Christian Hagendorf¹, Marko Turek¹, Roman Worschech¹, and Jan Bauer¹ ¹Fraunhofer Center for Silicon Photovoltaics CSP

November 7, 2022

Fraunhofer

CSP

FRAUNHOFER CENTER FOR SILICON PHOTOVOLTAICS CSP

MACHINE LEARNING CONCEPTS IN MATERIAL ANALYTICS: **CLASSIFICATION OF PLASTIC MATERIALS**

Samples

Imaging method

analytics

σ

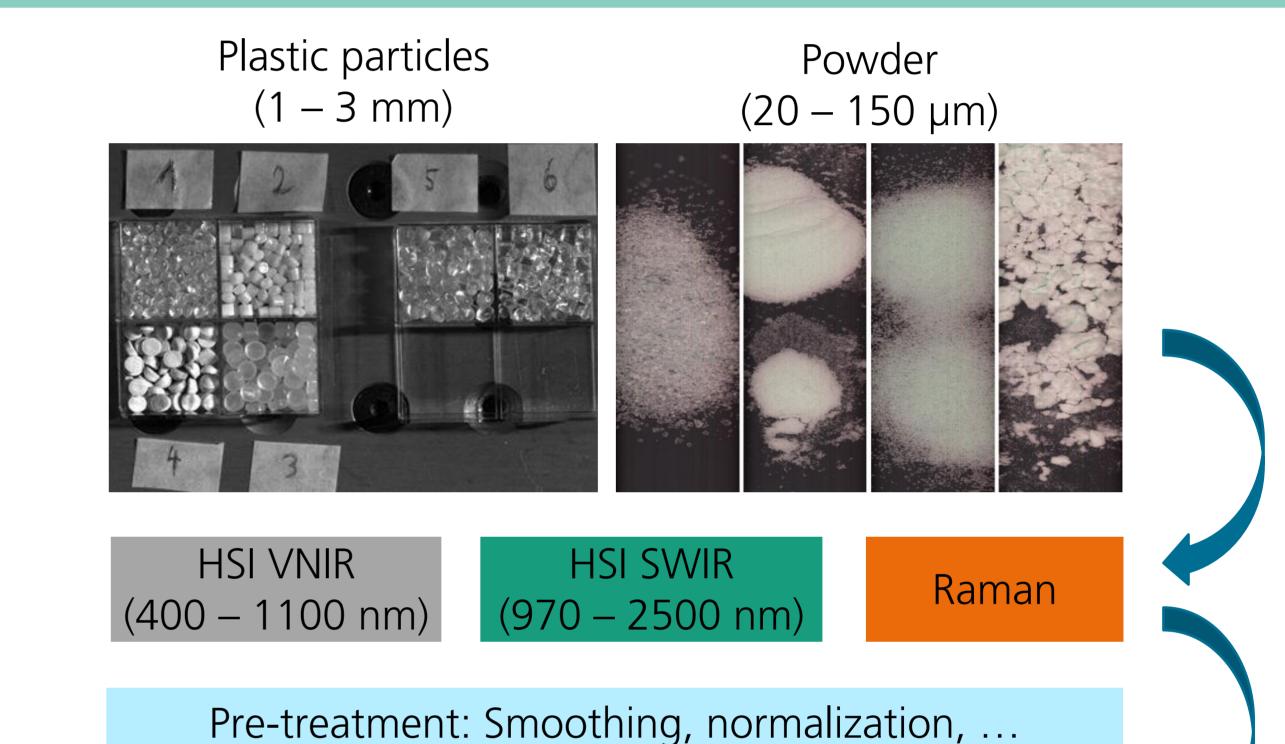
Data

Marko Turek^{*}, Roman Worschech, Jan Bauer, Christian Hagendorf

Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeld-Straße 12, 06120 Halle (Saale), Germany * Corresponding author: Tel. +49 (0) 345/5589-5121, marko.turek@csp.fraunhofer.de

INTRODUCTION AND MOTIVATION

High-throughput classification of plastic types

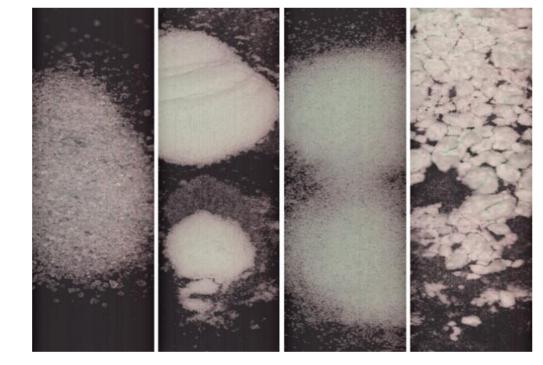

- **1. Example: Microplastic** detection and classification: Increasing contamination of water and air requires fast analytic routines
- **2.** Example: Recycling of compound materials (e.g. photovoltaic modules): Separation of materials requires separation of materials

Challenge: Automated and universal data analysis approaches for spectral imaging techniques (e.g. Raman spectroscopy, FTIR, hyperspectral imaging)

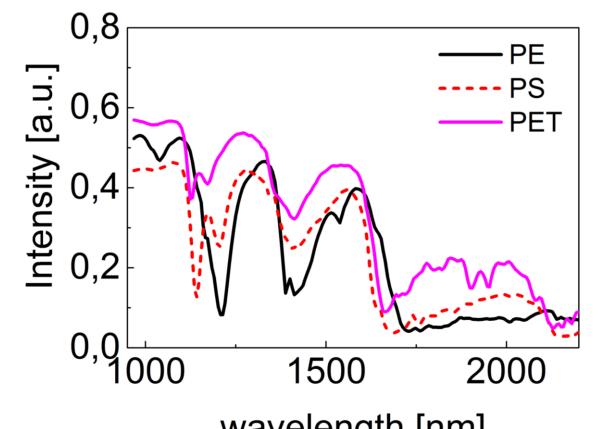
TEST SAMPLES AND IMAGING METHODS

DATA ACQUISITION AND ANALYTICS APPROACH

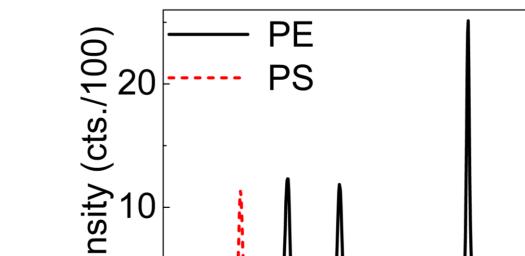
Typical sample setup:


- . Six types of plastics analyzed (PP, PS, PVC, PET, PA, PE)
- 2. Large samples, powder and micro-particles
- Environment: air or water 3.

Hyperspectral imaging (HSI):


- Measurement of spatially resolved reflection spectra in visible and infra-red wavelengths
- 2. Large data set of high-dimensional data: each pixel with entire spectral information

Raman spectroscopy:


- 1. Measurement of material properties by inelastic scattering of light
- 2. Large data set of high-dimensional data:

Example: plastic powder

wavelength [nm]

Dimensionality reduction

Classification (supervised, unsupervised)

SVM with RBF kernel

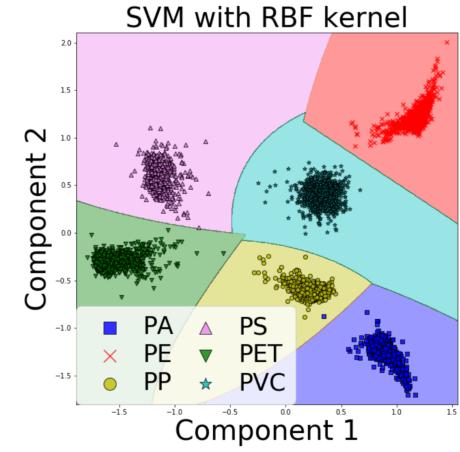
Component 1

2dim LDA for Raman

★ Background

PA

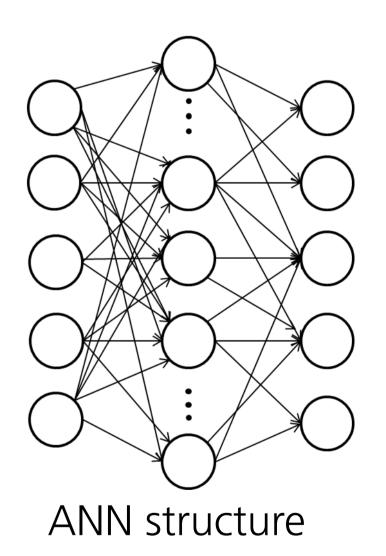
PS


PE

RESULTS: VERY HIGH CLASSIFICATION RATES ACHIEVABLE

Classification models: Support vector machine

 \sim


Component

2dim LDA for HSI

		predicted class							
		PA	PE	PP	PS	PET	PVC		
actual class	PA	1084	0	1	0	0	0		
	PE	0	1032	0	0	0	0		
	PP	0	0	1133	0	0	0		
	PS	0	0	0	1077	0	0		
	PET	0	0	0	0	1008	0		
	PVC	0	0	0	0	0	1091		

Artificial neural net

	predicted class									
	PA	PE	PP	PS	PET	PVC				
PA	1085	0	0	0	0	0				

each pixel with entire spectral information

Spectroscopic material analytics:

- Measurements yields large data sets (one spectrum for each pixel)
- Efficient, automated and universal data algorithms required
- Machine learning approach and artificial neural nets

ACKNOWLEDGEMENTS

Financial support by the BMBF within the "RUSEKU" project (FKZ 02WPL1442D) as well as support and HSI-data by Fraunhofer IFF Magdeburg is gratefully acknowledged.

1032 PE 0 0 0 0 class 0 1133 PP 0 0 0 0 actual PS 1077 0 0 0 0 0 | PET 1008 0 0 0 0 0 **PVC** 0 2 1087 2 0 0

Confusion matrix HIS – SVM

Confusion matrix HSI – ANN

- Machine learning and artificial neural nets:
- > Almost perfect classification achievable on test system
- Raman and Hyperspectral imaging as data basis possible
- Both methods reliable (support vector machines or neural nets)