leaving significant quantities of sediment available to mobilize during storms.

1.3 Northern Arizona’s climate makes it susceptible to post-fire debris flows and flash flooding. The climate is characterized by four distinct seasons, a cold snow-dominated winter, a dry and windy late-spring/early summer, a wet late summer, and a temperate fall. Most of the region’s precipitation occurs during the winter, in the form of snow, and in summer, when convective monsoonal storms occur (Jurwitz, 1953). Wildfire season typically extends from late May to early July, when conditions are commonly dry, hot, and windy. However, from July to September, precipitation from monsoonal storms raises the soil moisture and lowers the region’s fire risk (Nauslar et al., 2019). These summer convective storms are characterized by high
intensity, short-duration rainfall events that are capable of producing flash-flooding even in unburned terrain (Adams & Comrie, 1997). When these storms occur over recently-burned, hydrophobic soils, the risk of post-fire runoff (i.e debris flows and flooding) is greatly increased (DeBano, 2000). Climate change projections for the southwestern United States predict drier conditions, reduced snowpack, higher temperatures, and increased extreme weather events (Barnett et al., 2005, 2008; Brown et al., 2004; Cook et al., 2004). These changing conditions will likely lead to increased wildfire frequency and severity across the region, as well as, extreme weather events which together increase the likelihood of catastrophic mass-wasting events.

The combination of the monsoon directly following wildfire season makes Arizona extremely susceptible to post-fire flooding (Staley et al., 2020). This risk is particularly acute when wildfires occur in regions of steep topography adjacent to population centers. For the Museum Fire, the high likelihood of flooding and debris flows from the burn area and the proximity to a population center led us to deploy a network of seismometers and other monitoring equipment to detect and characterize these events. The 2019 monsoon season was the driest on record at the time, until it was surpassed by the 2020 season. Because the 2019 and 2020 monsoon seasons were abnormally dry, only a few convective storms occurred which produced few debris flows and flood events. Damage from these events was limited to USDA Forest Service land. The 2021 monsoon season was substantially wetter than average and several major, high-intensity storms occurred during July and August (Table 1). These storms triggered multiple episodes of flooding and debris flows. The debris flows repeatedly caused significant damage to the main Forest Service road to the area, but were limited to Forest Service lands. However, flood flows continued downstream, impacting numerous properties and buildings within the City of Flagstaff including an elementary school.
1.3 Post-fire debris flow detection and monitoring present observational challenges. It is difficult to predict when and where convective precipitation will occur within a large burned area and where slopes will destabilize. Currently, most monitoring of post-fire debris flows is done using cameras, rain gauges, and stream gauges (e.g., Kean et al., 2001; McGuire and Youberg, 2020; Raymond et al., 2020). Seismic monitoring is a promising tool that can supplement these observations and allow us to better understand debris flow and flood initiation conditions and track propagation through a watershed. Seismic observations are ideal for this purpose as the instruments are designed to work in a range of extreme weather conditions, are unaffected by light levels, record debris flow energy from 10s to 100s of meters away in most cases, and do not have to be located within or aimed at a specific hillslope or segment of channel. Further, these instruments are frequently telemetered from remote locations with a latency of <1 minute between data collection and public availability (Benson et al., 2012; Trabant et al., 2008). The rapid availability of data from seismic monitoring systems, which are often designed for near real-time earthquake detection, location, and early warning, make seismic instruments an ideal candidate for debris flow and flash flood detection and early warning.

1.4 The use of seismic monitoring for detecting and characterizing debris flows is part of a recent expansion in the use of seismic analyses for non-traditional applications. These applications include using seismic data to monitor surface processes including estimating bed load in rivers and characterizing mass wasting events (Bessason et al., 2017; A Burtin et al., 2008, 2009, 2014; Arnaud Burtin et al., 2011, 2013; Cornet et al., 2005; Coviello et al., 2019; Ekstrom & Stark, 2013; Kean et al., 2015; Lai et al., 2018; Marineau et al. 2019; Roth et al., 2014, 2016; Schmandt et al., 2013; Tsai et al., 2012; Walter et al., 2017). In this work we apply and build on previous theoretical and observational work applying seismic observations to better
understanding debris flow properties (Allstadt, 2013; Bessason et al., 2017; Coviello et al., 2019; Farin et al., 2019; Kean et al., 2015; Lai et al., 2018; Zhang et al., 2021).

The primary source of seismic energy during debris flows and floods is the collision of sediment particles with the channel bed (Kean et al., 2015; Lai et al., 2018; Tsai et al., 2012). Theoretical work shows that the amplitude and frequency content of a debris flow seismic signal is controlled by a combination of flow properties, the nature of the impacts, distance from the seismic instrument, channel properties, and subsurface properties. Debris flow properties include particle size and density, flow area (length and width), flow depth, velocity, and the ratio of solids to liquid within the flow (Farin et al., 2019; Lai et al., 2018; Roth et al., 2016; Tsai et al., 2012). Of these many factors, debris flow velocity, magnitude, particle size, distance from the station, and channel and subsurface properties have the greatest impact on the observed signal (Farin et al., 2019). In the following sections we discuss how we can constrain these factors to better understand post-fire debris flows, floods, and other seismic signals in post-fire environments.

2 Data and Methods

2.1 Seismic instruments were deployed to detect and characterize debris flows for three summers following the Museum Fire (2019, 2020, and 2021). Stations consisted of either L-22 short period instruments deployed using IRIS PASSCAL quick deployment boxes or Nanometrics Meridian Compact systems. In 2019, and 2020 15 and 12 instruments were deployed, respectively, in arrays designed to record events in as many drainages as possible. All seismic data are archived at the IRIS DMC and a summary of the data and its availability for the 2019 and 2020 deployments is described in (Porter et al., 2021). In 2021, efforts were scaled
back with only four Nanometrics instruments deployed for the monitoring efforts. These four
stations were installed along the main drainages within the burn area. We deployed two in the
upper watershed, and two in the lower watershed along the main stem of the SWW (Figures 1
and 2). We focus analyses on our observations of multiple debris flows in the upper watershed
from the 2021 monsoon season.

In addition to seismometers, a network of cameras and rain gauges were also installed
within the burn area for debris flow and flood detection and early warning (Figures 1 and 2). The
camera network consisted of four telemetered cameras and six non-telemetered cameras. These
cameras were aimed at the drainages where flooding was considered likely and are used to
corroborate our seismic observations. Three rain gauges were installed within the burn area as
part of a broader telemetered rain and stream gauge network operated by the City of Flagstaff.
One existing rain and stream gauge within the burn area was upgraded after the fire. This
publicly-available rain gauge network consists of 37 gauges designed to identify flood risks
during monsoonal storms in the Flagstaff vicinity (Schenk et al. 2021).

2.2 We compare seismic data to rain gauge and radar observations to better constrain
debris flow initiation and behavior. We identify major rain events using data from four rain
gauges located within the burn area. Based on observations from the 2019 and 2020 monsoon
season, debris flows were deemed likely to occur during events that had 15-minute intensities
greater than 30 mm or 60-minute intensities greater than 15 mm. Table 1 lists every storm that
met at least one of those criteria at a minimum of one rain gauge within the burn area. Storm start
times and durations are based on the timing that these thresholds are first and last exceeded by
any gauge within the array. Table 1 highlights the localized nature of these convective
monsoonal storms as extreme variations in rain intensity and storm total are observed over scales
of hundreds of meters to a few kilometers. For example, rain gauges Museum Fire North and Museum Fire East are located ~1 km apart and, in most storms, recorded significantly different peak intensities and total rainfall amounts.

Data from the National Weather Service Doppler-radar station (NEXRAD, WSR-88D) KFSX, located ~75 km SSE of Flagstaff, were integrated with gauge data to more accurately estimate the spatial extent and quantity of rainfall derived from radar data. To accomplish this, level-3 NEXRAD base reflectivity data collected at a 0.5-degree angle were downloaded and compared to rain intensities recorded at the rain gauges for each storm in 5 minute increments. A non-linear least squares fit was used to calculate the power law relationship between radar reflectivity (Z in mm6 m$^{-3}$) and rainfall intensity (R in mm hr$^{-1}$) by solving for a_r and b_r in the Z-R relationship equation (e.g., Marshall et al., 1947):

$$ R = \left(\frac{1}{a_r} \right)^{(1/b_r)} Z^{(1/b_r)} $$

for each storm. This was accomplished by calculating intensity at 5-minute increments at each rain gauge (R) and comparing these to radar power (Z) for the same time period and location. All variables are listed in the Supplementary Data. Using all Z and R data available, we determine a_r and b_r values for each storm using a non-linear least squares fit for Z values less that 60 db. In this fit, data were weighted by the inverse of the distance from the center of the Museum Fire burn area to ensure that rainfall estimates were most consistent with rain gauge data in the study area. Using the calculated a_r and b_r values for each storm, radar-derived intensities were summed to calculate rainfall totals. Rainfall amounts and intensities from radar were then compared to the timing of debris flow initiation determined from seismic data.
2.4 Seismic data were processed to assess the efficacy of purpose-built arrays for
detection and characterizing post-fire debris flows. Data were archived at the IRIS DMC and
then downloaded for debris flows that occurred during the 2021 monsoon season. Raw data were
tapered, detrended, demeaned, filtered between 1 and 99 Hz, and the instrument correction was
applied to transfer the signal to ground velocity using the IRIS DMC data services. The data
were then downloaded and resampled to 200 Hz. To better quantify the seismic signal associated
with debris flows, we calculated signal power and short-time Fourier transforms of the processed
data to generate spectrograms of the signals. Using these short-time Fourier transforms we
estimate the peak frequency (f_{max}) and spectral centroid (f_{cent}) over a moving window to assess
how these observations and wave polarizations change based on the type of seismic source.

Wave polarization characteristics were calculated using the following equations (Jones et
al., 2016; Jurkevics, 1988; Vidale, 1986):

\[P = 1 - \left(\frac{2\lambda_3}{\lambda_1 + \lambda_2}\right) \]

\[I = \left(\frac{\sqrt{Re(v_{12}^2)} - Re(v_{13}^2)}{Re(v_{11})}\right) \]

\[\theta = \left(\frac{Re(v_{13})}{Re(v_{12})}\right) \]
Where P is planarity, I is incidence angle, ℓ is the azimuth, and λ_i and v_{ij} are the eigenvalues and eigenvectors for a time window, respectively. The variables i and j can equal 1, 2, or 3 and represent the different eigenvalues and the three components of the eigenvectors in the coordinate frame, respectively. Planarity values can range from 1 to 0, with 1 representing a wavefield polarized into a plane and 0 representing a wavefield with motion equally distributed in three directions. Incidence angle and azimuth range from -90° to 90° and 0° to 180°, respectively, and give insight into the orientation of the first eigenvector. This provides information into the orientation of ground motion, which is useful for discerning the source of the seismic signals.

2.5 We calculate synthetic models of the seismic signal power and spectral content associated with noise, rainfall, and debris flows in order to better interpret our results. Though we do not attempt to match our observations exactly, these calculations are useful for providing context to our observations and for exploring the sensitivity of seismic data to variations in debris flow properties.

Approximations of background noise, much of which was likely due to wind interacting with trees, were calculated by using recordings of the seismic signal in the hours preceding storms. We transformed these data to the frequency domain where we applied a spline interpolation to calculate frequency envelopes of these data. We then selected random amplitudes in the frequency domain between the frequency envelope minimum and maximum values. These values were then inverse Fourier transformed back to the time domain. This resulted in a pseudo-random signal with a frequency content and amplitude similar to the
background noise observed at the seismic station. This signal was input as the background signal in our synthetic models to represent noise.

2.6 To model rainfall, we follow a similar methodology to Bakker et al., (2022) where we assume consistent rainfall in all directions from the seismic instrument. For reasonable raindrop size of 0.1-8 mm, an impact should occur over less than 0.001 second and can be assumed as an infinite frequency source for seismic purposes. We calculate the signal power density (PSD) as a function of frequency (f) using the equation:

$$PSD(f) = (2\pi f)^2 \int_0^\infty 2\pi J_p G(f, r)^2 dr$$

Where r is the distance from the station, J_p is the impulse flux, and $G(f, r)$ is the Green’s function.

We calculate impulse flux by summing the impact forces for a distribution of raindrop sizes described by $p(d)$ using the following equation:

$$J_p = \left(\frac{4}{3} \pi \rho_w\right)^2 \gamma \sum (0.5p(d))^6 v(p(d))^2$$
Where \(d \) is drop diameter, \(\gamma_w \) is the density of water, \(\varepsilon \) described the elasticity of the impact, and \(v(p(d)) \) is the velocity of drops as a function of diameter. We assume an inelastic impact with the ground which gives us a \(\varepsilon \) value of 1. We estimated \(p(d) \) to calculate the impact rate per unit area following (Uijlenhoet & Stricker, 1999) where raindrop size distribution is a function of rain intensity.

\[
p(d) = \frac{A^{1+\beta}}{\Gamma(1+\beta)} d^B e^{-Ad}
\]

Where \(\alpha = 4.1R^{-0.21} \), \(\varphi \) is the gamma function, and \(\beta = 0.67 \) (Uijlenhoet & Stricker, 1999).

Drop velocity is calculated as \(v(d) = ad^B \) (Atlas & Ulbrich, 1977) with constants \(a \) and \(B \) equal to 3.778 and 0.67, respectively (Uijlenhoet & Stricker, 1999). In this relationship, we set 9.5 m/s as a maximum raindrop velocity (Bakker et al., 2022). This assumption has little effect on the results, as even at high intensities where large drops are expected, few rain drops are large enough to exceed this velocity.

Surface waves are expected to dominate the observed environmental signals, so we use a near-field approximation of the Rayleigh wave Green’s function (Aki & Richards, 2002; Bakker et al., 2022; Gimbert et al., 2014) which is calculated as follows:
\[G(f, r) = N_{jz} \frac{f}{8p_0v_c^2v_u} \left(1 + \left(\frac{\pi^2 fr}{v_c} \right)^3 \right)^{-\frac{1}{6}} e^{-\pi fr/v_u Q} \]

Where, \(f \) is frequency, \(\rho_0 \) is the density at the surface, \(v_c \) is the phase velocity, \(v_u \) is the group velocity, \(r \) is the source-receiver distance, \(Q \) is the quality factor, and \(N_{jz} \) is a unitless value that described the relative amplitudes of the three components (the \(z \) subscript indicates the vertical component). At high frequencies, where rain is observed seismically, \(N_{jz} \) is near unity (Tsai & Atiganyanun, 2014) so we assumed a value of 1 for rain. Phase (\(v_c \)) and group velocities (\(v_u \)) are calculated for Rayleigh waves following (Tsai & Atiganyanun, 2014) where:

\[v_c(f) = v_{c0} \left(\frac{f}{f_0} \right)^{-\xi} \]
\[v_u(f) = v_c(f)^{(1+\xi)} \]

Where \(\xi \) describes the velocity change with depth, \(f_0 \) is a reference frequency set to 1 Hz and \(v_{c0} \) is a reference phase velocity.

2.7 Debris flow signal power was calculated using an equation to estimate seismic energy for a thin flow (Farin et al., 2019):
\[
PSD(f, r, D) = \int (2\pi f)^2 N_f^2 I_f^2 R_{\text{impact}} W G(f, r)^2 dr
\]

Where \(f \) is frequency, \(r \) is distance from the station to points along the channel, \(W \) is channel width, and \(G \) is the Green’s function defined above. \(R_{\text{impact}} \) is the impact rate calculated as \(R_{\text{impact}} = \frac{u_x \phi p(D)}{D_b D^2} \) where \(u_x \) is the velocity of the flow, \(\phi \) is fraction of the flow volume that consists of solids, \(p(D) \) is the grain size distribution, \(D_b \) is the bed bump-diameter, and \(D \) is grain size. The impulse \(I_f \) is defined as \(I_f = (1 + e_b) u_x m f_j \), where \(e_b \) is the basal coefficient of restitution, \(m \) if the particle mass, an \(f_j \) is a unitless value related to speed change during particle impact.

Assuming a linear channel oriented in the x direction located at a distance \(r_0 \) from the station at its closest point and the same Green’s function as above. This equation becomes:

\[
PSD(f, r_0, x, D) = R_{\text{impact}}^2 N_f^2 I_f^2 \frac{2 \pi^2 f^4 (1 + e_b) \phi^2 m^2 u_x^2 r_{x_0}^2}{4 \pi^2 u_x^2 v_x^2} \int_{x_{\text{max}}/r_0}^{x_{\text{min}}/r_0} \left(1 + \left(\frac{n_i f_{\text{max}}}{V} \right)^{1/2} \right)^3 e^{-\left(\frac{2 \pi r_{x_0}^2}{v_x} \right)^{1/2}} dy
\]

Where \(y = \frac{x}{r_0} \) and \(x = 0 \) at the closest point in the channel to the station.

We follow previous work and use a log-raised cosine grain size distribution (Farin et al., 2019; Tsai et al., 2012) with a standard deviation of 0.5 to calculate the grain size distribution \(p(D) \) of the flow, which is input for \(D \) in Equation 11.
Rather than assume a constant mean grain size \(D_{\text{mean}}\) for the snout and body of the debris flow, we calculate mean grain size as a function of \(x\) by combining a decay function with a decaying sine function:

\[
D_{\text{mean}} = 0.05 + 0.1 \ e^{-0.1\left(\frac{x_{\text{max}}}{r_0 - y}\right)} + 0.2 \ e^{-0.1\left(\frac{x_{\text{max}}}{r_0 - y}\right)} \left(\frac{2\pi r_0}{x} \left(\frac{x_{\text{max}}}{r_0} - y\right)\right)
\]

This mean grain size equation was chosen to simulate short duration increased signal power due to pulses of coarse grain sediment moving down channel and the decay of the signal in the observed data.

3 Results and Discussion

3.1 Seismic records from our deployment affirm the efficacy of seismic monitoring in post-wildfire settings. These instruments can be installed rapidly following wildfires in locations that are safe from inundation (i.e. hillslopes or bedrock away from a channel). They produce clear recording of debris flows and related phenomena regardless of lighting or weather conditions. During monsoonal storms, we commonly observe signals associated with wind, lightning, storm precipitation, and storm-induced debris flows and flood flows. Each signal is associated with distinct signal powers, frequency content, and ground motion polarizations. We show ground velocity, signal power, and spectrograms for vertical component seismic data in both our synthetic and observed data, though the signals can also be observed in the horizontal components. In analyzing these seismic signals, we can differentiate between the different
sources, estimate the timing of lightning strikes, rainfall intensity, rainfall kinetic energy, and
debris flow timing, size, velocity, and location.

3.2 The seismic signal from wind is frequently site specific and can vary over short
spatial scales due to differences in aspect, vegetation, and infrastructure (Johnson et al., 2019).
To explore the site-specific wind signal, we use seismic recordings of windy days in the early
summer where no precipitation occurred. Figure 3 shows the seismic signal observed on June 27,
2021 when wind speeds recorded at the Flagstaff airport between 10:00 and 18:00 h, local time,
ranged between 10 and 13.2 m/s with a maximum gust of 23.2 m/s. (Visual Crossing, 2022). At
site E19A, located in the upper watershed, we observe wind as a low frequency signal ($f_{\text{max}} < 20$
Hz) on that day. The mean signal power during that recording period was ~142 dB, which is
substantially lower than signal powers associated with lighting, precipitation, and debris flows.
Energy polarization of wind recordings at E19A shows variable azimuthal directions, planarity
values of ~0.65, and incidence angles near horizontal.

3.3 Lightning is observed as impulsive, short duration (generally < 10 s) signals that
excite a wide range of frequencies (Figure 4). These are most easily observed prior to debris flow
and rainfall signals. We compare seismic recordings to records of lightning strikes from National
Lightning Detection Network (NLDN; Cummins & Murphy, 2009; Murphy et al., 2021; Orville,
2008). Seismic detection of lightning is likely impacted by topography and atmospheric
conditions. Lightning tends to have high incidence angles and variable planarity and azimuth
values associated with it (Figure 4). It is distinguishable from rain due by its short duration,
frequency content, and high amplitudes.

3.4 During storms, we commonly observe relatively high frequency (> 50 Hz) signals due
to precipitation (Figure 4). The amplitudes of these signals correlate temporally with estimates of
rainfall intensity observed at nearby rain gauges. However, given the highly localized nature of monsoonal storms in the southwestern US (Table 1), if the instruments are not co-located, there is often a lag between seismic and rain gauge observations associated with storms moving across the landscape. Theoretically, the seismic signal of rain is controlled by the Green’s function, rain drop quantity, and drop size distribution (which also controls the distribution of drop velocities; Bakker et al., 2022). Peaks in seismic signal power correlate well with increases in rainfall intensity (R) at nearby rain gauges. For station E19A, polarization analysis shows that rainfall has high incidence angles, moderate (~0.5) planarity, and variable azimuths, which is consistent with measurements of rainfall recorded at other stations. The high frequency content of the signal is due to the proximity of rainfall to the station. Work by Bakker et al. (2022), shows that, due to signal attenuation, over half of the energy observed at a station due to rainfall come from raindrops within 10 m of the station and 90% from drops within 25 m.

3.5. Debris flows are observed as high amplitude signals that may excite a range of frequencies (Figures 5 & 6). The signal power at a station increases rapidly as the debris flow approaches the station and then gradually decreases as the flow velocity and grain size decrease over time. Consistent with theoretical work, the frequency content of these flows appears to be controlled by the distance between the station and the debris flow and subsurface properties (i.e., the Green’s function; Farin et al., 2019; Lai et al., 2018). We observe a decrease in seismic frequency (f_{max} and f_{cent}) as the snout of the flow first approaches the station followed by an increase, which is consistent with a signal frequency content dominated by attenuation (Farin et al., 2019; Lai et al., 2018; Tsai et al., 2012). The initial decrease in f_{max} and f_{cent} is due to the increased contribution of the debris flow to the seismic signal relative to rain, wind, and other background noise. Once the debris flow is the dominant signal, the increase in frequency content...
is due to the debris flow snout approaching the station. Within individual debris flows, we observe multiple changes in frequency content and signal power over short periods of time. Values measured for f_{max} and f_{cent} often produce a sawtooth pattern. These changes in amplitude and in frequency content are likely due to pulses of coarse-grained sediments moving through the system and approaching the seismometer. The peaks in amplitude and f_{max} occur when coarse sediment is in closest proximity to the station.

In Figures 5 and 6 we show records of two storms and associated debris flows recorded at station E19A, located in the steeper upper watershed (Figure 1). This station was installed ~20 m due north of a drainage that was deemed likely to experience debris flows. As an example of the data recorded at this station, on July 16, 2021 we observed two separate debris flows in a short period between 13:00 and 14:00 h local time. Prior to the flows, we observe several lightning strikes (Figure 4) followed by a signal we associate with rainfall. Rainfall intensity at the Museum Fire north gauge peaked at ~13:14, which coincides temporally with a peak in high frequency seismic energy (> 50 Hz) at the station. At 13:16 a low frequency signal (< 20 Hz) is first recorded that is likely caused by flow in the channel. There is also a higher frequency signal (> 30 Hz) observed at this time from an ambiguous source. The energy that produced this signal may have been caused by sediment transport in the channel, however we would not expect a “gap” in energy at ~25 Hz or an f_{max} with a higher frequency than observed when the debris flow snout is in closest proximity to the station if that were the case. Alternately, this signal was possibly caused by sheet flow on the hillslope near the station, which would result in a higher frequency signal due to the proximity of the station to the flow.

The low frequency signal, first observed at 13:16, begins increasing in amplitude and frequency at ~13:17 (Figure 4). This is likely due to the snout of the debris flow approaching the
station. This signal peaks in amplitude just after 13:18, which is when the snout reaches its closest point in the channel to the station. Following the initial debris flow snout signal, we observe multiple high amplitude pulses between 13:18 and 13:24. These signals produce a sawtooth pattern in observed f_{max} and f_{cent} values. These power and frequency patterns are likely due to multiple pulses of coarse sediment, separated by finer grained flow, traveling down the channel. After the initial high amplitude signal, the overall amplitude of the debris flow signal power decreases, which is likely due to decreases in discharge, velocity, and grain size. The debris flow produces the largest signal power at the station until ~13:27 when an increase in rainfall intensity occurs. This change in signal source is inferred based on a change in frequency content and energy polarization that occurred at that time. Rainfall is the highest amplitude signal until ~13:29 when a second debris flow is observed in the seismic data. The signal from this second flow is similar to the first. It exhibits increased signal power initially followed by multiple pulses of increased amplitudes and sawtooth changes in f_{max} and f_{cent}. After peaking, this signal gradually decays back to baseline (pre-storm) values.

On August 17, 2021, we observe a similar signal to the July 16th events (Figure 6) at station E19A, demonstrating the consistency of debris flow signal at the station. For this August debris flow, a remote game camera installed ~90 meters upstream recorded sediment transport (Figures 6b and 6c). Photos were taken at 5 minutes intervals with an uncertainty of ~1 minute on the timestamp. These images capture high intensity rainfall and sheet flow prior to the debris flow which is observed in the second image. Due to the uncertainty on the game photo timings and the difference in locations, we cannot precisely tie the photos directly to seismic observations. However, based on these timings, it seems probable we are observing sheet flow or
similar in the initial higher frequency energy followed by sediment pulses (including downed
trees) during the main flow.

Based on an analysis of multiple events recorded at station E19A, debris flows at this
station are characterized by a low incidence angle, a high planarity, and an azimuth measurement
oriented roughly NS. This NS azimuth is the direction from the station to the nearest point in the
channel. Polarization measurements at this station are more-consistent than those observed at
other stations, but in general, we observe consistent azimuths, moderate planarities and low
incidence angles in debris flow signals regardless of the station.

3.6 Using the equations in section 2, we generate synthetic models of signal power and
spectral content for sources that include background noise, rainfall, and debris flow signals. For
the Green’s function, inputs were selected to match the frequency content of rain and the debris
flows recorded at station E19A on July 16th (Figure 5). In our synthetic models (Figure 7) we
reproduce the initial high frequency signal associated with rain using a rainfall intensity of 100
mm/hr for the first 450 seconds of the signal. As the modeled debris flow approaches the station,
we observe a decrease in f_{max} and f_{cent} which occurs when the debris flow becomes the dominant
signal. The subsequent increase in f_{max} and f_{cent} and the sawtooth patterns observed in the data are
modeled using a sine function (Equation 13) to represent pulses of increased sediment size
moving down the channel. As this sine function decays, the f_{max} value becomes more stable and
is consistent with the strongest seismic signal originating from the closest point in the channel to
the seismometer. Finally, the decay in signal amplitude is produced by decreasing the mean grain
size. In reality, this is a simplification of the process as the decay in amplitude observed in our
recorded data is likely due to decreases in mean grain size, flow velocity, and flow volume.
Results from this work confirm the validity of theoretical models for understanding post-wildfire debris flow behavior. Observed and model results are consistent with signal power correlating with the velocity and the grain size of a flow (D_{mean}). The highest amplitude observed in most flows corresponds to the snout passing by the station. Additional high-amplitude peaks likely are indicative of sediment pulses within the flow passing by the station. The peak in signal power within these pulses occurs when the coarse sediment is in closest proximity to the station.

The frequency content of debris flow is primarily controlled by the distance of the flow from the station. However, this frequency content can also provide insight into the behavior of a flow. The sawtooth pattern in frequency content (f_{max} and f_{cent}) observed during debris flow events is likely due to coarse sediment pulses moving down the channel. Pulses with large grain sizes produce higher amplitude seismic signals, so even when they are farther from the station than smaller-grain sized flows, they still may produce a large enough signal to lower the f_{max} and f_{cent} measurements. For a long flow with consistent grain size distribution and velocity, we would expect a signal with consistent frequency content. This is often observed later in flows when the f_{max} measurements become fairly consistent, likely indicating that the debris flow is no longer moving downslope in pulses or has evolved into a finer-grained flow. The f_{cent} measurement continues to change later in flows as the grain size decreases and there are less contributions from sediment transport further away in the channel to the recorded signal.

3.7 Debris flow velocity can be estimated by examining the frequency content of the seismic signal or the cross-correlation of signals between stations based on equation 11. At station E19A, we estimate velocities of the debris flow’s snout following Lai et al. (2018) who show that debris flow frequency content is controlled by the Green’s function and source-flow distance. To accomplish this, we calculate $dP/df = 0$ for Equation 11 and solve for r using f_{max} as
the input frequency. We then use the Pythagorean theorem to calculate the along-channel x location of the front of the flow, with r as the hypotenuse and r_0 and x as the legs. In this calculation, $x = 0$ at the point in the channel closest to the station. To calculate smoothed f_{max} values from our data, we use least squares fit to the observed f_{max} values as the flow approaches the station. The linear fit is used for simplicity in both estimating f_{max} and velocity. Using this approach, we estimate a velocity of ~ 6 m/s for the first debris flow that occurred on July 16th (Figure 8). While we apply this technique to calculate the velocity of the initial debris flow snout, this also can be applied to calculate the velocity of individual sediment pulses which can be used to estimate changes in flow velocity over time.

The four stations used during the 2021 deployment did not allow us to measure debris flow velocities using cross correlation as we did not have multiple stations within any drainage in the upper watershed. However, we show an example from lower in the watershed downstream of where a majority of the coarse material was deposited (Figure 9). We normalize and then cross correlate the signal between stations COCB and CFSG, which were located ~ 1.2 km from each other along the channel (Figure 9). The lag time of the cross correlations for an event on July 13, 2021 was 360 seconds yielding an estimated velocity of 3.3 m/s for the flood in that reach of the channel. Applying this to multiple events over the summer led to velocity estimates between 2.6 m/s and 4.1 m/s for the reach.

3.8 Constraining the Green’s function at a station can present a challenge, especially in post-wildfire settings where stations are frequently deployed on steep unstable slopes and access may be limited due to hazards to personnel. However, if the rainfall rate is well-constrained by rain gauge data and the drop size distribution can be estimated, the frequency content and power of the rainfall seismic signal could provide a mechanism for calculating local high-frequency
Green’s functions. Future work will explore methodologies for better calculating these Green’s functions using rainfall data. Given that debris flows can alter the subsurface through scouring and deposition, an analysis of the rainfall may provide a mechanism for assessing these changes. Additionally, examining the frequency content of a debris flow signal can provide insight into the Green’s function. The highest frequency f_{max} value associated with the debris flow will be observed when the debris flow is at the point in the channel that is in closest proximity to the station. If the distance between the station and the channel is known, this value can then be used as a constraint on the Green’s function values. Though we do not attempt to replicate this exactly, the input values for our forward model were selected to roughly match the signals produced by rainfall and debris flow at station E19A.

3.9 Initial results indicate that wave polarization may be a good differentiator between seismic sources in post-fire settings. At station E19A, the signal azimuth, calculated using equation 4, is oriented towards the closest point in the channel to the station during debris flows. The signal associated with debris flows exhibits a higher planarity than other environmental events (i.e. wind, rain, lightning, etc.). The incidence angle is high during rain and low during debris flows, which may be related to the frequency content of the two signals. Work by (Tsai & Atiganyanun, 2014) shows that N_{ij} approaches unity at high frequencies while the amplitudes of horizontal components are diminished. Lower frequency surface waves have more energy on the horizontal components and less on the vertical. This is consistent with what we observe with rain ($f > 50$ Hz) and debris flows ($f > 5$ Hz).

3.10 Comparison to earthquakes and other energy sources affirms that debris flows produce a signal that is easily distinguishable from other sources of seismic energy even in sites hastily installed in suboptimal condition (steep slopes, shallow burial etc.). Over the course of
our monitoring, debris flows produce the highest amplitude signal observed in the 1-50 Hz frequency range. Additionally, the signal is much more emergent and longer duration than a typical earthquake signal. Simply measuring the short-term average to long-term energy averages works well for detecting events with the thresholds set depending on the size of the drainage and the flood/debris flow risk to downstream communities. If installed and telemetered, these instruments would complement existing monitoring which is frequently done with rain and stream gauges, cameras, and non-vented pressure transducers that, incidentally, are often lost or destroyed when a debris flow passes.

4 Conclusions

In this study we show data and interpretations for storms and debris flows recorded by seismic equipment in a post-fire setting. Results from this work affirm the validity of theoretical models of debris flow seismic energy generation and their applicability to quantifying debris flow characteristics in post-fire environments. Further, this work demonstrates the applicability of seismic monitoring for debris flow detection in this setting. Using seismic data, we are able to detect and distinguish seismic energy due to wind, lightning, rainfall, and debris flows/floods, demonstrating the efficacy of seismic data for event characterization and flood detection and early warning in these settings. Future work will build on this effort and better constrain and characterize post-wildfire debris flow behavior using seismic data.

Acknowledgments, Samples, and Data

The datasets generated for this study can be found in the following online repositories: https://doi.org/10.7914/SN/1A_2019, https://www.flagstaff.az.gov/4111/Rainfalland-Stream-
Gauge-Data. Data availability and access is described in detail in a data report on the project available here: https://doi.org/10.3389/feart.2021.649938.

The funding for this project was provided by a National Science Foundation Grant: RAPID: Seismic Monitoring of Post-Fire Debris Flows Associated with the Museum Fire, Northern Arizona EAR 1946321, the US Department of Agriculture, Forest Service, Coconino National Forest (20-CS-11030400-101), the City of Flagstaff, AZ and Coconino County, AZ. The seismic instruments were provided by the Incorporated Research Institutions for Seismology (IRIS) through the PASSCAL Instrument Center at New Mexico Tech and by Northern Arizona University. Seismic data are available through the IRIS Data Management Center. The facilities of the IRIS Consortium are supported by the National Science Foundation’s Seismological Facilities for the Advancement of Geoscience (SAGE) Award under Cooperative Support Agreement EAR-1851048.

Author JL is employed by the company JE Fuller Hydrology and Geomorphology, Inc.
Figure 1. Location map of the study area showing the burn area (shaded gray), seismic station locations, rain gauges, camera locations, drainages, and watershed boundaries. Colors indicate slopes.

Figure 2. Burn severity map for the Museum Fire (Museum Fire BAER Team, 2019; Figure 1). Shaded area denotes areas with moderate to high severity burn designations and slopes greater than 22° where debris flows are most likely.

Figure 3. Seismic recording of wind at station E19A. Panel a) shows ground velocity, storm rainfall total and 15-minute rainfall intensity (no rain accord during this time period). Panel b) shows decibel signal power. Panel c) is a spectrogram of the seismic velocity, black diamonds indicate the frequency with the maximum energy (f_{max}). Panel d) shows the spectral centroid (f_{cent}), color indicates the total signal power. Panel e) show the planarity, the absolute value of the cosine of incidence angle (0 is horizontal and 1 is vertical), and the normalized azimuth of the signal between 0 to 180°m where 0 is equal to 0° (due North) and 1 is equal to 180° (due south).

Figure 4. Seismic recording of lightning at station E19A. Panels are the same as Figure 3, except the amplitude scale in panel a) vertical black lines in panels b) and the timing of lightning strikes from the National Lightning Detection Network (NLDN) occurring within 12 km of the station.
in panel c). Timings are adjusted from the NLDN timing to the estimated arrival time of thunder at the station using a velocity of 330 m/s.

Figure 5. Seismic recording of debris flows at station E19A on July 16, 2021. Panels are the same as Figure 3, except for amplitude scale in panel a).

Figure 6. Seismic recording of debris flow at station E19A on August 21, 2021. Top panels are the same as Figure 3, except panel a) amplitude scale. Panels f) and g) show game camera images of the channel before and during a debris flow. Images were taken at 12:14 and 12:19 local time, respectively.

Figure 7. Spectrogram for synthetic debris flow model. Blue circle are spectral centroid (f_{cent}), black diamonds and the frequency with the maximum energy (f_{max}).

Figure 8. Panel a) changes in f_{max} over time beginning at 13:17:48 on July 16, 2022 at station E19A. Red line is least-squares fit to the data. Panel b) along channel distance of the debris flow snout calculated from f_{max} least squares fit in panel a). Red line is fit to the data, slope of the red line is the velocity of the debris flow snout ~5.96 m/s.

Figure 9. Normalized signal power recorded at stations COCB and CFSG for an event on July 13, 2021. Cross correlating the signals results in a lag of 360 seconds between the two stations.

Table 1. Timing, Estimated Flow, Total Rain, Peak Intensity, Storm Direction and location, Peak Flow at lower drainage for storms from 2019 to 2021.

Supplementary Table 1. List of symbols used in equations.
References

steep mountain catchment. Earth Surface Dynamics, 2(1), 21–33.
https://doi.org/10.5194/esurf-2-21-2014

https://doi.org/10.1016/j.jhydrol.2011.07.014

https://doi.org/10.1002/jgrf.20137

https://doi.org/10.1126/science.1101982

https://doi.org/10.1029/2018jf004683

https://doi.org/10.1109/temc.2009.2023450

https://doi.org/10.1029/2018jb017151

Proceedings of the National Academy of Sciences, 115(13), 201718850.

https://doi.org/10.1073/pnas.1718850115

https://doi.org/10.1016/j.epsl.2014.07.019

https://doi.org/10.1002/2017gl073979

https://doi.org/10.1016/s0022-1694(99)00032-3
Vidale, J. E. (1986). COMPLEX POLARIZATION ANALYSIS OF PARTICLE MOTION.

Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland. *Natural Hazards and Earth System Sciences*, 17(6), 939–955.
https://doi.org/10.5194/nhess-17-939-2017

https://doi.org/10.1126/science.1128834

https://doi.org/10.1029/2021jb022755
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 6.
Figure 7.
Figure 8.
Lag = 360 sec
<table>
<thead>
<tr>
<th>Date</th>
<th>Start Time</th>
<th>Approximate Start Time</th>
<th>Approximate Duration (hr:min:sec)</th>
<th>Museum Fire West Peak 15-min Intensity (mm/hr)</th>
<th>Museum Fire West Peak 60-min Intensity (mm/hr)</th>
<th>Museum Fire West Storm Total (mm)</th>
<th>Museum Fire North Peak 15-min Intensity (mm/hr)</th>
<th>Museum Fire North Peak 60-min Intensity (mm/hr)</th>
<th>Museum Fire North Storm Total (mm)</th>
<th>Museum Fire East Peak 15-min Intensity (mm/hr)</th>
<th>Museum Fire East Peak 60-min Intensity (mm/hr)</th>
<th>Museum Fire East Storm Total (mm)</th>
<th>Spruce Ave West Peak 15-min Intensity (mm/hr)</th>
<th>Spruce Ave West Peak 60-min Intensity (mm/hr)</th>
<th>Spruce Ave West Storm Total (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23-Jul-2019</td>
<td>15:50:00</td>
<td>00:15:00</td>
<td>N/A N/A N/A</td>
<td>N/A N/A</td>
</tr>
<tr>
<td>28-Aug-2019</td>
<td>13:26:00</td>
<td>01:10:30</td>
<td>17.12 5.14 5.15</td>
<td>10.20 5.85 5.88</td>
<td>17.80 22.33 24.82</td>
<td>28.11 46.11</td>
<td>5.85 5.88</td>
<td>17.80 22.33 24.82</td>
<td>28.11 46.11</td>
<td>5.85 5.88</td>
<td>17.80 22.33 24.82</td>
<td>28.11 46.11</td>
<td>5.85 5.88</td>
<td>17.80 22.33 24.82</td>
<td>28.11 46.11</td>
</tr>
<tr>
<td>24-Jul-2020</td>
<td>14:36:00</td>
<td>00:59:29</td>
<td>18.07 9.25 9.25</td>
<td>49.19 17.85 17.85</td>
<td>24.09 12.01 12.00</td>
<td>24.85 12.01</td>
<td>17.85 17.85</td>
<td>24.09 12.01 12.00</td>
<td>24.85 12.01</td>
<td>17.85 17.85</td>
<td>24.09 12.01 12.00</td>
<td>24.85 12.01</td>
<td>17.85 17.85</td>
<td>24.09 12.01 12.00</td>
<td>24.85 12.01</td>
</tr>
<tr>
<td>25-Jul-2021</td>
<td>16:00:00</td>
<td>00:54:05</td>
<td>62.31 31.01 31.01</td>
<td>52.24 23.25 23.25</td>
<td>74.30 36.64 36.64</td>
<td>44.96 44.96</td>
<td>31.01 31.01</td>
<td>52.24 23.25 23.25</td>
<td>74.30 36.64</td>
<td>31.01 31.01</td>
<td>52.24 23.25 23.25</td>
<td>74.30 36.64</td>
<td>31.01 31.01</td>
<td>52.24 23.25 23.25</td>
<td>74.30 36.64</td>
</tr>
<tr>
<td>17-Aug-2021</td>
<td>12:04:00</td>
<td>01:20:15</td>
<td>116.68 60.02 60.02</td>
<td>18.88 10.75 10.75</td>
<td>41.34 44.96 44.96</td>
<td>115.79 77.19</td>
<td>60.02 60.02</td>
<td>18.88 10.75 10.75</td>
<td>41.34 44.96</td>
<td>60.02 60.02</td>
<td>18.88 10.75 10.75</td>
<td>41.34 44.96</td>
<td>60.02 60.02</td>
<td>18.88 10.75 10.75</td>
<td>41.34 44.96</td>
</tr>
</tbody>
</table>

*Storm totals in mm; Intensities in mm/hr