Species losses, gains, and changes in persistent species are associated with distinct effects on ecosystem functioning in global grasslands

Emma Ladouceur1, Shane Blowes1, Jonathan Chase1, Adam Clark2, Magda Garbowski1, Juan Alberti3, Carlos Arnillas4, Jonathan Bakker5, Isabel C. Barrio6, Siddharth Bharath7, Elizabeth Borer8, Lars Brudvig9, Marc Cadotte10, Q. Q. Chen11, Scott Collins12, Christopher Dickman13, Ian Donohue14, Guo-Zhen Du15, Anne Ebeling16, Nico Eisenhauer17, Philip Fay18, Nicole Hagenah19, Yann Hautier20, Anke Jentsch21, Ingibjörg Svala Jónsdóttir22, Kimberly Komatsu23, Andrew MacDougall24, Jason Martina25, Joslin Moore26, John Morgan27, Pablo Peri28, Sally A Power29, Zhengwei Ren30, Anita Risch31, Christiane Roscher32, Max Schuchardt33, Eric Seabloom8, Carly Stevens34, Ciska Veen35, Risto Virtanen36, Glenda Wardle13, Peter Wilfahr37, and Stan Harpole38

1German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
2University of Graz
3Instituto de Investigaciones Marinas y Costeras (IIMyC) (UNMdP – CONICET)
4University of Toronto-Scarborough
5University of Washington
6Agricultural University of Iceland
7Atria University
8University of Minnesota
9Michigan State University
10University of Toronto Scarborough
11Groningen Institute for Evolutionary Life Sciences
12University of New Mexico
13University of Sydney
14Trinity College Dublin
15School of Life Science, Lanzhou University, South Tianshui Road 222, Lanzhou, 730000, Gansu, People’s Republic of China
16University of Jena
17University of Leipzig
18USDA-ARS Grassland Soil and Water Research Laboratory
19University of KwaZulu-Natal School of Life Sciences
20Utrecht University
21University of Bayreuth
22University of Iceland
23Smithsonian Environmental Research Center
24University of Guelph
25Texas State University
26Monash University
27La Trobe University
Abstract

Global change drivers such as anthropogenic nutrient inputs simultaneously alter biodiversity, species composition, and ecosystem functions such as aboveground biomass. These changes are interconnected by complex feedbacks among extinction, colonization, and shifting relative abundance. Here, we use a novel temporal application of the Price equation to quantify the functional contributions of species that are lost, gained, and persist under ambient and experimental nutrient addition in 59 global grasslands. Under ambient conditions, compositional and biomass turnover was high, but species losses (i.e., local extinctions) were balanced by gains (i.e., colonization). There was biomass loss associated with species loss under fertilization. Few species were gained in fertilized conditions over time but those that were, and species that persisted, contributed to net biomass gains, outweighing biomass loss. These components of community change are key to understanding the relationship between change in composition, diversity, and functioning.

Hosted file