Patterns in the Juan Fernandez fur seal faecal microbiome

Constanza Toro Valdivieso¹, Frederick Toro², Samuel Stubbs³, Eduardo Castro-Nallar², and Barbara Blacklaws¹

¹University of Cambridge
²Universidad Andres Bello Departamento de Ciencias Biologicas
³London School of Hygiene and Tropical Medicine Faculty of Epidemiology and Public Health

May 6, 2021

Abstract

As apex predators, pinnipeds are considered to be useful bioindicators of marine and coastal environments. Endemic to a small archipelago in the South Pacific, the Juan Fernandez fur seal (JFFS) is one of the less-studied members of the pinniped family Otariidae. This study aimed to characterize the fecal microbiome of the JFFS for the first time, in order to establish a baseline for future studies of host-microbial-environment interactions and monitoring programs. During two consecutive reproductive seasons, 57 fecal samples were collected from 7 different JFFS colonies within the Juan Fernandez Archipelago, Chile. Bacterial composition and abundance were characterized by sequencing the V4 region of the 16S rRNA gene. The overall microbiome composition was dominated by five phyla: Firmicutes (40 %), Fusobacteria (30 %), Bacteroidetes (22 %), Proteobacteria (6 %) and Actinobacteria (2 %). Alpha diversity was higher in Tierras Blancas. However, location was not found to be a dominant driver of microbial composition. Interestingly, the strongest signal in the data was a negative association between the genera Peptoclostridium and Fusobacterium, which explained 29.7 % of the total microbial composition variability between samples. The genus Peptoclostridium has not been reported in other pinniped studies and its role here is unclear, with interpretation challenging due to a lack of information regarding microbiome functionality in marine mammals. As a first insight into the JFFS fecal microbiome, these results contribute towards our understanding of the natural microbial diversity and composition in free-ranging pinnipeds.

Hosted file

3.A

![Bar chart showing the average relative abundance of different phyla](image)

3.B

![Heatmap showing the relative abundance of different families](image)