High-speed and Low-energy Actuation for Pneumatic Soft Robots With Internal Exhaust Air Recirculation

Miao Feng¹,², Dezhi Yang¹,², Carmel Majidi³, and Guoying Gu¹,²,⁴

¹Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
²State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China.
³Soft Machines Lab, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
⁴Meta Robotics Institute, Shanghai Jiao Tong University, Shanghai, 200240, China.

September 27, 2022

Abstract

Multi-chamber soft pneumatic actuators (m-SPAs) have been widely used in soft robotic systems to achieve versatile grasping and locomotion. However, existing m-SPAs have slow actuation speed and are either limited by a finite air supply or require energy-consuming hardware to continuously supply compressed air. Here, we address these shortcomings by introducing an internal exhaust air recirculation (IEAR) mechanism for high-speed and low-energy actuation of m-SPAs. This mechanism recirculates the exhaust compressed air and recovers the energy by harnessing the rhythmic actuation of multiple chambers. We develop a theoretical model to guide the analysis of the IEAR mechanism, which agrees well with the experimental results. Comparative experimental results of several sets of m-SPAs show that our IEAR mechanism significantly improves the actuation speed by more than 82.4% and reduces the energy consumption per cycle by more than 47.7% under typical conditions. We further demonstrate the promising applications of the IEAR mechanism in various pneumatic soft machines and robots such as a robotic fin, fabric-based finger, and quadruped robot.

Corresponding author(s) Email: guguoying@sjtu.edu.cn

Figure 1:

The internal exhaust air recirculation (IEAR) mechanism to simultaneously increase the actuation speed and reduce the energy consumption of pneumatic soft robots.

1. Introduction

Multi-chamber soft pneumatic actuators (m-SPAs) are promising in the applications of soft machines and robots, including rotators (Ainla et al., 2017), oscillators (Preston et al., 2019), grippers (Shintake et al., 2018;
Gong et al., 2021; Low et al., 2020), robotic hands (Gu et al., 2021; Deimel and Brock, 2016), gloves (Feng et al., 2021; Connolly et al., 2019; Yun et al., 2017), snake-inspired robots (Qi et al., 2020; Luo et al., 2014), bioinspired robotic fish (Marchese et al., 2014), multi-legged robots (Drotman et al., 2021, 2017; Wehner et al., 2016; Tolley et al., 2014; Shepherd et al., 2011), and soft functional arrays (Hashem et al., 2021a,b; Robertson et al., 2017). Increasing the speed and reducing the energy consumption of m-SPAs could lead to more steady, reliable, and robust performance (Ainla et al., 2017; Marchese et al., 2014; Tolley et al., 2014; Aubin et al., 2022; Gorissen et al., 2017; Polygerinos et al., 2017; Xavier et al., 2022). However, most existing architectures are designed with limited consideration of actuation speed and energy consumption and instead generally focus on other performance metrics related to versatile degree-of-freedoms (Wang et al., 2021), larger working space (Chen et al., 2021; Ke et al., 2021), higher force (Yap et al., 2016; Li et al., 2020), or smarter perception (Takaki et al., 2019; Zoller et al., 2018; Giffney et al., 2016).

To address these challenges, recent efforts have been dedicated to exploring variants of air pumps. These architectures can provide enhanced supplied air pressure and airflow by (i) connecting air pumps in series or parallel (Wehner et al., 2014), (ii) introducing a double-piston (Kim et al., 2018) or a double-acting pneumatic cylinder (Sridar et al., 2020) to compress more air in a compression cycle, or (iii) using a phase-change medium (dry ice, liquid CO2, DME, etc.) as a pneumatic source (Okui et al., 2018; Wu et al., 2007). These pump variants indeed improve the actuation speed of m-SPAs, but they also introduce additional challenges related to complicated mechanical design and greater energy consumption.

Meanwhile, some low-power pumps have been developed as a promising alternative to reduce the energy consumption of m-SPAs. For example, based on charge-injection electrohydrodynamics (Cacucciolo et al., 2019) or dielectric fluid-amplified electrostatic zipping structure (Diteesawat et al., 2021), stretchable electro-pneumatic pumps are reported to operate with a low pump power of fewer than 1 W. However, they suffer from supplying low pressures of less than 10 kPa (Cacucciolo et al., 2019; Diteesawat et al., 2021) or small airflow (161 mL/min) (Diteesawat et al., 2021). Alternatively, some chemical pumps that utilize fuel combustion or decomposition (CH4, H2O2, etc.) have been designed to provide high pressure (≥ 50 kPa). However, the refueling process and low airflows (≤ 50 mL/min) make them unfeasible to build a compacted low-power system for practical applications (Tolley et al., 2014; Stergiopulos et al., 2014). Therefore, achieving high-speed and low-energy actuation of m-SPAs remains an open challenge (Table S1 and Figure S1a) (Marchese et al., 2014; Drotman et al., 2021; Shepherd et al., 2011; Aubin et al., 2022; Wehner et al., 2014; Mosadegh et al., 2014; Joshi and Paik, 2021; Lee et al., 2021; Gong et al., 2016; Yang et al., 2018; de Pascali et al., 2022).

Figure 1. Working Principle of Internal Exhaust Air Recirculation (IEAR). a The working principle of IEAR. Inlet to inflate the chamber Outlet to deflate the chamber Branch for internal recirculation Branch to the atmosphere Closed branch for external recirculation. We have DIDO(), IEAR () , and EEAR (). IEAR recirculates compressed air by a valve island. Compared with DIDO, IEAR recycles compressed air and recovers internal energy. Compared with EEAR, IEAR does not require an air buffer and air recompression by the pump. b The pressure-volume relationship (constant temperature, open system). With IEAR, exhaust air is directly transmitted and recirculated between chambers through a specialized valve island, thereby shortening the working cycle (the arrow path) and reducing energy loss. c Traditionally, compressed air directly inlet and directly outlet (DIDO) the chambers of m-SPAs, leading to markedly energy loss and poor actuation performance (speed, energy efficiency, supplied pressure, system power, etc.).

Rich media available at https://youtu.be/-HbTS0rmIis

Movie S1. The traditional DIDO mechanism

In tackling this challenge, it is important to note that most state-of-the-art m-SPAs utilize a “direct ac-
The "tuation" mechanism in which compressed air enters the actuator directly through an inlet and leaves directly through an outlet to an ambient environment (termed DIDO, Figure 1a, Figure S1b; and Movie S1) (Joshi and Paik, 2021; Xavier et al., 2021; Zhang et al., 2021). As a result, the internal energy stored in the exhaust air for the DIDO mechanism cannot be recovered. For higher energy efficiency, an optional method is to reduce the input work of the system by improving the inlet pressure of a pump (Chou and Hannaford, 1996). For example, an air pump can recompress the exhaust air with residual pressure to a target pressure through an external exhaust air recirculation (EEAR, Figure 1a) mechanism (Wehner et al., 2014; Lee et al., 2021), where an extra pneumatic buffer (e.g., Re-Air valve) can be used to reduce severe pressure fluctuation (Lee et al., 2021). However, a key limitation is that this mechanism depends on the incorporation of pumps that typically have low electrical-to-mechanical energy conversion efficiency and, therefore, consume excess energy when recompressing the exhaust air. In addition, this mechanism lacks consideration of the actuation speed of m-SPAs (Figure S1b). Based on the architecture of EEAR, some researchers also achieve impressive programmable output pressure by replacing the pneumatic buffer with a group of air regulators, while actuation speed or efficiency is not considered in applications (Zhang et al., 2021).

In this work, we introduce an internal exhaust air recirculation (termed IEAR, Figure 1a) mechanism for high-speed and low-energy actuation of m-SPAs that overcomes these existing challenges. Through
the rhythmic actuation of multiple chambers following a shortened energy path, our IEAR mechanism can recirculate the exhaust compressed air from one chamber to another through a specialized valve island. In contrast to other existing methods based on air recirculation, this approach avoids the need for pump-controlled air recompression. Moreover, we introduce a dynamic model of m-SPAs to guide the analysis of our IEAR mechanism, with theoretical predictions that reasonably agree with the experimental measurements. Building on previous studies that examined the dynamics of pneumatic actuators with a single chamber (Joshi and Paik, 2021; Lee et al., 2021; Joshi et al., 2021; Xavier et al., 2020), our dynamic model is valid for actuators with multiple pneumatic chambers.

Characterization focuses on two exemplary embodiments of m-SPAs: an actuator with two chambers (Double Bellows) and an actuator with three chambers (Triple Bellows). These studies show that with IEAR, the actuation frequency for these two classes of m-SPAs can be improved by 82.4%-91.2%, while the energy consumption per cycle is reduced by 47.7%-51.2% under typical conditions. We further demonstrate the broad applications of the IEAR mechanism in various soft robotic systems, such as a robotic fin, fabric-based finger, and quadruped robot, for improving the actuation speed and reducing energy consumption. This work demonstrates that our IEAR mechanism plays a promising technology in the high-speed and low-energy actuation of m-SPAs for soft machines and robots.

2. Results

2.1 Working principle of the IEAR mechanism

The principle of our IEAR mechanism is illustrated in Figure 1. Unlike the traditional DIDO mechanism, the IEAR mechanism (Figure 1a) can recirculate the exhaust compressed air between the chambers. Taking a pair of chambers X and Y as an example, we can describe the actuation rhythms of our IEAR mechanism with the following steps (Figure 1b): (i) We begin by using compressed air stored in the air tank to inflate X to a set working pressure \(p_{\text{high}} \); (ii) Next, we open the valve between X and Y to transmit the compressed air from X to Y; (iii) When the pressure difference between X and Y is lower than a threshold \(\Delta p \), we then close the valve; (iv) The chamber X continues deflating to \(p_{\text{low}} \), while the air tank takes over the inflating process to pressurize Y to the set working pressure \(p_{\text{high}} \). By exchanging the roles of X and Y, we repeat the steps i-iv to complete a working cycle. Since working cycles in practical applications can generally be approximated as an isothermal process (open system), the integral \(\int p dV \) can be used to determine the change in internal energy of the compressed air. In this sense, our IEAR mechanism essentially shortens the working cycle (i.e., the energy path), avoids the high energy loss observed in the traditional DIDO mechanism (Figure 1c), and leads to enhanced air supply, thus improving the actuation speed.

In our IEAR mechanism, the working state of the air pump is independent of these specific actuation processes (Figure 1a). When the pressure in the air tank \(p_{\text{tank}} \) is less than a threshold \(p_{\text{tank-low}} \), the air pump starts to work. Once \(p_{\text{tank}} \) is more than \(p_{\text{tank-high}} \), the air pump turns off. The difference between \(p_{\text{tank-high}} \) and \(p_{\text{tank-low}} \) is the pressure tolerance for pump resting. Notably, we generally set the gauge pressure \(p_{\text{tank-low}} \) and \(p_{\text{tank-high}} \) as 120 kPa and 125 kPa, respectively.

To implement the IEAR mechanism, we develop an experimental platform (Figure S2a) that mainly consists of an air pump and an air tank (1 L) to provide compressed air, a valve island fabricated by a set of solenoid valves to control the rhythmic actuation of m-SPAs, and a dSPACE controller (sampling frequency, 1 kHz) to operate the ON/OFF states of the solenoid valves. The detailed air passage network of a three-channel valve island is presented in Figure S2b.
2.2 The dynamic model of m-SPAs

To guide the actuation performance analysis of the IEAR mechanism, we develop a dynamic model of m-SPAs based on the Clapeyron Equation. (See Supplementary Note 1 and Figure S3).

For m-SPAs with \(n \) chambers, we can express the dynamic model as

\[
\dot{p} = \xi \left[\text{diag}(V) + \text{diag}(p) \frac{\partial V}{\partial p} \right]^{-1} Q
\]

(1)

\[
\xi = \frac{\rho RT}{M}
\]

(2)

where \(p = [p_1 \ \text{amp}; p_2 \ \text{amp}; \cdots \ \text{amp}; p_n]^T \), \(V = [V_1 \ \text{amp}; V_2 \ \text{amp}; \cdots \ \text{amp}; V_n]^T \), and \(Q = [Q_1 \ \text{amp}; Q_2 \ \text{amp}; \cdots \ \text{amp}; Q_n]^T \) represent the vectors of the pressure inside the chamber, chamber volume, and mass flow into each chamber, respectively. The parameters \(\rho, R, T, M \) are the air density under the standard conditions (1.293 g·L\(^{-1}\), 0 , 101.325 kPa), the ideal gas constant (8.314 J·mol\(^{-1}\)·K\(^{-1}\)), the absolute temperature, and the molar mass of air (28.9634 g·mol\(^{-1}\)), respectively.

Due to the lightweight of most soft actuators (Joshi and Paik, 2021; Lee et al., 2021; Xavier et al., 2020), we ignore the actuator mass and hypothesize that the volume is a function of air pressures. In this manner, we can express \(V_i \) as a function of the internal pressures

\[
V_i = f_i(p)
\]

(3)

Thus, we can use the Jacobian matrix of chamber volume \(\frac{\partial V}{\partial p} \) to determine the effects of air pressure change on volume change and the interaction between the chambers.

The dynamic model of m-SPAs implies that a shortened energy path resulting in a reduced range of pressure to follow and an improved mass flow for a reinforced \(\dot{p} \) can increase the actuation speed of m-SPAs, unveiling our IEAR mechanism’s theoretical essence.

2.3 IEAR in m-SPAs with two chambers

To validate the use of the IEAR mechanism for pneumatic actuation, we first use the following exemplary architecture: m-SPAs with two chambers, which we term the Double Bellows (25.4 g, 150 mm). This validation study is used to verify the dynamic model and the ability of our IEAR mechanism to achieve high-speed and low-energy actuation (Figure 2; Movie S2 and 3).

Figure 2. m-SPAs with two chambers-Double Bellows. a Structure of the Double Bellows. b Arc-shape deformation geometry of the Double Bellows. c Equivalent section force diagrams of the Double Bellows. d Working flow chart of DIDO. When the conditions along the arrows are satisfied, the actuator moves to the next stage. e Working flow chart of IEAR. f Experimental pressures and theoretical pressures of DIDO and IEAR in 0-3 s. \(p_{\text{low}} = 10 \text{ kPa}, \Delta p = 10 \text{ kPa} \). g Steady-state actuation frequency with \(p_{\text{high}} \) from 50 to 100 kPa. h Steady-state energy consumption per cycle with \(p_{\text{high}} \) from 50 to 100 kPa.
Here, the Double Bellows has a symmetric structure to produce bidirectional bending by alternatively inflating these two chambers (Figure 2a and Figure S4). According to Equation (1), we establish the dynamic model of the Double Bellows to obtain the theoretical pressures by analyzing its deformation geometry and the force equilibrium (Figure 2b, c; Supplementary Note 2).

The rhythmic actuation of the Double Bellows with our IEAR mechanism has different ON/OFF timings of the solenoid valves compared to the working cycle with a conventional DIDO mechanism (Figure 2d, e; Figure S2d). Following the initial actuation cycles, the Double Bellows exhibits a rapid transition and enters a steady-state pressure response (Figure S5a, b). Unlike DIDO, our IEAR mechanism prevents a
sharp decrease in the supplied air pressure p_{tank} during the transition. The comparative results demonstrate that our dynamic model of the Double Bellows agrees well with the experimental results under both the DIDO and IEAR mechanisms (Figure 2f and Figure S6). Such agreement suggests that our model can facilitate analysis of the actuation performance, including actuation speed and energy consumption. (see Table 1 in Methods)

We obtain the theoretical actuation frequency and energy consumption per cycle of the Double Bellows with p_{high} ranging from 50 kPa to 100 kPa, and experimentally validate these results (Figure 2g, h). With the increase of p_{high}, both actuation frequencies with the DIDO and IEAR mechanisms decrease. However, the actuation frequency with our IEAR mechanism is markedly higher than that with DIDO for the full range of pressures (Figure 2g). At the same time, the energy consumption per cycle with IEAR is far less than that with DIDO (Figure 2h). For example, when $p_{\text{high}}=75$ kPa, the actuation frequency and energy consumption with DIDO are 0.49 ± 0.01 Hz and 8.08 ± 0.15 mWh·cycle$^{-1}$, respectively. Our IEAR mechanism improves the actuation frequency to 0.93 ± 0.02 Hz (91.2%—) while reducing the energy consumption to 3.94 ± 0.09 mWh·cycle$^{-1}$ (51.2%—). In addition, we change Δp (5, 10, 15 kPa) to investigate its influence on the actuation performance (Figure S6). It demonstrates that the IEAR mechanism is widely feasible in various working conditions to achieve high-speed and low-energy actuation. Also, the dynamic model of m-SPAs shows a satisfying capability of actuation performance analysis on the Double Bellows.

2.4 IEAR in m-SPAs with three chambers

To further verify the generalized feasibility of the dynamic model and our IEAR mechanism, we examine the operation in m-SPAs with three chambers—an architecture we term Triple Bellows (34.3 g, 150 mm; Figure 3; Movie S4 and 5).

Figure 3. m-SPAs with three chambers-Triple Bellows. a Structure of the Triple Bellows. b Deformation geometry of the Triple Bellows with two DOFs: bending relative to the ground and rotation above the z-axis. c Equivalent section force diagrams of the Triple Bellows. d Working flow chart of DIDO. When the conditions along the arrows are satisfied, the actuator moves to the next stage. e Working flow chart of IEAR. f Experimental pressures and theoretical pressures of DIDO and IEAR in 0-3 s. $p_{\text{low}}=10$ kPa, $\Delta p=10$ kPa. g Steady-state actuation frequency with p_{high} from 50 to 100 kPa. h Steady-state energy consumption per cycle with p_{high} from 50 to 100 kPa.

Rich media available at https://youtu.be/cdszoIvga6s

Movie S4. Working process of the Triple Bellows with DIDO and IEAR

Rich media available at https://youtu.be/S8_AzK8qmBw

Movie S5. Experimental verification of IEAR on the Triple Bellows

Compared with the Double Bellows, the Triple Bellows comprises three chambers arranged in an equilateral triangle, while other structural features remain the same (Figure 3a and Figure S4). These three chambers endow the Triple Bellows with two DOFs: bending relative to the ground and rotation above the z-axis (Figure 3b). According to the force equilibrium on these two DOFs, we can establish the dynamic model (Figure 3c and Supplementary Note 3 and 4). For both the DIDO and IEAR mechanisms (Figure 3d, e), the comparative theoretical and experimental results show good agreement with the others (Figure 3f and Figure S7).

We further characterize the actuation frequency and energy consumption per cycle of the Triple Bellows with p_{high} from 50 kPa to 100 kPa covered. According to Figure 3g, h, the Triple Bellows also achieve high-speed and low-energy actuation with IEAR. Taking $p_{\text{high}}=75$ kPa as an example, the actuation frequency
and energy consumption of DIDO are 0.33 ± 0.01 Hz and 13.50 ± 0.50 mWh·cycle$^{-1}$, respectively. Through our IEAR mechanism, the actuation frequency is improved to 0.60 ± 0.02 Hz (82.4%) while the energy consumption is reduced to 7.06 ± 0.27 mWh·cycle$^{-1}$ (47.7%). The results from changing Δp (5, 10, 15 kPa) again verify the dynamic model of m-SPAs and the ability of our IEAR mechanism to improve actuation speed and reduce energy consumption in various working conditions (Figure S7).

2.5 Applications of IEAR

2.5.1 Robotic fin

We first design a robotic fin (89.2 g) composed of two Double Bellows and a PVC sheet to verify our IEAR mechanism for applications in soft robotics (Figure 4a-f, Supplementary Note 5, and Movie S6). In an underwater experiment, the robotic fin swings and drags the PVC sheet to produce propulsion force, which fluctuates with different magnitudes and periods in real-time (Figure 4c). Experimental results show that, compared with DIDO for the full range of p_{high}, IEAR has a markedly higher swinging frequency and average propulsion force (Figure 4d, e), and the energy consumption with IEAR is significantly reduced (Figure 4f). For instance, when $p_{\text{high}} = 75$ kPa, the swinging frequency, average propulsion force and energy consumption with DIDO are 0.41 ± 0.00 Hz, 0.19 ± 0.01 N, and 9.29 ± 0.08 mWh·cycle$^{-1}$, respectively. In contrast, the corresponding actuation performance with IEAR is 0.76 ± 0.01 Hz (85.4%),
0.32 ± 0.01 N (68.4%—), and 4.77 ± 0.04 mW/h*cycle⁻¹ (48.7%—). These results mean the robotic fin can produce higher swimming velocity with energy-efficient IEAR when actuating underwater vehicles (Yin et al., 2016). Moreover, we observe an extra beneficial effect of IEAR that the supplied air pressure p_{tank} is improved, and the system power is reduced simultaneously, which performs conducive factors in high-speed and high-efficiency actuation (Figure S8a–c).

Figure 4. Verification on a robotic fin and a fabric-based finger. a The robotic fin swings in water to produce propulsion force where p_{low} = 10 kPa, Δp=10 kPa. b The robotic fin comprises two Double Bellows and a PVC sheet with a thickness of 0.5 mm. c Propulsion force in real-time when p_{high}=50, 75, 100 kPa, respectively. d Swinging frequency of the robotic fin. e Average propulsion force produced by the robotic fin. f Energy consumption per cycle of the robotic fin. g The fabric-based actuator is composed of a flexing chamber and an extending chamber. The actuator is worn on a silicone model hand to assist the finger. h Steady-state actuation frequency of the actuator. i Steady-state energy consumption per cycle of the actuator.

Rich media available at https://youtu.be/BF1WUAojcvQ
Movie S6. Application on a robotic fin

2.5.2 Fabric-based finger

We further fabricate a soft fabric-based pneumatic actuator (Feng et al., 2021; Ge et al., 2020) for use in rehabilitation and assistive exoskeletons to examine the broad potential of IEAR for different materials and actuator types (Figure 4g–i, Supplementary Note 6, and Movie S7). This fabric-based actuator (10.2 g) comprises a flexing chamber and an extending chamber, and it is worn on a silicone hand to assist the finger motion. Experimental results show that the actuation frequency with our IEAR mechanism is nearly 2× that with DIDO for the full range of pressures, while the energy consumption per cycle only takes about half that with DIDO (Figure 4h and i). For example, when p_{high} =75 kPa, the actuation frequency and energy consumption with DIDO are 0.33 ± 0.01 Hz and 11.70 ± 0.28 mW/h*cycle⁻¹. However, the corresponding actuation performances with IEAR are 0.62 ± 0.02 Hz (87.9%—) and 5.99 ± 0.20 mW/h*cycle⁻¹ (48.8%—). In hand rehabilitation, especially assistance, an actuation speed of faster than 0.5 Hz is important for activities of daily living (ADLs) (Polygerinos et al., 2015), such as grasping an apple, operating a ball or drinking water. Besides, the comparisons of the supplied air pressure p_{tank} and the system power also demonstrate the advantages of our IEAR over the traditional DIDO (Figure S8d-f). Except for the fabric-based finger, an extensive application on a fiber-reinforced silicone actuator also verifies the effectiveness of IEAR in improving actuation speed and energy efficiency (Figure S9a–c and Supplementary Note 7).

Rich media available at https://youtu.be/5v7IwnAxqLY
Movie S7. Application on a fabric-based finger

2.5.3 Quadruped robot

To verify the potential application of the Triple Bellows, we adopt an electronics-free soft-legged design (Drotman et al., 2021) and fabricate a quadruped robot (Figure 5, Supplementary Note 8, and Movie S8). The quadruped robot (244.1 g with a body length of 220 mm) constitutes four Triple Bellows, whose chambers are connected to form three groups numbered in color (Figure 5a and b). By sequentially actuating these chambers, we let the robot walk on a 900 mm floorboard and record the walking performance (Figure 5c). According to the results in Figure 5d–f, both the step frequency and walking velocity with our IEAR mechanism are markedly more than that with DIDO for the full range of pressures, while IEAR consumes much less energy per step than DIDO. Typically when p_{high} =75 kPa, the walking time with IEAR (64.5 ± 2.3 s) is 30.6±4.4 s shorter than that with DIDO (95.1 ± 3.7 s), and the energy consumption per
step with IEAR (16.53 \pm 0.82 mWh*step$^{-1}$) is 39.4% less than that with DIDO (27.27 \pm 1.42 mWh*step$^{-1}$). Moreover, the steplength with DIDO is smaller than that with IEAR, which reflects the smaller air supply with the DIDO mechanism (Figure 5f). For the quadruped robot, the supplied air pressure p_{tank} and
system power are also slightly ameliorated (Figure S8g-i). Compared with the robotic fin and fabric-based glove, the large air consumption of the quadruped robot might reduce the extra improvement of \(p_{\text{tank}} \) and system power.

Figure 5. Verification on a quadruped robot fabricated by four Triple bellows. a The quadruped robot walks forward by sequentially inflating three groups of chambers. b Structure of the quadruped robot. c The quadruped robot walks on a floorboard of 900 mm in length. The graph records the crawling states at 0, 20, 40, and 63 s (the earliest time to arrive at the destination) with different \(p_{\text{high}} \), where \(p_{\text{low}} = 10 \) kPa, \(\Delta p = 10 \) kPa. d Step frequency of the quadruped robot. e Energy consumption per step. f Crawling velocity and steplength.

Rich media available at https://youtu.be/mE2qzLGEKZ0

Movie S8. Application on a quadruped robot
3. Discussion

We present the IEAR mechanism to achieve high-speed and low-energy actuation of m-SPAs in various pneumatic soft machines and robots. A dynamic model of m-SPAs is developed to guide the analysis of the actuation mechanism, which agrees well with the experiments on the exemplary m-SPAs, the Double Bellows and the Triple Bellows. These experiments also demonstrate the ability of IEAR to improve actuation speed and reduce energy consumption. Moreover, we observe an improvement in the supplied air pressure p_{tank} and a decrease in the system power, which may result from the enhanced performance of the air supply and the reduction of required energy input to the IEAR-assisted system, respectively. Lastly, we demonstrate the practical feasibility and broad potential of IEAR with applications on a robotic fin, fabric-based finger, and quadruped robot.

As demonstrated in our experiments, the dynamic model of m-SPAs can give accurate pressure and actuation frequency. Although there are some errors, it is not easy for the dynamic pressure modeling of soft robots, especially for these m-SPAs with coupled interaction between chambers. These errors mainly come from the ignorance of actuator mass, the inaccuracy of actuator volume modeling and the inconsistency of commercial solenoid valves. Indeed, this model is generally applicable to both rigid and soft multi-chamber actuators, as long as the volume-pressure function Equation (3) can be established. Based on our dynamic model of m-SPAs and some practical models for mass flow (Joshi and Paik, 2021; Joshi et al., 2021; Cheng et al., 2018; Jungong et al., 2008; Kawashima et al., 2004; KUROSHITA, 2002; Robinson et al., 2015; Woods et al., 2014), a reverse design for air passage and actuation could be feasible and may lead to higher-performing soft machines and robots.

In this study, we present a group of comparative experiments with EEAR, where we find that IEAR performs better in improving actuation speed and energy efficiency, and the combination of IEAR and EEAR can greatly reinforce the performance of EEAR under high working pressure (Figure S9g-k and Supplementary Note 9). These experiments verify the ability of IEAR to achieve high-speed and low-energy actuation of m-SPAs. However, since the air in this study flows only between a pair of chambers at each step, further investigation is required to study simultaneous flow among a network of chambers. For a more lightweight system with IEAR, soft circuits supporting onboard control should also be investigated as a replacement for the rigid valve island by adopting soft pumps, microfluidic-activated valves, and smart fluids (McDonald and Ranzani, 2021). Thus, a wider range of soft machines and robots, including fully untethered robotic systems (Rich et al., 2018), might benefit from our IEAR mechanism.

4. Methods

4.1 Materials of the pneumatic control system

The components of the pneumatic system include a micro air pump (KZP-PE, Kamoer Fluid Tech Co., Ltd., China, Supplementary Note 10), a 3D-printed air tank and a valve island (DSM IMAGE8200 pro, WeNext Technology Co., Ltd., China), 12 solenoid valves (0520D, Foshan Weizi Electronic Technology Co., Ltd., China), two current sensors (Huaibei Vidias Electronic Technology Co., Ltd., China), a temperature sensor (Quanzhou Guanhangda Electronic Technology Co., Ltd, China), four pressure sensors (MPX4250DP, Freescale Semiconductor, USA), a relay (Risym, China) for the air pump, two solid-state relay panels (customized) for solenoid valves, two high-precision programmable linear power supplies (SS-L303SPV, Dong Guan Great Electronics Co., Ltd., China), and a controller (microLabBox 1202, dSPACE, Germany).

The electrical current data is used for power measurement, and the temperature sensor is inserted into the air tank to record the temperature of compressed air. In this study, the actual temperature of compressed air is generally 17-24°C, and we approximate the temperature as a constant 20°C for simplification, which has little influence on the results under the thermodynamic scale of temperature. For the pressure sensors, one measures p_{tank}, and the other three are assigned to p_1, p_2, and p_3. All the pneumatic components and
actuators are connected by silicone tubes (Daoguan, China) with an inner diameter of 2 mm and an outer diameter of 4 mm. When the output pressure of the pump changes, the pump power varies following the experimentally obtained law (Figure S2c). Due to these inductive components, such as solenoid valves and pumps, the high precision programmable linear power supplies are used to avoid voltage fluctuation. In all the experiments, the sampling frequency of the system is set to 1 kHz.

4.2 Structure, materials, and fabrication of exemplary actuators

The primary materials (Figure S4) for fabricating the Double Bellows and the Triple Bellows are commercial PVC tubes (Yingli Plastic Co., Ltd, China), 3D-printed frames (DSM IMAGE8200 pro, WeNext Technology Co., Ltd., China), steel wires with a diameter of 0.5 mm (LXJMGSS, China), and AB epoxy resin glue (Deli Group, China). As presented in Figure S4c, we hypothesize that the tube is linearly elastic and experimentally obtain the stiffness using the universal testing machine (68SC-2, Instron, USA).

The Double Bellows is primarily composed of two commercial bellow-shaped PVC tubes (Figure 2a and Figure S4) capped with airtight adhesive at two ends. A pair of steel wires are introduced in the middle of the Double Bellows to keep the length of the central axis constant, which makes more length change of PVC tube convert to actuator bending. To avoid mechanical instability of the PVC tube when inflated, a group of constraint rings is inserted along the actuator body to bundle these PVC tubes and steel wires. Compared with the Double Bellows, the Triple Bellows comprises three PVC tubes arranged in an equilateral triangle (Figure 3a and Figure S4). Other structural features of the Triple Bellows keep the same as that of the Double Bellows. The tube length of both the Double Bellows and the Triple Bellows is 150 mm (To improve structure stiffness, the length in the applications is 100 mm).

The fabrication of these exemplary m-SPAs contains six steps: i) Cut PVC tubes; ii) Bundle the tube with the constraint rings; iii) Fabricate the end caps and seal the tubes with AB glue; iv) Insert and fix the steel wires; v) Waiting for the glue to cure. vi) Examine the airtightness of the actuator.

4.3 Numerical analysis of the theoretical model

The dynamic model of m-SPAs Equation (1) is a first-order matrix partial differential equation, which generally has no analytical but numerical solutions. We analyze the dynamic pressures by MATLAB and SIMULINK (The MathWorks, Inc., USA). MATLAB is used to adjust stimulation parameters and control the simulation process. SIMULINK takes charge of numerical solutions by the fixed-step solver ode14x (extrapolation) with a step size of 0.001 s. The numerical solutions include p_{tank}, p_1, p_2, and p_3. The actuation frequency and pressure magnitude can be extracted from the solutions.

4.4 Calculation, characterization, and correction of mass flow

The mass flow Q_{ij} between chamber i and j depends on the pressures on both sides of the air passage and the air passage itself (Figure S3 and 8). Empirical formulas (Joshi and Paik, 2021; Joshi et al., 2021; Cheng et al., 2018; Jungong et al., 2008; Kawashima et al., 2004; KUROSHITA, 2002) and the lumped-parameter resistance model (Stanley et al., 2021) (mathematically similar to empirical formulas) have conveniently approximated the flow function of an air passage, which, however, work well only when the pressure on one side remains constant. In our actuator, the pressures in both chambers change rapidly. So we use a data-driven flow Q function for higher accuracy.

$$Q_{ij} = \Psi_{ij} (p_i, p_j) \ (p_i \geq p_j) \ (4)$$

The characterization method of flow function is presented in Supplementary Note 11. Since the opening and closing time of solenoid valves cannot be ignored under high-frequency actions, we refer to the work of
Xu et al. (Xu et al., 2017) and propose a time-based piecewise linear open degree function \(\Gamma(t) \) to obtain the actual mass flow through correction.

\[
Q = \Gamma(t) \Psi(p_{\text{high}}, p_{\text{low}}), \Gamma \propto [0, 1]
\]

(5)

The detailed correction method is presented in Supplementary Note 12.

4.5 Indicators of actuation performance

The actuation performance is primarily quantified by the following four indicators: actuation frequency \(f \), air tank pressure \(p_{\text{tank}} \) (supplied air pressure), system power \(P \), and energy consumption per cycle \(e \). The calculation methods are presented in Table 1 (See Supplementary Note 13), where the average is obtained from a time interval after transition into steady-state actuation and \(N \) is the equivalent weighted average number of solenoid valves in use for a working cycle (Figure S2d). All the experimental results in this work are obtained from seven repetitive measurements.

Table 1. Calculation of the actuation performance indicators

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Theoretical</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuation frequency (f)</td>
<td>(\bar{f})</td>
<td>(\bar{f})</td>
</tr>
<tr>
<td>Air tank pressure (p_{\text{tank}})</td>
<td>(\bar{p}_{\text{tank}})</td>
<td>(\bar{p}_{\text{tank}})</td>
</tr>
<tr>
<td>System power (P)</td>
<td>(NP_{\text{valve}} + P_{\text{pump}}(\bar{p}_{\text{tank}}))</td>
<td>(\bar{P}{\text{allvalve}} + \bar{P}{\text{pump}})</td>
</tr>
<tr>
<td>Energy consumption per cycle (e)</td>
<td>(\frac{NP_{\text{valve}} + P_{\text{pump}}(\bar{p}_{\text{tank}})}{\bar{f}})</td>
<td>(\frac{\bar{P}{\text{allvalve}} + \bar{P}{\text{pump}}}{\bar{f}})</td>
</tr>
</tbody>
</table>

4.6 Materials and fabrication of the robots in applications

The robotic fin (Figure 4b) comprises two Double Bellows and a PVC sheet (160 mm \(\times \) 75 mm \(\times \) 0.5 mm). All the frames and connectors in this application are 3D-printed (DSM IMAGE8200 pro, WeNext Technology Co., Ltd., China), including the mounting base of the force sensor (LSB201, FUTEK Advanced Sensor Technology, Inc., USA). The robotic fin, the force sensor, and the sensor mounting base are fabricated and fixed on the 6-DOFs manipulator (JAKA Zu 7, JAKA Robotics, China) to adjust and stabilize the position conveniently. Then, we immerse the robotic fin in the water tank (600 mm \(\times \) 400 mm \(\times \) 450 mm, water depth 300 mm) to investigate the actuation performance (Figure S8a).

The fabric-based soft finger (Figure S8d) is fabricated by 30D rib weft-knitted polyester fabric coated with 0.2 mm-TPU (Jiaxing Yingcheng Textile Co., Ltd, China). A laser cutter (VLS 3.50, Universal Laser Systems, USA) trims the fabric to the target CAD pattern, and then a heat-sealing machine (customized) manually seals the fabric pieces into actuators. Specific methods are referred to the work of Feng et al. (Feng et al., 2021). For the extensive application, Ecoflex 0030 (Smooth On, USA) and M 4601 (Wacker, Germany) are mixed 1:1 (mass) to cast the fiber-reinforced silicone actuator (62.1 g).

For the quadruped robot (244.1 g), a body frame connects four Triple Bellows, shown in Figure S8g. The body length of the quadruped robot is 220 mm, and each foot is 100 mm long (Figure 5b). Silicone feet (Sujie, China) are stuck on the caps of the Triple Bellows to prevent slipping.
Acknowledgements

M. Feng conceived the idea and contributed to experiments, modeling, data processing, and writing. D. Yang assisted in experiments and writing. G. Gu and C. Majidi supervised the project and contributed to the design of experiments and writing. All the authors provided feedback and agree with the final version of the manuscript.

We thank W. Wang and Y. Su for their suggestions on airflow modeling at the early stage of this work. This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 52025057 and 91948302) and the Science and Technology Commission of Shanghai Municipality (Grant No. 20550712100).

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

Please refer to https://doi.org/10.22541/au.166426480.06273183/v1 for the Supporting Information.

References

