Si$_6$C$_{18}$: A Bispentalene Derivative with Two Planar tetracoordinate Carbons

Diego Inostroza1, Luis Leyva-Parra1, Osvaldo Yañez2, J. César Cruz3, Jorge Garza-Olguín4, Victor García5, Venkatesan Thimmakondu6, and William Tiznado1

1Universidad Andres Bello
2Universidad de Las Américas
3Universidad Autónoma Metropolitana Iztapalapa
4Universidad Autonoma Metropolitana Iztapalapa
5Universidad Nacional Mayor de San Marcos
6San Diego State University

June 1, 2022

Abstract

Here we show that substituting the ten protons in the dianion of a bispentalene derivative (C$_{18}$H$_{10}$$^2-$) by six Si$^{2+}$ dications produces a minimum energy structure with two planar tetracoordinate carbons (ptC). In Si$_6$C$_{18}$, the ptCs are embedded in the terminal C$_5$ pentagonal rings and participate in a three-center, two-electron (3c-2e) Si-ptC-Si σ-bond. Our exploration of the potential energy surface identifies a triphenylene derivative as the putative global minimum. But robustness to Born-Oppenheimer molecular dynamics (BOMD) simulations at 900 and 1500 K supports bispentalene derivative kinetic stability. Chemical bonding analysis reveals ten delocalized π-bonds, which, according to Hückel’s 4n+2 π-electron rule, would classify it as an aromatic system. Magnetically induced current density analysis reveals the presence of intense local paratropic currents and a weakly global diatropic current, the latter agreeing with the possible global aromatic character of this specie.

Hosted file