Is Exogenous Fatty Acid Hydroperoxide Perception as Elicitor Related to Modulation of Plant Plasma Membrane Structure?

Estelle Deboever¹, Géraldine van Aubel², Valeria Rondelli³, Alexandros Koutsioumpas⁴, Marion Mathelie-Guinlet⁵, Yves Dufrêne⁵, Marc Ongena¹, Laurence Lins¹, Pierre Van Cutsem⁶, Marie-Laure Fauconnier¹, and Magali Deleu¹

¹University of Liege
²Fytofend S.A.
³Università degli Studi di Milano
⁴Heinz Maier-Leibnitz Zentrum
⁵Université catholique de Louvain
⁶Université de Namur Departement de Biologie

September 29, 2021

Abstract

Oxylipins are lipid-derived molecules that are ubiquitous in eukaryotes and whose functions in plant physiology have been widely reported. They appear to play a major role in plant immunity by orchestrating reactive oxygen species (ROS) and hormone-dependent signalling pathways. The present work focuses on the specific case of fatty acid hydroperoxides (HPOs). Although some studies report their potential use as exogenous biocontrol agents for plant protection, evaluation of their efficiency in planta is lacking and no information is available about their mechanism of action. In this work, the potential of 13(S)-hydroperoxyoctadeca-(9Z,11E)-dienoic acid (13-HPOD) and 13(S)-hydroperoxy-(9Z,11E,15Z)-octadecatrienoic acid (13-HPOT), as plant defence elicitors and the underlying mechanism of action are investigated. Arabidopsis thaliana leaf resistance to Botrytis cinerea was observed after root application with HPOs. They also activate early immunity-related defence responses, like ROS. As previous studies have demonstrated their ability to interact with plant plasma membranes (PPM), we have further investigated the effects of HPOs on biomimetic PPM structure using complementary biophysics tools. Results show that HPO insertion into PPM impacts its global structure without solubilizing it. Relationship between biological assays and biophysical analysis suggests that lipid amphiphilic elicitors that directly act on membrane lipids might trigger early plant defence events.
Abstract: Oxylipins are lipid-derived molecules that are ubiquitous in eukaryotes and whose functions in plant physiology have been widely reported. They appear to play a major role in plant immunity by orchestrating reactive oxygen species (ROS) and hormone-dependent signalling pathways. The present work focuses on the specific case of fatty acid hydroperoxides (HPOs). Although some studies report their potential use as exogenous biocontrol agents for plant protection, evaluation of their efficiency in planta is lacking and no information is available about their mechanism of action. In this work, the potential of 13(S)-hydroperoxyoctadeca-(9Z,11E)-dienoic acid (13-HPOD) and 13(S)-hydroperoxy-(9Z,11E,15Z)-octadecatrienoic acid (13-HPOT), as plant defence elicitors and the underlying mechanism of action are investigated. Arabidopsis thaliana leaf resistance to Botrytis cinerea was observed after root application with HPOs. They also activate early immunity-related defence responses, like ROS. As previous studies have demonstrated their ability to interact with plant plasma membranes (PPM), we have further investigated the effects of HPOs on biomimetic PPM structure using complementary biophysics tools. Results show that HPO insertion into PPM impacts its global structure without solubilizing it. Relationship between biological assays and biophysical analysis suggests that lipid amphiphilic elicitors that directly act on membrane lipids might trigger early plant defence events.

Keywords: Elicitor, Fatty Acid Hydroperoxide, Molecular Mechanism, Oxidative Burst, Oxylipin, Plant Defence, Plant Plasma Membrane.

Abbreviations: (13-HPOD) 13-hydroperoxy-9,11-octadecadienoic acid; (13-HPOT) 13-hydroperoxy-9,11,15-octadecatrienoic acid; (AFM) atomic force microscopy; (CMC) critical micelle concentration; (COS) chitooligosaccharides; (d$_{62}$DPPC) 1,2-dipalmitoyl-d_{62}-sn-glycero-3-phosphocholine; (DAMP)
Introduction

Since several chemical pesticides have been shown to be detrimental on human health and ecosystems, considerable research has been done to find more environment-friendly plant protection solutions (Gay, 2012; Hernández et al., 2013; Wang et al., 2013; Carvalho, 2017). Elicitors, defined as molecules able to stimulate defence responses in a host plant, are one of the emerging alternatives (Pare et al., 2005; Henry et al., 2012; Thakur and Sohal, 2013). They can be derived from plants (termed as Damage-Associated Molecular Patterns (DAMPs)) or microorganisms (referred as Microbe-Associated Molecular Patterns (MAMPs) or Pathogen-Associated Molecular Patterns (PAMPs)) (Yu et al., 2017; Malik et al., 2020). For example, flagellin (flg22) or cryptogein are a bacterial and a fungal elicitor respectively (Gómez-Gómez and Boller, 2002; Gerbeau-Pissot et al., 2014), or chemically synthesized molecules like rhamnolipids (RLs) or COS-OGA also act as elicitors (Clinckemaillie et al., 2017; Luzuriaga-Loaiza et al., 2018). They can hence be of different chemical natures like carbohydrate polymers, lipids, peptides or proteins (Boller and Felix, 2009; Thakur and Sohal, 2013; Jogaiah et al., 2019; Pršić and Ongena, 2020). Recognition of elicitors by the plant cells first triggers early defence responses among which the release of reactive oxygen species (ROS) (superoxide anion (O$_2^-$), hydrogen peroxide (H$_2$O$_2$)) and hydroxyl radical (OH), also known as the oxidative burst (Mittler, 2017; Camejo et al., 2019; Wang et al., 2019; Zaid and Wani, 2019). The perception of elicitors by plant cells further results in protection based on the activation of signalling cascades and defence mechanisms leading to the induction of plant immunity, like the systemic acquired resistance (SAR) and the induced systemic resistance (ISR) (Malik et al., 2020; Pršić and Ongena, 2020).

In addition to be a selective barrier between the cell and the extracellular medium, the plasma membrane is a sensor for modification of cellular environment and plays thus a key role in the recognition process of bioactive molecules. While most of elicitors are perceived by membrane proteic receptors, the involvement of the lipid part of the cell membrane has not been ruled out (Nimchuk et al., 2003; Deleu et al., 2018). Indeed, many danger signals or invasion patterns are recognized by specific pattern recognition receptors within PPM (Schellenberger et al., 2019; Pršić and Ongena, 2020), and some amphiphilic elicitors, like surfactin from Bacillus and RLs from Pseudomonas, have been strongly suggested to be perceived by the lipid fraction of PPM (Henry et al., 2011; Gerbeau-Pissot et al., 2014; Haba et al., 2014; Luzuriaga-Loaiza et al., 2018; Monnier et al., 2018; Herzog et al., 2020; Come et al., 2021). Very recently, it was demonstrated that the RL-triggered immune response is affected by the sphingolipid composition of the plasma membrane and thus independent of a receptor (Schellenberger et al., 2021).

Fatty acid hydroperoxides (HPOs) are amphiphilic molecules naturally produced by plants in response to (a)biotic stresses by the oxidative catabolism of polyunsaturated fatty acids. They belong to the large family of plant oxylipins (Blée, 2002; Wasternack and Feussner, 2018; Genva et al., 2019). Oxylipins are ubiquitous in the plant kingdom and can either be esterified, notably in biological membranes, or be found in free form. Among them, the best known are the jasmonates, a family of molecules including jasmonic acid (JA), its derivatives and some JA precursors such as 12-oxo-phytodienoic acid (OPDA) and 12-dinor-oxo-phytodienoic acid (dnOPDA) (Wasternack and Strnad, 2018). JA is obtained from 13-hydroperoxy-
9,11,15-octadecatrienoic acid (13-HPOT) following the successive action of various enzymes (lipoxygenase, etc.) (Deboever et al., 2020a). 13-HPOT and its dienoic equivalent, 13-hydroperoxy-9,11-octadecadienoic acid (13-HPOD), are key intermediates in the synthesis of jasmonates and other oxylipins, and have been extensively studied for their signalling properties (Deboever et al., 2020b). In the recent years, HPOs have emerged as a promising plant defence solution and their exogenous application to protect plants against phytopathogens has been considered (Granér et al., 2003; Prost et al., 2005; Deboever et al., 2020a). However, their biological activities in plant defence and hence their potential as elicitors still remain elusive. In addition, in our previous study (Deleu et al., 2019), we have shown that HPOs are able to interact with PPM lipids inducing a perturbation of their lateral organization. We have suggested that, by this interaction, HPOs could activate cellular signaling involved in plant defense mechanisms.

In the present study, we first explored the potential of exogenously applied HPOs to protect Arabidopsis thaliana plants against Botrytis cinerea by a systemic signalling mechanism. Their eliciting activity was evaluated by measuring ROS production by Arabidopsis thaliana cells in their presence. In a second part, the molecular mechanism of HPO perception by the PPM was further investigated on plant biomimetic lipid systems by using a panel of complementary biophysical tools. More particularly, we analysed the effects of HPOs on the transversal organization and on the structure of the PPM bilayer.

The relationship between the results of biological assays and the effect of HPOs on model plant plasma membrane suggests that their action on the lipids might trigger early plant defence events.

Experimental procedures

Materials

As described in our previous works (Fauconnier and Marlier, 1996; Deleu et al., 2019; Deboever et al., 2020c), HPOs were enzymatically synthetized from the reaction of LOX-1 on linoleic (13-HPOD) or linolenic acid (13-HPOT). The purity (higher than 98%) was checked by high-performance liquid chromatography. For deuterated 13-HPOD, we used only deuterated reactants and solvents. Nuclear magnetic resonance and mass spectrometry were used for a full chemical characterization of the samples (data not shown).

1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (PLPC), β-sitosterol, C16 glucosyl(β) ceramide (d18:1/16:0) (GluCer), lipoxidase from Glycine max (soybean) type I-B (LOX-1), the linoleic and α-linolenic acids, 6-Dodecanoyl-N,N-dimethyl-2-naphthylamine (Laurdan), horseradish peroxidases, luminol were purchased from Sigma-Aldrich (Belgium). 1,2-dipalmitoyl-d62-sn-glycero-3-phosphocholine (d62DPPC) was purchased from Avanti Polar Lipids (Italy). Deuterium oxide (D₂O) of 99.8% purity was purchased from ARMAR (Europa) GmbH. Chloroform and methanol were both purchased from Scharlau Lab Co. Dimethylsulfoxide (DMSO) and tri(hydroxymethyl)aminomethane (TRIS) were provided by Sigma Chemical. The ultrapure water was produced by Millipore systems available in our laboratory, the resistivity was 18.2 MΩ cm. The active substance COS-OGA was provided by FytoFend S.A. (Belgium) under the composition FytoSave® (12.5 g/L COS-OGA). Botrytis cinerea was grown on oat-based medium (25 g/L oat flour, 12 g/L agar) at room temperature.

Induction of systemic resistance

In Arabidopsis thaliana seedlings

The capacity of HPOs to trigger systemic resistance (SR) was tested on A. thaliana infected by B. cinerea according to the procedure described in (Ongena et al., 2000). HPOs were applied on the root system and the bacteria was inoculated on the leaves in order to assess the systemicity of the response. Seeds were sterilized with ethanol (70% v/v) and bleach (15% v/v) before multiple rinsing with sterile water, sowed in a square Petri Dish filled with agar medium (6-8 g/L) and transferred to a growth room at 22°C under a 16
h light/8 h dark photoperiod. After one week, seedlings were transferred to a sterile Araponics system filled with hydroponic solution (5 mL/10 L of Hydroponic Nutrient Solution 3-part Mix). After approximately 5 weeks in the growth room, the plants were transferred to 10 mL vials containing 10 mL hydroponic and kept in the dark wrapped in aluminium foil then transferred to adapt for one day before elicitation. The next day, half of the plant roots were treated in vials with 10 mL hydroponic solution supplemented with 20 mM HPOs in 1% DMSO. The other half (control) was treated with 10 mL hydroponic solution with 1% DMSO. After 24 h, four leaves of each plant were infected with B. cinerea. A 3-μL droplet containing 2 500 spores was deposited on the adaxial face of each leaf. Four days after inoculation, the disease was scored as the percentage of B. cinerea lesions having extended beyond the inoculum drop zone to produce spreading lesions (Ongena et al., 2000, 2007). Three independent experiments were carried out, with 8 plants per treatment (n=24).

On Solanum tuberosum plants

The capacity of HPOs to trigger SR was tested on Solanum tuberosum var. Bintje infected by Phytophthora infestans according to the procedure described in (Clinckemaillie et al., 2017). Plantlets of potatoes were produced in vitro, subcultured on MS medium, then delicately removed from the media and transplanted into pots containing sterilized compost. The plants were irrigated daily with Hoagland’s solution and maintained under greenhouse conditions with a photoperiod of 16 h at 20/16 °C (day/night temperature). After 4 or 5 weeks’ growth (at the five-leaflet stage), they were separated in different modalities and transferred in an incubator (Snijders, LabVision, Germany) to maintain <90% humidity. Plants were treated with 1% (v/v) of FytoSol® as positive control, containing 12.5 g L/1 of the active ingredient (COS-OGA), with 13-HPOD or 13-HPOT at a concentration of 50 mM or with water (negative control plants) by spraying the upper and lower leaf surfaces until run-off. This was performed at 11, 5 and 1 days before inoculation of plants with P. infestans. Before and after these treatments, a high relative humidity was maintained in the incubator to ensure good adsorption of HPOs/COS-OGA/water by the leaves. Subsequently, the plants were inoculated with P. infestans by spraying 1 mL of sporangial suspension (2x10^4 sporangia mL/1) on each leaf of the plant using a sterile glass sprayer (Merck). Two independent experiments were carried out, with 4 plants per treatment (n=8).

Production of H$_2$O$_2$ by Arabidopsis thaliana

On plant cell suspensions

Photoautotrophic cell suspensions from A. thaliana ecotype Landsberg ecotype were cultured on a rotary shaker at 100 rpm, in Murashige and Skoog (MS) medium (4.4 g/L) with 0.5 mg/L naphthalene acetic acid, 0.05 mg/L kinetin, pH 5.7 and maintained at 24°C with approximately 2% CO$_2$ under a 16 h/8 h light/dark photoperiod. Extracellular H$_2$O$_2$ production was assessed using luminol-dependent chemiluminescence on seven-day-old cells directly after the addition of the elicitors in the growth medium, according to the method described by Baker and Mock (Baker and Mock, 2004). Luminescence (relative light units, (RLU)) was measured every three min for 90 min. Eight technical replicates were carried out for each test compound and three independent measurements were performed (n=24). Results were expressed as means ± standard deviations of the area under the H$_2$O$_2$ production curves. ROS production values were analysed using Tukey Honest Significant Differences (THSD) test for multiple comparisons (p values < 0.1).

On foliar discs

A. thaliana plants were grown as described by Smith and Heese (Smith and Heese, 2014). For all ROS experiments, measurements were performed on 5-mm disks prepared from leaves from 4-week old plants using a method adapted from Smith and Heese (Smith and Heese, 2014). The day before the experiment, disks were placed in water in a 96 wells plate. The day of measurements, the water was replaced by 150 μL of treatment solutions (20 μg/mL horseradish POX, 0.2 mM luminol and HPO) including test compounds. Luminescence (RLU) was monitored every 3 min for 90 min. Two independent biological repetitions were obtained with six foliar disks each (6 technical replicates/treatment). Results were then expressed as means
Calcein leakage

PLPC/sito/GluCer (60:20:20) small unilamellar vesicles (SUVs) were prepared as described previously (Deleu et al., 2013, 2019; Deboever et al., 2020c). PLPC, sitosterol and GluCer in proportion 60:20:20 were dissolved in a chloroform/methanol mixture (2/1, v/v). The solvent was evaporated under a gentle stream of nitrogen to obtain a dried lipid film which was maintained under vacuum overnight. 10 mM calcein in 10 mM TRIS-HCl buffer pH 7.4 was added to hydrate the dried lipid film. The lipid dispersion was maintained at 37°C for at least 1 h and vortexed every 10 min. 5 cycles of freeze-thawing were applied to spontaneously form multilamellar vesicles. To obtain SUVs, this suspension was sonicated to clarity (5 cycles x 2 min) using a titanium probe with 400W amplitude keeping the suspension in an ice bath. Finally, generated titanium particles were removed from SUV solution by centrifuging during 10 min at 6200 rpm. The unencapsulated calcein was removed from the SUV dispersion by the Sephadex G65 mini-column separation technique (Fu and Singh, 1999). The actual phospholipid content of each preparation was determined by phosphorus assay (Bartlett, 1958) and the concentration of liposomes was adjusted for each type of experiment to 5 μM in 10 mM TRIS-HCl buffer at pH 7.4.

Fluorescence was measured as previously described in (Bartlett, 1958) with a Perkin Elmer (model LS50B) fluorescence spectrometer equipped with polarizers. Total amount of calcein release was determined by adding Triton-X100 (0.2%) to a liposome suspension that dissolved the lipid membrane without interfering with the fluorescence signals. The emission and excitation wavelengths were set at 517 nm and 467 nm, respectively. A fluorescence signal of 750 μL of SUV was first recorded as a baseline, followed by the addition of 13-HPOD/T (at t=30 sec) in 7 different concentrations while continuing the recording for 900 s. The amount of calcein released after time t was calculated according to (Shimanouchi et al., 2009):

\[
RF(\%) = 100 \left(\frac{I_t - I_o}{I_{max} - I_o} \right)
\]

where RF is the fraction of calcein released, \(I_o\), \(I_t\) and \(I_{max}\) are the fluorescence intensities measured at the beginning of the experiment, at time t and after the addition of 0.2% Triton X-100, respectively. All experiments were carried out at least three times, each time with freshly prepared SUVs.

Laurdan generalized polarization

For Laurdan generalized polarization experiments, multilamellar vesicles (MLVs) were prepared based on (Parasassi and Gratton, 1995; Deboever et al., 2020c). PLPC, sitosterol and GluCer in proportion 60:20:20 were dissolved in a chloroform/methanol mixture (2/1, v/v). HPOs were added to the lipid mixture to reach a lipid:HPO molar ratio of 5:1. The solvent was evaporated under a gentle stream of nitrogen to obtain a dried lipid film which was maintained under vacuum overnight. The resulting film was hydrated with 10 mM Tris-HCl buffer at pH 7.4 prepared from Milli-Q water and 1 μL of Laurdan solution prepared in DMSO was added to reach a final concentration of 5 nM. The lipid dispersion was maintained at a temperature well above the transition phase temperature of the lipid for at least 1 h and vortexed every 10 min.

Fluorescence of Laurdan in MLVs was monitored at various temperatures (between 20 and 50°C by steps of 5°C) with a Perkin Elmer LS50B fluorescence spectrometer. Samples were placed in 10 mm pathlength quartz cuvettes under continuous stirring and the cuvette holder was thermostated with a circulating bath. Samples were equilibrated at each temperature for 10-15 min prior to the measurements.

The excitation wavelength was set to 360 nm (slit = 2.5 nm), and at least 10 measurements of emission intensities at 440 nm and 490 nm were recorded and averaged for each sample and the blank (DMSO) at each temperature. An emission spectrum from 400 nm to 600 nm (slit = 4.5 nm) was also recorded for each...
sample-temperature combination. Generalized polarization (GP) of Laurdan was then calculated according to (Parasassi et al., 1992; Harris et al., 2002):

\[
GP = \frac{I_{440} - I_{490}}{I_{440} + I_{490}}
\]

where \(I_{440}\) and \(I_{490}\) are the blank-subtracted emission intensities at 440 nm and 490 nm, respectively. All experiments were carried out at least three times, each time with freshly prepared MLVs.

Neutron reflectometry

Neutron reflectometry (NR) measurements were performed at the MARIA neutron reflectometer (Mattauch et al., 2018) operated by Julich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum in Garching (Germany) while using custom temperature-regulated (through a connected Julabo F12-ED circulator) liquid cells (Koutsoubas, 2016). Two different wavelengths were used, 10 Å for the low-q region and 5 Å for the high-q region, and the reflected intensity has been collected at different angles, up to 0.25 Å\(^{-1}\) q values, with a 10% wavelength spread. Using a peristaltic pump combined with valves (flow rate \(\sim 0.5\) mL/min) solvent exchange was possible without moving the measuring cells from the instrument.

Specular NR measures the thickness and scattering length density (SLD) profile of layered structures along the surface normal (z). The SLD distribution along the normal, represented as \(\varphi(z)\), is specific of the chemical composition of materials along the normal and depends on the coherent nuclear scattering lengths \((b_i)\) of its constituent atoms and their number density along the normal \((n_i(z))\) so that \(\varphi(z) = |?|b_i n_i(z)\). In reflectivity data measurements, the intensity of reflected neutrons is recorded relatively to the incident beam as a function of the momentum transfer vector \((q = 4\pi \sin \theta / \lambda)\), where \(\theta\) is the incidence angle and \(\lambda\) the wavelength of incident neutrons. The variation of reflectivity as a function of momentum transfer \(R(q_z)\) is related to the square modulus of the one-dimensional Fourier transform of the SLD profile along the normal to the interface \((\varphi(q_z))\) through the relation:

\[
R(q_z) \sim (16\pi / q_z) |\rho(q_z)|
\]

Following the characterization by neutron reflectivity of silicon/solution interface, we deposited by vesicle fusion the membrane of interest (Koutsoubas et al., 2017). After its full characterization in 150 mM NaCl solutions in D\(_2\)O and H\(_2\)O, 2 \(\mu\)g of 13-HPOD/T, deuterated or not depending on the membrane studied, were injected in the measuring cell (6 mL total volume), to a final concentration lower than their critical micelle concentration (CMC = 25.4 \(\pm\) 1.9 \(\mu\)M and 24.0 \(\pm\) 1.3 \(\mu\)M for 13-HPOT and 13-HPOD, respectively, according to (Deleu et al., 2019). Reflectivity was measured after letting the systems equilibrate for 1 h, again in the two contrasts condition with 10 mM Tris (pH 7.4).

To analyse the specular reflection data, the interface is modelled as a series of parallel layers where each layer is characterized by an average SLD and a thickness. Based on these parameters, a model reflectivity profile is calculated by means of the optical matrix method (Nélot and Croce, 1980). The interfacial roughness between two consecutive layers is included in the model by the Abeles method, as described by Nevot and Croce (Nélot and Croce, 1980).

Finally, the calculated model profile is compared to the measured profile and the quality of the fit is assessed by using the \(\chi^2\) in minimum-squares method. Errors on parameters values have been estimated from the maximum variation in the acceptable fit subject to the constraints of space filling and stoichiometry. NR is a technique suited to collect structural information about the different layers of the studied membrane (Rondelli et al., 2019). Thus, the silicon support and the bulk water are seen as bulk infinite layer, the silicon oxide layer, the water layer between the silicon oxide and the membrane and the diverse hydrophilic/hydrophobic layers of the lipid membranes are modelled as defined layers with a proper thickness, roughness with respect
to the previous layer, compactness, composition and consequently contrast. Supported lipid bilayers (SLB) were formed using both the same lipid mixture as previously (PLPC/sito/GluCer in molar ratio 60/20/20) and d_{62}DPPC. Injections were done at 47°C and measurements at room temperature (RT). The reflectivity profile of the silicon support and of the samples has been measured in different contrasts (H_{2}O and D_{2}O) and data analysis was performed with the fit program MOTOFIT (Nelson, 2006). SLD used for the specific components are reported in Supplementary DataTable S1.

Atomic force microscopy

To probe the nanoscale effects of HPOs on lipid membranes, SLB (ternary mixture of PLPC/sito/GluCer (60/20/20)) were reconstructed on freshly cleaved mica substrates by allowing the fusion of a 2 mM lipid vesicles solution (V = 100 μL) at 55°C for 45 min. Samples were then left for thermalization at room temperature for 30 min without dewetting and immersed in 3 mL Tris buffer (pH 7.5).

To avoid damaging the samples, atomic force microscopy (AFM) images were obtained in the quantitative imaging (QI) mode of a JPK Nanowizard III setup, with a minimal applied force of 200 pN and a speed of 50 μm/s. Soft sharpened silicon nitride cantilevers (MSCT, Bruker) were used and calibrated before any experiment using the thermal noise method (k ˜ 0.02 N/m). HPOs, prepared in Tris buffer, were injected to reach a final concentration of 3 μM below their critical micellar concentration. AFM images were then recorded at different time points in different areas to follow the HPOs impact on the lipid bilayer.

Results

In planta protective effect of HPOs against phytopathogens

The capacity of HPOs to induce SR in A. thaliana against B. cinerea was tested under controlled conditions by treating plant roots with HPO solutions and inoculating plant leaves with the pathogen. The disease severity with HPO treatment was measured after 4 days, compared to controls (treatment with water containing 1% DMSO) and we attributed a disease severity scores from 1 to 4 representing no symptoms (score 1) to full development of the disease (score 4). Treatment with both HPOs provided similar obvious disease reduction as shown by the decreased size of the lesions (Figure 1). About 40% of the plants had no symptoms which lead to disease severity scores mainly between 1 and 2. Another host-pathogen couple (Solanum tuberosum var. Bintje infected by Phytophthora infestans) was also considered in order to check if the protective action of HPOs is pathosystem-dependent. It was found that 13-HPOT offers more than 50% protection against the pathogen (see Figure S1). Given the experimental design (treatment and infection on two different plant organs or upstream of an infection), this cannot be a direct biocidal effect but rather a systemic signalling in the plant. One can therefore wonder about the signalling mechanism initiated by HPOs and more particularly their initial perception by the plant cells and the responses they induce. HPOs were efficient in both pathosystems studied, suggesting that the mechanism of perception is not dependent on specific recognition receptors.

Perception of HPOs and early defenses responses activation

Very often, ROS production is a biphasic process with a first transient phase within minutes after the infection and a second more intense and sustained phase that can last for many hours (Wang et al., 2019). This first wave, which is linked to the activation of early defence responses, has been investigated to determine whether the two HPOs are perceived by plants and can induce an immune response.

Cell suspensions cultures are a valuable model system for studying elicitor-induced defence reactions in plants and they easily allow studying early signalling events like oxidative bursts (Khonon et al., 2011; Jogaiah et al., 2019). Here, photoautotrophic A. thaliana cell suspensions were used to detect H_{2}O_{2} production.
after treatment with HPOs. Extracellular ROS accumulation was detected using a luminol-based assay (van Aubel et al., 2016; Monnier et al., 2018). The elicitor FytoSave® was used as positive control as its active substance, COS-OGA made of pectin-derived oligogalacturonides (OGA) and chitoooligosaccharides (COS) (Cabrera et al., 2010), is known to induce a significant production of extracellular ROS at a concentration of 25 ppm (Ledoux et al., 2014; van Aubel et al., 2016, 2018). In our experiment, a range of six different concentrations (0.5 μM to 100 μM) was tested and ROS production was monitored for 90 min.

The ROS production after 13-HPOD or 13-HPOT treatment was concentration-dependent (Figure 2A). It was higher than the negative control but also higher than the positive control, for concentrations 50 μM and 100μM. In those cases, the response to 13-HPOT treatment is higher than the 13-HPOD one. Also, the oxidative burst peak occurred quicker (30 min instead of 40 min) for 13-HPOT than for 13-HPOD (Figure 2B). The same conclusion was drawn from experiments performed on foliar disks of A. thaliana, a plant model closer to the reality (see supplementary data – Figure S2).

Comparatively to COS-OGA, the kinetics of ROS production induced by HPOs in plant cells was slower (within 5 min only for COS-OGA vs 30-40 min for HPOs) but the oxidative burst lasted longer with a total duration of 60-70 min before returning to the basal level. Such long lasting response profile was also observed with synthetic RL bolaforms, for which it was suggested that their perception occurred via the lipid fraction of the plasma membrane (Bahar et al., 2016; Luzuriaga-Loaiza et al., 2018; Come et al., 2021). On the contrary, the elicitor flagellin, known to be perceived by membrane pattern recognition receptors (Meindl et al., 2000; Smith and Heese, 2014), induces a quicker oxidative burst initiated within 4-6 min with a peak at 10min (Yu et al., 2017), similarly to the OGA in the COS-OGA composition (van Aubel et al., 2013; Smith and Heese, 2014). Moreover, the induction of ROS production occurs at concentrations much higher than concentrations usually active when a proteic receptor is involved as for flagellin which still binds to its receptor at femtomolar concentrations (Meindl et al., 2000; Zhao et al., 2010). The observation of different kinetic profiles and different concentration ranges for HPOs comparatively to classical elicitors would suggest that a proteic receptor is not directly involved in their recognition. Due to the ability of HPOs to interact with PPM lipids (Deleu et al., 2019), we hypothesized that the HPOs would rather be recognized via the lipid phase of the membrane.

Changes of PPM biophysical properties induced by HPOs

The interaction of HPOs with PPM characteristic lipids has already been found to modify the lateral organization of membrane bilayer in terms of lipid domain size and distribution (Deleu et al., 2019). It is also known that the plant sphingolipid GluCer is a privileged partner for the interaction and that 13-HPOT has a higher interaction affinity than 13-HPOD.

In the present study, further analysis of the effects of HPOs interaction with lipids on PPM structure was carried out. Simplified biomimetic models with two different lipid compositions were studied, the first mimicking the PPM, namely PLPC:sito:GluCer (60/20/20), and the second made of d62DPPC, a classic deuterated model.

Effect of HPOs on membrane permeability

First, we have investigated the ability of HPOs to permeabilize model membranes by measuring the release of calcein. If the membrane is permeabilized by a bioactive molecule, the self-quenched calcein initially encapsulated within the LUV is released into the external medium and gives rise to an increase of fluorescence emission. Very little permeabilization effect was observed (values less than 10%) for both HPOs on the PLPC:sito:GluCer membrane model (Figure S3) suggesting that HPOs would not derive their mode of action from a mechanism of solubilization of the membrane or pore formation, but rather a more subtle modification of the membrane organization that could lead to the activation of a signalling cascade.
Change in bilayer fluidity induced by HPOs

The effect of HPOs on the bilayer fluidity was investigated by monitoring the lipid phase-dependent emission spectrum shift of Laurdan, a fluorescent probe that readily locates at the hydrophilic/hydrophobic interface of bilayers (Harris et al., 2002; Sanchez et al., 2007). Its fluorescence depends on the physical state of the environment. When present in a gel phase bilayer, its maximum fluorescence intensity is close to 440 nm emission wavelength. When the bilayer is in a fluid state, the Laurdan maximum fluorescence is observed at higher wavelengths (around 490 nm). This "red-shift" phenomenon is due to a higher quantity and mobility of the water molecules located around the probe. This is directly related to the lower order within the bilayer and is measured by the Generalized Polarization (GP): a decreasing GP value corresponds to a higher fluidity of the bilayer (Parasassi et al., 1991). This method has been previously applied for investigating the effect of drugs, natural herbicides or other elicitors on lipid membrane organization (Deleu et al., 2013; Sautrey et al., 2014; Lebecque et al., 2019; Furlan et al., 2020).

The effect of HPOs on PLPC:sito:GluCer MLV membrane fluidity was investigated for a range of temperatures from 20°C to 50°C (Figure 3). In presence of 13-HPOT, the Laurdan GP values decreased significantly compared to those observed on pure MLVs with no significant effect of temperature. This indicates a fluidifying effect of 13-HPOT on the bilayer. On the contrary, 13-HPOD did not induce significant change in lipid order at any temperature as its curve almost superimposes to that of pure PLPC:sito:GluCer vesicles.

Effect of HPOs on the bilayer transversal structure

The effect of HPOs on the transversal structure of PPM was analysed by NR, a technique of choice to study the transverse structure of layered samples within a few Å resolution (Mattauch et al., 2018) and to evidence the structural effects of the interaction of incoming molecules on biological membranes (Rondelli et al., 2016, 2018). Neutrons interaction with matter depends on the isotopic species. Therefore, neutron-based experiments can profit by the use of deuterated molecules to enhance the visibility of molecules within a mixed complex system. As the lipids representative of the PPM are not commercially available in their deuterated form, d_{62}DPPC was used to form SLB and to highlight the presence and location of the H-bringing HPOs within the membrane. Figure 4A-D show the reflectivity curves together with their fittings in two contrasts and the corresponding fit parameters are summarized in Figure 4E. NR spectra were not drastically changed by the addition of HPOs. However, the data analysis revealed that HPOs always insert into the outer hydrophilic leaflet of the d_{62}DPPC SLB without flipping into the inner layer attached to the silicon block (this is evident from the variation of the external polar leaflet SLD and roughness, as reported in Figure 4E). A slight modification of the SLD profiles was observed while adding 13-HPOT but not with 13-HPOD. This gave rise to a small but significant decrease of the membrane thickness (approximately 2 Å) and roughness without modification of the solvent penetration and of lipid chains SLD, i.e., no alteration of the bilayer nor external molecules deep penetration. To confront these results, obtained on a d_{62}DPPC bilayer, to a more realistic PPM model, another experiment was performed with the deuterated version of 13-HPOD and the ternary mixture of non-deuterated lipids representative of PPM. It confirms that 13-HPOD interacts with PPM SLB and localizes on top of the outer leaflet without no major change of the membrane organization as observed from SLD profile and NR spectra (Figure S4 and Table S2).

Lateral erosion of plant lipid bilayers by HPOs

To further analyse the effect of HPOs on the lipid bilayer organization, atomic force microscopy (AFM) was used to investigate their impact on the lateral nanoscale morphology of SLB. As shown in Figure 5A, the ternary mixture of plant lipids reconstituted in SLB did not reveal any phase separation within the thickness resolution limit of AFM (0.1 nm), rather homogeneous smooth patches (bright areas) distributed on the mica (dark areas). Though large patches were mainly found to cover the entire scanned area, defects in the SLB were used as a “visualization control” to confirm the presence of the lipid bilayer. Its thickness of 4-5 nm, determined by measuring section profiles on the AFM height images, is in agreement with previous studies (Figure 5B) (Dufrène and Lee, 2000; Mingeot-Leclercq et al., 2008). The presence of the lipid bilayer was
further confirmed by recording AFM force curves on areas of high vs low heights. A typical breakthrough of the lipid bilayer in the bright areas was observed while no such force signature was found in dark areas without lipid bilayers and associated with mica (Figure 5C).

After confirming the presence of the SLB, the sample was incubated with either 13-HPOT or 13-HPOD and AFM images were recorded every 10-15 min on a defined area. Incubation 13-HPOT or 13-HPOD resulted in a time-dependent alteration of the lipid patches (Figure 5D). Results showed that very small SLB patches (green arrows) disappeared after the addition of 13-HPOT, but that it had not a drastic impact on the large ones. On the contrary, 13-HPOD completely removed part of a large angular domain after 75 min (see green arrows). Nonetheless, after 75 min treatment with 13-HPOT, most of the lipid domains were thinner by approximately 2 nm as compared to the initial ones, suggesting that 13-HPOT flattened lipids or part of the upper leaflet in a time- and zone-dependent way, which was not observed for 13-HPOD (Figure 5E-F).

In brief, AFM studies revealed three major effects of HPOs on plant mimetic lipid bilayers: (i) "erosion" of angular protrusions of large lipid domains, (ii) total erosion of small domains, and (iii) reduction in the thickness of the bilayer between 0.5 and 2 nm. 13-HPOT has also a greater effect on membrane organization and bilayer thickness than 13-HPOD.

General discussion and conclusion

In the present study, we show for the first time the potential of the exogenous application of acyl-hydroperoxides 13-HPOD and 13-HPOT to protect plants against phytopathogens. Both forms of HPOs applied on *A. thaliana* roots strongly reduce the size of the lesions further to the inoculation of *B. cinerea* on leaves. The protection effect without direct contact with the phytopathogen suggests their capacity to stimulate the plant immune system. The fact that a significant protection was also obtained on potatoes, infected by the causal agent of late blight, settles their effectiveness and indicates an aspecific mode of action. Other phyto-oxylipins, such as the jasmonic acid precursor 12-oxo-phytodienoic acid and an [?]^-ketol of octadecadienoic acid were recently identified as mobile signals responsible of ISR, originated in the plant roots and travelling into the plant vasculature (Wang et al., 2020). Our results show that exogenous application of 13-HPOD and 13-HPOT on *A. thaliana* cell suspension induces an important in vitro oxidative burst, known as one of the hallmarks of elicitor recognition by the plant cells (Yu et al., 2017). Beyond their role as signals, we thus clearly demonstrate that HPOs are recognized by the plant cells triggering a signalling cascade leading to SR and plant protection against pathogens. However, it remains essential to determine whether other immune responses (such as expression of genes from JA/SA or PTI pathways) are generated in leaves when roots are treated with HPOs. Moreover, we cannot exclude that oxylipins might be transported in the xylem of plants, as traces of oxylipins have been found in aphids gut after ingestion of the phloem sap (Harmel et al., 2007). Nothing is known about the xylemic systemicity of oxylipins but, as there are not soluble in water, this seems unlikely. The possibility that HPOs application in roots just primer the plant immunity in shoots, which initiate stronger immune response when true elicitors from pathogens are perceived, can also not be ruled out. Their effectiveness in the case of a local immune induction is also not known.

The extracellular ROS production is initiated earlier and lasts longer that the one observed with well-known proteic elicitors like flagellin for which recognition phenomenon involves direct interaction with membrane proteic receptors (Gomez-Gomez and Boller, 2002). But the kinetic profile and the active concentration range are similar to the one observed for other amphiphilic lipid elicitors like surfactin and RLs (Aranda et al., 2007; Jourdan et al., 2009; Henry et al., 2011; Ma et al., 2017; Luzuriaga-Loaiza et al., 2018) for which a mechanism linked to the perception by the lipid of the plasma membrane was suggested. From our previous work (Deleu et al. 2019), we know that HPOs can interact with the lipid fraction of PPM. In the present study, NR analyses show that both HPOs are more preferably inserted in the outer leaflet of the bilayer. This interaction modifies the global morphology of the bilayer as shown by AFM where bilayer erosion is observed for both HPOs. 13-HPOT has a higher impact on the PPM structure, but does not affect the
integrity of the membrane according to the calcein release assays. Its insertion further reduces the thickness of the bilayer according to the NR and AFM data and fluidifies it more according to the Laurdan GP data than 13-HPOD. This difference between 13-HPOT and 13-HPOD could be explained by the presence of an additional double bond in 13-HPOT which gives it a greater structure rigidity. We postulate that this might force the lipids of the membrane outer leaflet to further reorganize compared to a more flexible molecule like 13-HPOD, and consequently could have a stronger impact on the dynamics of the membrane. The higher binding affinity of 13-HPOT compared to 13-HPOD for PPM bilayer (Deleu et al., 2019) could also enhance this reorganization effect.

The relationship between the higher ROS production and the higher impact on PPM lipid bilayer structure for 13-HPOT compared to 13-HPOD is in favour of our hypothesis that the PPM lipid fraction plays a key role in the recognition of HPOs giving rise to plant defence mechanisms. In the study of Sandor et al. (2016), it is demonstrated on A. thaliana and tobacco cells, that the induction of ROS by various elicitors including cryptogein, flagellin and an oligosaccharide, is concomitant to the increase in the relative proportion of membrane ordered domains (Sandor et al., 2016). According to them, the recognition of the elicitor at the plasma membrane level triggers the production of ROS which in turn reorganizes the membrane leading to an increase of ordered domains. But in the case of cryptogein, they have also suggested an inverse event sequence. Although cryptogein is known to trigger immune response, including ROS production, through the PPM-resident ELR-BAK1 receptor complex (Du et al., 2015), its capacity to interact with membrane sterols and to mechanically trap them was also demonstrated (Gerbeau-Pissot et al., 2014). The latter phenomenon was shown to induce a higher membrane fluidity stimulating ROS production (Sandor et al., 2016). In agreement with this study, our results suggest that elicitors that directly act on membrane lipid dynamics and more particularly on the membrane fluidity are able to trigger early defence events like ROS production. But the complete molecular mechanistic view between the change of the membrane structure and the occurrence of the oxidative burst is not yet identified. The formation of specific membrane lipid domains recruiting key signalling proteins (Gronnier et al., 2018) could be implicated. From our previous studies (Deleu et al., 2019; Deboever et al., 2020c), we also know that HPOs modify the organisation of lipid domains and that plant membrane sphingolipids are privileged partners for HPO interaction. Therefore, the presence of glycosyl-inositol-phosphoryl-ceramides (GIPCs), the plant sphingolipids exclusively located in the outer leaflet of PPM and involved in the inter-leaflet coupling (Gronnier et al., 2016), could also play a role in the signal transduction.

In addition to their eliciting activity evidenced in the present study, HPOs also retain some antimicrobial activity against various phytopathogens (Deboever et al., 2020c). The dual effect of HPOs as well as the possibility to produce them at low cost (Fauconnier and Marlier, 1996) make them attractive compounds to be used as alternative to conventional pesticides for plant protection.

Author Contributions: Experiments design, E.D., M.D., V.R., A.K., M.M.M., M.O. and G.V.A.; experiments and data analysis, E.D., M.D., M.M.M., V.R. and G.V.A.; HPOs synthesis, and purification, E.D.; writing—original draft preparation, E.D.; writing—review and editing, all authors.

Data availability statement: The data supporting the findings of this study are available from the corresponding author, Magali Deleu, upon request.

Funding: E.D. is supported by a Fonds pour la formation a la Recherche dans l’Industrie et dans l’Agriculture (FRIA) grant (5100617F) from the FRS-FNRS (Fonds National de la Recherche Scientifique, Belgium). M.D., M.O. and L.L. thank the FRS-FNRS for their position as Senior Research Associates and for grant CDR (J.0014.08 and J.0086.18 projects). Work at the Universite Catholique de Louvain was supported by the National Fund for Scientific Research (FNSR) and the Research Department of the Communaute Francaise de Belgique (Concerted Research Action). Y.F.D. is a Research Director at the FNRS. This research was funded also by the ‘Medical Biotechnologies and Translational Medicine Department’ of the ‘Università degli Studi di Milano’, grant number ‘PSR2018’ to V.R. This article was published with the support of the “Fondation Universitaire de Belgique”.
Acknowledgments: The authors thank the financial support via the project from University of Liege (ARC-FIELD project 13/17-10). Authors also thank beamline MARIA Julich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ, Garching, Germany) for allocation of beamtime. Acknowledgements are also due to FytoFend’s research team for their logistic support in bioassays. Final thanks to Jelena Prisc for technical support and nice discussion on ISR and ROS experiment data measured in planta.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

Harris FM, Best KB, Bell JD. 2002. Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order. Biochimica et Biophysica Acta - Biomembranes 1565, 123–128.

6 Figure legend

Figure 1 - Disease severity distribution of B. cinerea on leaves from root-treated A. thaliana plants grown hydroponically. Treatments included control and two oxylipins: 13-HPOD and 13-HPOT. Scoring: 1, no symptoms; scoring 2, lesions smaller than 0.5 cm; scoring 3, lesions larger than 0.5 cm; scoring 4, beginning
of sporulation on lesions. Results are based on three independent experiments (n=3). Standard deviation between the experiments is less than 7%.

Figure 2 - Early defense responses detection induced by HPOs in A. thaliana cell suspensions. (A, B) Production of ROS by controls and HPOs treated cells. (A) Mean area under H$_2$O$_2$ production curves for 90 min measurements. Data are based on three independent repetitions (n=3) and error bars are the standard deviations of means. (B) One example of kinetics of ROS production for 13-HPOT, 13-HPOD, MS negative control and COS-OGA positive control.

Figure 3 - Evolution of Laurdan generalized polarization as a function of temperature for PLPC:sito:GluCer MLVs (50 μM) in the absence or presence of HPOs (lipid:HPO molar ratio 5:1).

Figure 4 - (A,B) Reflectivity curves (symbols), relatives fits (lines) and (C,D) obtained SLD profiles of the d$_{62}$DPPC membrane investigated in two contrasts before (green and orange) and after (bleu and red) the addition of 13-HPOT (left) and 13-HPOD (right) (lipid:HPO molar ratio 5:1). (E) Fit parameters of the d$_{62}$DPPC SLB alone and after the interaction with 13-HPOD/T. Parameters (Thickness, scattering length density (SLD), solvent penetration (Solv p) and roughness) correspond to a contemporary fit performed on H$_2$O and D$_2$O solutions with 10mM Tris buffer (pH 7.4). Errors have been estimated by changing the parameters up to a variation of two in the χ^2. For each parameter, the maximum error found was kept. Measurements were carried out at room temperature.

Figure 5 - HPOs lead to lipids erosion. A) AFM topographic image of a PLPC:sito:GluCer (60:20:20) supported lipid bilayer (SLB), deposited on mica, and recorded in 10 mM Tris buffer at pH 7.5. B) Height profile of the SLB along the dashed line in (A) allowing the measurement of the sample thickness e. C) Force curves recorded on a bright area in (A) confirming the presence of the SLB, with a thickness e. D) AFM topographic images before (t_0) and after injection of 13-HPOT or 13-HPOD, at increasing incubation times. Scale bar 1 μm, same colour scale than in (A). E-F) Height density profiles recorded on small areas, defined as dashed squares in (D), of the PLPC:sito:GluCer bilayer before and after 75 min - incubation with 13-HPOT and 13-HPOD respectively.
E

<table>
<thead>
<tr>
<th>Solvent</th>
<th>SLB</th>
<th>SLB + 13-HPOT</th>
<th>SLB + 13-HPOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heads in</td>
<td>10</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Chains in</td>
<td>18</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>Chains out</td>
<td>20</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Heads out</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Thickness (Å)</td>
<td>1,75</td>
<td>1,75</td>
<td>1,75</td>
</tr>
<tr>
<td>Sub. P (Å²)</td>
<td>32</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td>Sub. v (Å²)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Roughness (Å)</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

- 6.36 (D,O)
- 0.56 (H,O)
<table>
<thead>
<tr>
<th>Compound</th>
<th>SLD</th>
<th>Compound</th>
<th>SLD</th>
<th>Compounds</th>
<th>SLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>-0.56</td>
<td>PLPC heads</td>
<td>1.93</td>
<td>d₂₀-DPPC heads</td>
<td>1.75</td>
</tr>
<tr>
<td>D₂O</td>
<td>6.36</td>
<td>PLPC chains</td>
<td>-0.41</td>
<td>d₂₀-DPPC chains(90)</td>
<td>7.66</td>
</tr>
<tr>
<td>Si</td>
<td>2.07</td>
<td>Sitosterol</td>
<td>0.22</td>
<td>d₂₀-DPPC chains(70)</td>
<td>5.85</td>
</tr>
<tr>
<td>SiO₂</td>
<td>3.41</td>
<td>Glucosylceramide</td>
<td>-0.42</td>
<td>13-HPOT(1C)HDOM</td>
<td>-0.56</td>
</tr>
</tbody>
</table>

![Diagram](image1)

![Diagram](image2)