Effect of Contact Force on Pulsed Field Ablation Lesions in Porcine Cardiac Tissue

Daniel C. Sigg1, Lars Mattison1, Atul Verma2, Khaldoun G. Tarakji1, Tobias Reichlin3, Gerhard Hindricks4, Kevin Sack L1, Birce Onal1, Megan M. Schmidt1, and Damijan Miklavčič5

1Medtronic Inc
2McGill University
3Inselspital Universitatsspital Bern Universitätsklinik für Kardiologie
4Universität Leipzig Medizinische Fakultät
5University of Ljubljana Ljubljana Slovenia

October 11, 2022

Abstract

\textbf{Background:} Contact force has been used to titrate lesion formation for radiofrequency ablation. Pulsed Field Ablation (PFA) is a field-based ablation technology for which limited evidence on the impact of contact force on lesion size is available.

\textbf{Methods:} Porcine hearts (n=6) were perfused using a modified Langendorff set-up. A prototype focal PFA catheter attached to a force gauge was held perpendicular to the epicardium and lowered until contact was made. Contact force was recorded during each PFA delivery. Matured lesions were cross-sectioned, stained, and the lesion dimensions were measured. Numerical modeling of the catheter-tissue interface under different contact forces was performed to aid in the interpretation of our results and isolate effects of biomechanical tissue displacement.

\textbf{Results:} A total of 82 lesions were evaluated with contact forces between 1.3 g and 48.6 g. Mean lesion depth was 4.8 ± 0.9 mm (standard deviation), mean lesion width was 9.1 ± 1.3 mm and mean lesion volume was 217.0 ± 96.6 mm3. Linear regression curves showed an increase of only 0.01 mm in depth (Depth = 0.01*Contact Force + 4.37, R2 = 0.06), 0.03 mm in width (Width = 0.03*Contact Force + 8.32, R2 = 0.12) for each additional gram of contact force, and 2.20 mm3 in volume (Volume = 2.20*Contact Force + 163, R2 = 0.11). Numerical modeling found consistent trends with experimental mean values and shows tissue displacement alone is likely not a significant factor to formation of lesion depth.

\textbf{Conclusions:} Increasing contact force using a bipolar, biphasic focal PFA system has minor effects on acute lesion dimensions in an isolated porcine heart model.

Hosted file