VIROLOGICAL AND IMMUNOLOGICAL FEATURES OF SARS-COV-2 INFECTED CHILDREN WITH DISTINCT SYMPTOMATOLOGY

Nicola Cotugno, Alessandra Ruggiero, Giuseppe Pascucci, Francesco Bonfante, Maria Petrara, Sonia Zicari, Loredana Cifaldi, Paola Zangari, Stefania Bernardi, Laura Cursi, Chiara Medri, Veronica Santilli, Emma Manno, Donato Amodio, Giulia Linardos, Livia Piccioni, Maria Barbieri, Daniela Perrotta, Andrea Campana, Daniele Donà, Carlo Giaquinto, Cactus Study Team, Carlo Concato, Petter Brodin, Paolo Rossi, Anita De Rossi, and Paolo Palma

1Bambino Gesù Pediatric Hospital
2Istituto Zooprofilattico Sperimentale delle Venezie
3University of Padova Faculty of Medicine and Surgery
4University of Rome Tor Vergata
5Karolinska Institute

March 16, 2021

Abstract

BACKGROUND: Despite SARS-CoV-2 immunizations have started in most countries, children are not currently included in the vaccination programs, thus it remains crucial to define their anti-SARS-CoV-2 immune response in order to minimize the risk for other epidemic waves. This study seeks to provide a description of the virology ad anti-SARS-CoV-2 immunity in children with distinct symptomatology. METHODS: Between March and July 2020, we recruited 15 SARS-CoV-2 asymptomatic (AS) and 51 symptomatic children (SY), stratified according to WHO clinical classification. We measured SARS-CoV-2 viral load using ddPCR and qPCR in longitudinally collected nasopharyngeal swabs samples. To define anti-SARS-CoV-2 antibodies we measured neutralization activity and total IgG load (Diasorin). We also evaluated antigen-specific B and CD8+T-cells, using a labelled S1+S2 protein and ICAM expression, respectively. Plasma protein profiling was performed with Olink. RESULTS: Virological profiling showed that AS had lower viral load at diagnosis (p=0.004) and faster virus clearance (p=0.0002) compared to SY. Anti-SARS-CoV-2 humoral and cellular response did not appear to be associated with the presence of symptoms. AS and SY showed similar titers of SARS-CoV-2 IgG, levels of neutralizing activity, and frequency of Ag-specific B and CD8+T-cells. Whereas pro-inflammatory plasma protein profile was associated to symptomatology. CONCLUSION: We demonstrated the development of anti-SARS-CoV-2 humoral and cellular response with any regards to symptomatology, suggesting the ability of both SY and AS to contribute towards herd immunity. The virological profiling of AS suggested that they have lower virus load associated with faster virus clearance.
Affiliations: 1 Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO) Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy; 2 Chair of Pediatrics, Dept. of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy; 3 Laboratory of Experimental Animal models, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy; 4 Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy; 5 Department of Laboratories, Division of Virology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy; 6 Department of Pediatric Emergency, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy; 7 Department of Mother and Child Health, University of Padova, Padova, Italy; 8 Department of Woman’s and Children Health, Karolinska Institutet, Stockholm, Sweden.

First sharing authorship

RUNNING TITLE (43 characters / 44): VIRO-IMMUNO FEATURES OF SARS-COV-2 CHILDREN

*Corresponding author:
Paolo Palma, MD, PhD,
Head of the Research Unit in Congenital and Perinatal Infections, Academic Department of Pediatrics, Division of Immune and Infectious Diseases
IRCCS Bambino Gesù Children’s Hospital
Address: Piazza S. Onofrio, 4- 00165 Rome, Italy
Phone: +3906668592455
fax: +390668592508
e-mail: paolo.palma@opbg.net

WORD COUNT: 2752

TABLES: 1

FIGURES: 3

SUPPLEMENTARY TABLES: 1

SUPPLEMENTARY FIGURES: 1

SUPPLEMENTARY INFORMATION FILE: 1

CACTUS STUDY TEAM: Lorenza Romani, MD, Paola Pansa, MD, Sara Chirichiu, MD, Andrea Finocchi, MD, PhD, Caterina Cancrini, MD, PhD, Laura Lancella, MD, Maia De Luca, MD, Renato Cutrera, MD, Libera Sessa, PhD, Elena Morrocchi, PhD, Lorenza Putignani, PhD, Francesca Calò Carducci, MD, Maria A. De Ioris, MD, Patrizia D’Argentio, MD, Marta Ciofi degli Atti, MD, and Carmen D’Amore, MD.

Hosted file
Fig. 1

AUC AS = 57.7
AUC SY = 259.1

AUC AS = 54
AUC SY = 251.3
Fig. 2

A	SARS-CoV-2 IgG	SARS-CoV-2 PRNT
Diagnosis | | |
Late phase | | |

B | gated on IgD-CD27+ CD19+ B cells |

C | % SARS-CoV-2 B cells |

D | gated on CD3+CD8+ T cells |

E | % CD8+ mICAM+ |

F | tSIC of CD8- mICAM+ |

SARS-CoV-2 IgG SARS-CoV-2 PRNT

% SARS-CoV-2 B cells

SIC of CD8- mICAM+

AS SY

PE - S1+S2 SARS-CoV-2

SSC-A

PE - mICAM-1 gated on CD3+CD8+ T cells

% CD8+ mICAM+

tSIC of CD8- mICAM+

p=0.0034

p=0.0004

Late phase Diagnosis

Positive Negative