Downregulation of high-affinity potassium and sodium symporter gene, EcHKT1;1, in Eucalyptus roots enhances salt tolerance

BALASUBRAMANIAN Aiyar1, Selvakesavan Rajendran kamalabai1, Shamili Krishnaraj1, Sandhya M C1, Usha Jayachandran1, Sudha Selvam1, Siva kumar V1, Sowmiya Kottaipalayam-Somasundaram1, Suryaprabha A C1, Vijaya Kumar Waman Bachpai1, Hassen Gherbi2, Claudine Franche2, and Mathish Nambiar-Veetil1

1Institute of Forest Genetics and Tree Breeding
2French National Research Institute for Sustainable Development

April 4, 2021

Abstract

Engineering for restricted root Na+ uptake could potentially enhance salt tolerance in Eucalyptus. High-affinity K+ transporters (HKTs) have been implicated in Na+ uptake from the external medium as in the case of TaHKT2;1 or in the unloading of Na+ from xylem like in AtHKT1;1. To rapidly determine the in planta role of EcHKT1:1, composite transgenics in which EcHKT1:1 was specifically downregulated via RNAi in the roots were generated. Compared to the controls that failed to survive at 350 mM NaCl, 33 \% of the composite transgenic plantlets generated using the EcHKT1;1 silencing construct were able to tolerate up to 400 mM NaCl. In these composite transgenics, EcHKT1:1 downregulation ranged from 37 \% to 74 \%. The average shoot to root ratio of sodium was 4.9 folds lower than the controls indicating restricted translocation of Na+ to the shoots. Relative expression analysis in the leaves of two non-transgenic genotypes contrasting for their salt tolerance also showed downregulated EcHKT1:1 expression in the tolerant clone. The study thus determined that EcHKT1:1 is a major gene determining Na+ transport from the roots to shoots. This study also demonstrated the utility of the composite transgenic approach for screening genes conferring salt tolerance in tree species.

Hosted file
