Bioactivity-based molecular networking guided identification of guttiferone J from Garcinia cambogia as an anti-obese candidate

Zheling Feng\(^1\), Cheng Chen\(^1\), Lu Feng\(^2\), Jianzhong Zhu\(^1\), Jiali Chen\(^1\), Ruohan Lou\(^1\), Jia Liu\(^2\), Yang Ye\(^2\), and Ligen Lin\(^1\)

\(^1\)University of Macau
\(^2\)Shanghai Institute of Materia Medica Chinese Academy of Sciences

January 20, 2022

Abstract

Background and Purpose: Pharmacological intervention to induce white adipose tissue browning provides a promising anti-obese therapy. The fruits of Garcinia cambogia (Clusiaceae) have been widely applied to manage body weight. The current study aims to uncover the chemical principles responsible for the anti-obese property of the fruits of G. cambogia and investigate the underlying mechanisms. Experimental Approach: The bioactivity-based molecular networking and Oil-red O staining on 3T3-L1 and C3H10T1/2 adipocytes were applied for guided isolation. High-fat diet-induced obese mice were recruited to evaluate the anti-obese activity. Key Results: Guided by the bioactivity-based molecular networking, several polycyclic polyprenylated acylophanoglucinols were targetedly isolated from the fruits of G. cambogia with lipid lowering effect on adipocytes, including guttiferone J (GOJ), garcinol and 14-deoxygarcinol. As the most potent one, GOJ (10 \(\mu\)M) reduced lipid accumulation by 70\% and 76\% in 3T3-L1 and C3H10T1/2 adipocytes, respectively. Furthermore, GOJ (2.5-10 \(\mu\)M) activated the deacetylase Sirnun 3 (SIRT3), which, in turn, reduced the acetylation level of PPAR\(\gamma\) coactivator-1\(\alpha\) to boost mitochondrial biogenesis, and promoted uncoupling protein 1 expression and function to enhance thermogenesis, resulting in browning of adipocytes. In high-fat diet-induced-obese mice, GOJ (10 and 20 mg/Kg-1) protected against adiposity, hyperlipidemia, insulin resistance and liver lipotoxicity, through boosting SIRT3-mediated browning of inguinal white adipose tissue. Conclusions and Implications: The bioactivity-based molecular networking is a promising strategy for guided isolation of bioactive molecules, and GOJ represents a new scaffold of thermogenic inducer, which might be responsible for the anti-obese property of G. cambogia.

Hosted file
