Minimal changes in the B- and T-cell compartments of school-aged children with haploinsufficiency of filaggrin: The Generation R Study

Kirsten Looman1, Minke van Mierlo2, Menno van Zelm3, Chen Hu4, Liesbeth Duijts5, Johan de Jongste2, Tamar Nijsten2, Luba Pardo6, Jessica Kiefte7, Henriëtte Moll5, and Suzanne Pasmans2

1Erasmus University Medical Center
2Erasmus MC
3Central Clinical School, Monash University and Alfred Hospital
4Erasmus Universiteit Rotterdam
5Erasmus Medical Center
6Erasmus MC University Medical Center Rotterdam
7LUMC

December 10, 2020

Abstract

Background: Mutations in the filaggrin gene (FLG) affect epidermal barrier function and increase the risk of atopic dermatitis (AD). We hypothesized that FLG mutations affect immune cell composition in a general pediatric population. Therefore, we investigated if school-aged children with and without FLG mutations have differences in immune cell numbers. Methods: This study was embedded in a population-based prospective cohort study, the Generation R Study, and included 523 children of European genetic ancestry aged 10 years. The most common FLG mutations in the European population (R501X, S1085CfsX36, R2447X and S3247X) were genotyped. Additionally, 11-color flow cytometry was performed on peripheral blood samples to determine helper T (Th), regulatory T (Treg) and CD27+ and CD27- memory B cells. Sensitivity analysis was performed in 102 AD cases, assessed by parental questionnaires. Results: FLG mutations were observed in 8.4\% of the total population and in 15.7\% of the AD cases. Children with any FLG mutation had higher Th22 cell numbers compared to FLG wild-type children. Children with and without FLG mutations had no difference in Th1, Th2, Th17, Treg or memory B cell numbers. Furthermore, in children with AD, FLG mutation carriership was not associated with differences in T- and B-cells or their subsets. Conclusions: School-aged children with FLG mutations have higher Th22 cell, which might suggest an immunological defense mechanism to an altered skin barrier function. No associations between Th or Treg cells and FLG mutations suggests that FLG mutations do not otherwise affect immune composition in a general pediatric population.
Word count: 2488

Number of figures: 3

Number of tables: 1

Electronic repository: 1 table, 2 figures

Author names and affiliations

Kirsten I.M. Looman1,2*, Minke M.F. van Mierlo3*, Menno C. van Zelm4, Chen Hu1,3, Liesbeth Duijts5,6, Johan C. de Jongste1,5, Tamar Nijsten3, Luba M. Pardo3, Jessica C. Kieft-de Jong7, Henriëtte A. Moli2, Suzanne G.M.A. Pasmans3

* Authors denote equal contribution.

1 The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands. 2 Department of General Pediatrics, Erasmus MC, University Medical Center Rotterdam- Sophia Children’s Hospital, Rotterdam, the Netherlands. 3 Department of Dermatology, Erasmus MC, University Medical Center Rotterdam-Sophia Children’s Hospital-Center of Pediatric Dermatology, Rotterdam, the Netherlands. 4 Department Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia. 5 Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands. 6 Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands. 7 Department of Public Health and Primary Care, Leiden University Medical Center/LUMC Campus, The Hague, The Netherlands.

Corresponding author:

Suzanne G.M.A. Pasmans, Department of Dermatology-Center of Pediatric Dermatology, Erasmus MC University Medical Center Rotterdam- Sophia Children’s Hospital, Sp-1540, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.

Conflict of Interest Statement:

The Generation R Study is conducted by Erasmus MC University Medical Center Rotterdam in close collaboration with the School of Law and Faculty of Social Sciences of Erasmus University Rotterdam, the Municipal Health Service Rotterdam Metropolitan Area, the Rotterdam Homecare Foundation, and the Stichting Trombosbedienst & Arsenlaboratorium Rijnmond. The Dept Immunology of the Erasmus MC funded the immunological measurements. LD received funding from the European Union’s Horizon 2020 research and innovation programme (LIFECYCLE, grant agreement No 733206, 2016; EUCAN-Connect grant agreement No 824989; ATHLETE, grant agreement No 874583). MCvZ is supported by the Australian National Health and Medical Research Council (NHMRC, Senior Research Fellowship 1117687). All authors declare that no competing interests exist. The Department of Dermatology of the Erasmus MC University Medical Center Rotterdam received an unrestricted grant from Micreos Human Health, the Netherlands.

Funding statement

LIFECYCLE, grant agreement No 733206, 2016; EUCAN-Connect grant agreement No 824989; ATHLETE, grant agreement No 874583; Australian National Health and Medical Research Council, Grant/Award Number: 1117687; European Union’s Horizon 2020 research and innovation programme, Grant/Award Number: 733206; European Union’s Horizon 2020 co-funded programme ERA-Net on Biomarkers for Nutrition and Health (ERA HDHL), Grant/Award Number: 696295. The Department of Dermatology of the Erasmus MC University Medical Center Rotterdam received an unrestricted grant from Micreos Human Health, The Netherlands.

ABSTRACT
Background: Mutations in the filaggrin gene (FLG) affect epidermal barrier function and increase the risk of atopic dermatitis (AD). We hypothesized that FLG mutations affect immune cell composition in a general pediatric population. Therefore, we investigated if school-aged children with and without FLG mutations have differences in immune cell numbers.

Methods: This study was embedded in a population-based prospective cohort study, the Generation R Study, and included 523 children of European genetic ancestry aged 10 years. The most common FLG mutations in the European population (R501X, S1085CfsX36, R2447X and S3247X) were genotyped. Additionally, 11-color flow cytometry was performed on peripheral blood samples to determine helper T (Th), regulatory T (Treg) and CD27+ and CD27- memory B cells. Sensitivity analysis was performed in 102 AD cases, assessed by parental questionnaires.

Results: FLG mutations were observed in 8.4% of the total population and in 15.7% of the AD cases. Children with any FLG mutation had higher Th22 cell numbers compared to FLG wild-type children. Children with and without FLG mutations had no difference in Th1, Th2, Th17, Treg or memory B cell numbers. Furthermore, in children with AD, FLG mutation carriernesship was not associated with differences in T- and B-cells or their subsets.

Conclusions: School-aged children with FLG mutations have higher Th22 cell, which might suggest an immunological defense mechanism to an altered skin barrier function. No associations between Th or Treg cells and FLG mutations suggests that FLG mutations do not otherwise affect immune composition in a general pediatric population.

KEYS MESSAGE

This study in a general pediatric population showed that filaggrin haploinsufficiency is associated with higher Th22, but not with other B- and T-cell subsets. FLG mutations did not affect immune cell composition in a subset of children with AD. Therefore, FLG mutations pose a risk to allergy development, but do not directly affect or confound immune measurements in children with atopic dermatitis.

INTRODUCTION

Filaggrin is a filament-associated protein that is encoded by the Filaggrin gene (FLG), and is an important contributor to the preservation of the skin barrier. Approximately 10% of the European population is heterozygote carrier of a disrupting mutation in FLG. Both complete loss-of-function and reduced functional activity of filaggrin lead to destruction of the stratum corneum (SC) and to skin barrier dysfunction. This barrier dysfunction due to FLG mutations is presumed to be caused by lower numbers of tight junctions, reduced density of the protein corneodesmosin and impaired maturation and excretion of lamellar bodies in the epidermis which are important in maintaining cell-to-cell integrity.

Failure in barrier function through mutations in FLG results in increased skin permeability for percutaneous transfer of exogenous particles including allergens and pollutants including an increased permeability of the skin for percutaneous protein transfer. Accordingly, FLG mutations are the strongest genetic risk factor for atopic dermatitis (AD), predisposing to a form of AD that starts in early infancy and persists into adulthood. Previous meta-analysis showed that FLG haploinsufficiency results in an odds ratio (OR) of 3.12 for AD. In addition, FLG mutations in AD are associated with a higher incidence of skin infections or superinfections such as eczema herpeticum and a higher likelihood of having asthma, inhalant or food allergies.

The increased permeability of the skin as a result of FLG mutations is thought to affect immune responses and maturation of adaptive immune cells. Filaggrin is also expressed in the thymus, the primary lymphoid organ in which T cells are formed. Hence, FLG mutations potentially affect the peripheral immune cell compartment through effects in skin and thymus, and previous studies observed higher γδT17, T helper (Th) 17 in mice bi-allelic for FLG disruption. A case study reported higher numbers of circulating thymus-emigrated regulatory T (Treg) cells, Th2 in with 6 AD patients with a heterozygote FLG mutation. Another study with 2 heterozygous, 2 homozygous and 1 compound heterozygous AD patient showed increased Th17
cells in FLG -mutation group. On the other hand, literature on the role of B cell dysregulation in AD is scarce and conflicting. It can be hypothesized that mutations in FLG can affect B-cell numbers due to skewing of the Th-cell population.

Because of the function of filaggrin in skin barrier tissue and in thymus, the presence of FLG mutations might be a contributor to the shaping of T - and B cell maturation in children. However, no studies on this association have been performed in the general pediatric population and only case studies have been performed in AD patients. Therefore, we here studied the associations between common FLG mutations in the European population and immune cell numbers, as determined using with 11-color flow cytometry, within a population-based birth cohort study including a subgroup of AD patients.

METHODS

Study design

This study was embedded within the Generation R Study, a prospective birth cohort study located in Rotterdam, the Netherlands. The Medical Ethical Committee of the Erasmus MC, University Medical Center Rotterdam approved the study (MEC-2012-165). Written informed consent was obtained from parents or legal representatives of all children. We included all children with European genetic ancestry and information on filaggrin mutation (homozygous, compound heterozygous, heterozygous or wild type) and information on at least one of the immune cell outcomes. This resulted in a total number of 523 children (Figure 1).

Our subgroup of children with AD, defined as physician-diagnosed eczema from parental questionnaires obtained at the child’s age of 10 years (‘Was your child ever diagnosed by a physician with atopic dermatitis’, ‘yes; no’) consisted of 102 subjects.

FLG genotype

DNA samples obtained from umbilical cord blood were genotyped by modified Taqman allelic discrimination assays with the use of primers as described previously. The following 4 FLG mutations were identified: R501X (rs61816761), S1085CfsX36 (rs41370446), R2447X (rs138726443), and S3247X (rs150597413). Children were classified as having a FLG mutation if they were homozygous, compound heterozygous or heterozygous for any of the four mutations. Children without any of the four mutations were classified as wild type.

Immune cell numbers

Peripheral blood samples from children were obtained at the age of 10 years. Absolute counts of CD3+ T cells and CD19+ B cells per μL blood were determined with diagnostic lyse-no-wash protocol and detailed immunophenotyping was performed with 11-color flow cytometry (LSRII Fortessa, BD Biosciences). We determined naive (CD45RO-CCR7+), effector memory RO-positive T cells (TemRO; CD45RO+CCR7-) and effector memory RA-positive T cells (TemRA; CD45RO-CCR7+) within CD4+ and CD8+ lineages. Within Treg cells, the differentiation in naive (CD45RA+) and memory (CD45RA-) was determined. Finally, the following T helper (Th) cell subsets (CD4+CD45RA+) were determined after exclusion of Treg cells: Th1 (CCR6-CXCR3+CCR4+), Th2 (CCR6-CXCR3-CCR4+), Th17 (CCR6+CXCR3-CCR4+CCR10+), Th17.1 (CCR6+CXCR3+CCR4+) and Th22 (CCR6+CXCR3-CCR4+CCR10+). In addition CD27+ and CD27-IgG+, IgA+, IgE+CD19+CD38dimIgD memory B cell subsets were defined. Gating strategies for immune cell determination were published previously.

Statistical Analyses

First, characteristics of the study population were determined, stratified for FLG mutations. P-values for determining differences between the categorical variables between the two groups were calculated with chi-squared tests. Next, median cell numbers with interquartile range (IQR) were determined. Differences in cell numbers between children with and without FLG mutations were determined with the non-parametric Mann-Whitney U tests. Sensitivity analyses on the associations of FLG genotype with immune cell numbers were
performed within children who were diagnosed with AD. No adjustment for multiple testing was performed because of strong correlation between the immune cells studied. Statistical analyses were performed with SPSS version 21.0 (IBM Corp.) and R version 3.3.3 (R Foundation for Statistical Computing).

RESULTS

Study population

Characteristics of the study population are presented in Table 1. Within the total group of 523 children with European ancestry, filaggrin mutations were detected in 44 (8.4%) children, including 3 biallelic mutations (2 compound heterozygous and 1 homozygous). The proportion of patients with AD was lower in the wild-type group compared to the group with FLG mutations (20% versus 42%; p<0.01). Within the atopic dermatitis population, 15.7% children had a FLG mutation, including one biallelic mutation (homozygous). No differences were observed between other atopic diseases, including asthma, inhalant and food allergy and FLG mutation status (data not shown).

Higher Th22 cell counts in children with FLG mutations

Children with FLG mutation had higher Th22 cell numbers compared to children of the wild-type population (Figure 2A, eTable1). The median cell number within the FLG mutation group was 5.60/μL (IQR 4.04;8.94) and within the wild-type group 4.54/μL (IQR 2.50;7.38, p =0.03). In contrast, when studying this association in the atopic dermatitis population, no significant associations were observed (eFigure 1A).

No associations between Th1, Th2, Th17 and Treg and FLG mutations

No differences in median cell numbers between the FLG mutation and wild type group were observed for Th1, Th2, Th17 and Treg (Figure 2A, eTable 1). This was similar in the sensitivity analyses that only included children with atopic dermatitis (eFigure 1A). No differences in median cell numbers between the FLG mutation and the wild type group were observed for the effector memory CD4+ and CD8+ T cell subsets: naive, Tcm, TemRA, TemRO (Figure 2B, eFigure 1B).

No associations between memory B cells and FLG mutations

No differences in median cell numbers between the FLG mutation and the wild type group were observed for total B cells and naive mature B cells (eTable 1). In addition, no associations between FLG mutations and the following CD27+ and CD27- memory B cell subsets were observed: IgA+, IgE+, IgG+, IgM+ (Figure 3). Similarly, no changes were observed in the sensitivity analyses, which only included children with atopic dermatitis (eFigure 2, eTable 1).

DISCUSSION

In this population-based study among children of European genetic ancestry, we observed a prevalence of 8.4% for FLG mutations. In addition, we demonstrated that children with FLG mutations had higher Th22 cell numbers than children without FLG mutations. In contrast, the Th1, Th2, Th17, Treg and memory B cell numbers were comparable between children with and without FLG mutations. In addition, among children with AD, those with or without FLG mutations had no differences in B or T cell subsets.

Comparison with literature and interpretation

All previous studies on FLG mutations and immune cell numbers have been performed within mice models or smaller numbers of AD patients.10-12,23 This is the first study that provides insight in the role of FLG mutations on immune cell numbers in school-aged children of a general population. The setting of this study within a population-based pediatric cohort study is unique to study the association of FLG on immune cell numbers in a general population.

In line with a previous study in mice, we observed higher Th22 cell numbers in children with FLG mutations than in to children with wild type FLG alleles. 23 Th22 cells are characterized by the production of IL-22 and contributes to skin integrity.24,25 Moreover, IL-22 is known for its role in the defense of different pathogens.
in the skin by the production of antimicrobial proteins. In AD, acute skin lesions are associated with an upregulated Th22 immune response. We speculate that the observed higher number of Th22 cells is an immunological defense mechanism to the damaged skin barrier. Nevertheless, future studies should confirm this finding. When studying Th22 numbers only in AD children, no differences were observed between both groups. This is could be explained by the fact that children with AD have higher Th22 independent of their FLG genotype. In addition, the expression of the protein filaggrin is decreased in AD which can cause Th22 alterations through skin barrier dysfunction independent of FLG mutation status.

Unfortunately, literature on the effect of FLG mutations on the numbers of Th22 in AD is lacking.

In contrast with small previous case studies in AD, we did not observe differences in Th2, Th17 and Treg cell numbers between children with and without FLG mutations both in the total study population and in the subgroup of patients with AD. The associations of Th2, Th17 and Treg cell numbers with filaggrin in previous studies were explained by increased TSLP activity due to impaired skin barrier and impaired thymus functioning. In the thymus, an altered filaggrin expression affects maturation of T cells and induces dendritic cells to stimulate the differentiation of naive Treg cells into functionally different Treg cells. The discrepancies between previous studies and our current study could be explained by differences in investigated populations and species. The mice studies studied FLG null mutations, in which no expression of filaggrin is present. This is in contrast with our population, encompassing mainly haploinsufficient children which leads to a 50% reduction in filaggrin expression. In addition, FLG knockdown skin equivalents in previous studies could represent a different immunological setting than is present in human skin. Furthermore, it is likely that previous results on immune cell numbers in AD populations are affected by disease severity. Namely, immune cells in active AD skin can induce downregulation of filaggrin protein expression in the skin independent of FLG mutations, subsequently affecting immune cell composition. Although we do not have information on disease severity in our AD population, this study included a relatively healthy cohort in which we expect relatively mild AD. A more severe AD phenotype has been linked to homozygous and compound heterozygous FLG mutation phenotype. In addition, activated immune cells in more active AD skin can in itself downregulate filaggrin protein expression in the skin independent of FLG mutations and thereby affect skin barrier function and subsequently immune cell alteration. In accordance, a previous study in AD patients observed that circulating Treg cell numbers were associated with AD activity and not with FLG genotype. In addition, we previously showed that children with AD had higher Th17 and Treg memory cell numbers. Therefore, alteration in immune cell numbers is probably not only dependent on FLG mutation genotype, but also on AD severity and epigenetic and environmental factors that affect these two, as our data suggest.

In addition, we did not observe differences in memory B cell numbers between children with and without FLG mutations, nor any associations between memory B cell numbers and AD in our previous study. No previous studies have investigated B cell subsets in relation to FLG mutations. Possibly, T cells are more affected by FLG mutations than B cells because of the effects of filaggrin in the thymus.

Methodological considerations

A major strength is that this study investigated the association between FLG genotype and a large panel of B and T cells in the general population for the first time. We had detailed and extensive information on immune cell numbers from 11-color flow cytometry and obtained objective information on genetic ancestry. However, the following limitations need to be addressed. First, the AD population for the sensitivity analyses was relatively small which could have limited the power in the statistical analyses. Nevertheless, in comparison to previous studies, only including a maximum of 6 AD patients with FLG mutations, this is the largest study on FLG mutations in both the general population and AD patients. Second, our AD population was defined by ever having physician diagnosed AD before or at the age of 10 years. Therefore, it is likely that a subset of the children has outgrown AD at the age of 10 and this might affect their immunophenotype. In addition, the use of questionnaires for AD diagnosis could have introduced recall bias. Third, as mentioned previously, our study included the four most common FLG mutations in the European population. To prevent misclassification, we selected children with genetic European ancestry for the current study. Although the
choice for including the most common FLG mutations in European populations is in line with previous studies11,12, other less frequent FLG mutations could exist in low numbers since up to 113FLG mutations resulting in premature protein termination have been described. A recent study including patients with AD and Ichthyosis Vulgaris (IV), showed that screening the entire encoding region of FLG for mutations led to an improvement of the diagnostic yield.30 Furthermore, biallelic genotypes were only present in 3 children of the study population and therefore not studied separately. Since homozygous or compound heterozygous mutations lead to complete absence of filaggrin expression, these mutations might have different effects on immune cell numbers compared to heterozygous FLG mutations which lead to 50% reduction in filaggrin expression.1 Therefore, studies investigating biallelic mutations compared to heterozygous FLG mutations and wild type FLG are needed. Furthermore, as this is the first study in a general cohort addressing the association between FLG mutation and immune cell numbers, future studies are needed for validation of our results.

In conclusion, within the general population, school-aged children with FLG mutations have higher Th22 cell numbers. Furthermore, children with and without FLG haploinsufficiency did not differ in other B and T cell subsets. This suggests that with age, other factors such as environmental exposure contribute to risk that FLG mutations poses to the development of allergy.

ACKNOWLEDGMENTS

We gratefully acknowledge the contribution of children and parents, general practitioners, hospitals and midwives, and pharmacies in pharmacies in Rotterdam. We thank the following parties for financially supporting our work: IFECYCLE, grant agreement No 733206, 2016; EUCAN-Connect grant agreement No 824989; ATHLETE, grant agreement No 874583; Australian National Health and Medical Research Council, Grant/Award Number: 1117687; European Union’s Horizon 2020 research and innovation programme, Grant/Award Number: 73206; European Union’s Horizon 2020 co-funded programme ERA-Net on Biomarkers for Nutrition and Health (ERA HDHL), Grant/Award Number: 696295. The Department of Dermatology of the Erasmus MC University Medical Center Rotterdam received an unrestricted grant from Micreos Human Health, The Netherlands. The funders had no role in the design or conduct of the study; the collection of the data and analyses; the interpretation of data; the preparation and review or approval of the manuscript; or the decision to submit the manuscript.

ETHICAL APPROVAL STATEMENT

The study was conducted according to the principles of the Declaration of Helsinki. The Medical Ethical Committee of the Erasmus MC, University Medical Center Rotterdam approved the study (MEC-2012-165). Written informed consent was obtained from parents or legal representatives of all children.

REFERENCES

TABLES

Table 1. Descriptives of the study population

<table>
<thead>
<tr>
<th>Child characteristics</th>
<th>Total population (n=523)</th>
<th>Wildtype population (n=479)</th>
<th>FLG mutation population (n=44)</th>
<th>P-value</th>
<th>Missing in total study population (N, %)</th>
<th>Atopic dermatitis (n=102)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (N, %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>280 (53.5)</td>
<td>256 (53.4)</td>
<td>24 (54.5)</td>
<td>1.0</td>
<td>0.0</td>
<td>48 (47.1)</td>
</tr>
<tr>
<td>Male</td>
<td>243 (46.5)</td>
<td>223 (46.6)</td>
<td>20 (45.5)</td>
<td></td>
<td>0.0</td>
<td>54 (52.9)</td>
</tr>
<tr>
<td>FLG mutations (N, %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wildtype</td>
<td>479 (91.6)</td>
<td>479 (100.0)</td>
<td>–</td>
<td></td>
<td></td>
<td>86 (84.3)</td>
</tr>
<tr>
<td>1 or more mutations</td>
<td>44 (8.4) +</td>
<td>–</td>
<td>44 (100.0)</td>
<td></td>
<td></td>
<td>16 (15.7)</td>
</tr>
<tr>
<td>Type FLG mutations (N, %)§</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1085CfsX36 (rs41370446)</td>
<td>22 (4.2)</td>
<td>22 (4.2)</td>
<td>–</td>
<td>0.0</td>
<td>7 (6.9)</td>
<td></td>
</tr>
<tr>
<td>R2447X (rs1387264)</td>
<td>6 (1.1)</td>
<td>6 (1.1)</td>
<td>–</td>
<td>0.2</td>
<td>1 (1.0)</td>
<td></td>
</tr>
<tr>
<td>R501X (rs61816761)</td>
<td>18 (3.5)²</td>
<td>18 (3.5)²</td>
<td>–</td>
<td>0.4</td>
<td>9 (9.0) ++</td>
<td></td>
</tr>
<tr>
<td>S3247X (rs150597413)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>–</td>
<td>0.4</td>
<td>0 (0.0)</td>
<td></td>
</tr>
<tr>
<td>Ever physician diagnosed atopic dermatitis (N, %)§</td>
<td>102 (22.2)</td>
<td>86 (20.4)</td>
<td>16 (42.1)</td>
<td>0.004</td>
<td>12.0</td>
<td>102 (100.0)</td>
</tr>
<tr>
<td>Total population</td>
<td>Total population</td>
<td>Total population</td>
<td>Total population</td>
<td>Sensitivity analyses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 1</td>
<td>Table 1</td>
<td>Table 1</td>
<td>Table 1</td>
<td>Table 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>represents the child and maternal characteristics for the study population stratified for FLG mutations.</td>
<td>represents the child and maternal characteristics for the study population stratified for FLG mutations.</td>
<td>represents the child and maternal characteristics for the study population stratified for FLG mutations.</td>
<td>represents the child and maternal characteristics for the study population stratified for FLG mutations.</td>
<td>represents the child and maternal characteristics for the study population stratified for FLG mutations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Values are based on the non-imputed dataset and represented as number (%)</td>
<td>Values are based on the non-imputed dataset and represented as number (%)</td>
<td>Values are based on the non-imputed dataset and represented as number (%)</td>
<td>Values are based on the non-imputed dataset and represented as number (%)</td>
<td>Values are based on the non-imputed dataset and represented as number (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-squared tests were conducted to examine possible differences in baseline characteristics between the different genotypes.</td>
<td>Chi-squared tests were conducted to examine possible differences in baseline characteristics between the different genotypes.</td>
<td>Chi-squared tests were conducted to examine possible differences in baseline characteristics between the different genotypes.</td>
<td>Chi-squared tests were conducted to examine possible differences in baseline characteristics between the different genotypes.</td>
<td>Chi-squared tests were conducted to examine possible differences in baseline characteristics between the different genotypes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abbreviations: FLG, filaggrin gene; N, number; ++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Including 3 biallelic mutations (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity analyses</td>
<td>Sensitivity analyses</td>
<td>Sensitivity analyses</td>
<td>Sensitivity analyses</td>
<td>Sensitivity analyses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 1</td>
<td>Table 1</td>
<td>Table 1</td>
<td>Table 1</td>
<td>Table 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>represents the child and maternal characteristics for the study population stratified for FLG mutations.</td>
<td>represents the child and maternal characteristics for the study population stratified for FLG mutations.</td>
<td>represents the child and maternal characteristics for the study population stratified for FLG mutations.</td>
<td>represents the child and maternal characteristics for the study population stratified for FLG mutations.</td>
<td>represents the child and maternal characteristics for the study population stratified for FLG mutations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Values are based on the non-imputed dataset and represented as number (%)</td>
<td>Values are based on the non-imputed dataset and represented as number (%)</td>
<td>Values are based on the non-imputed dataset and represented as number (%)</td>
<td>Values are based on the non-imputed dataset and represented as number (%)</td>
<td>Values are based on the non-imputed dataset and represented as number (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-squared tests were conducted to examine possible differences in baseline characteristics between the different genotypes.</td>
<td>Chi-squared tests were conducted to examine possible differences in baseline characteristics between the different genotypes.</td>
<td>Chi-squared tests were conducted to examine possible differences in baseline characteristics between the different genotypes.</td>
<td>Chi-squared tests were conducted to examine possible differences in baseline characteristics between the different genotypes.</td>
<td>Chi-squared tests were conducted to examine possible differences in baseline characteristics between the different genotypes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abbreviations: FLG, filaggrin gene; N, number; ++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Including 3 biallelic mutations (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity analyses</td>
<td>Sensitivity analyses</td>
<td>Sensitivity analyses</td>
<td>Sensitivity analyses</td>
<td>Sensitivity analyses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 1</td>
<td>Table 1</td>
<td>Table 1</td>
<td>Table 1</td>
<td>Table 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>represents the child and maternal characteristics for the study population stratified for FLG mutations.</td>
<td>represents the child and maternal characteristics for the study population stratified for FLG mutations.</td>
<td>represents the child and maternal characteristics for the study population stratified for FLG mutations.</td>
<td>represents the child and maternal characteristics for the study population stratified for FLG mutations.</td>
<td>represents the child and maternal characteristics for the study population stratified for FLG mutations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Values are based on the non-imputed dataset and represented as number (%)</td>
<td>Values are based on the non-imputed dataset and represented as number (%)</td>
<td>Values are based on the non-imputed dataset and represented as number (%)</td>
<td>Values are based on the non-imputed dataset and represented as number (%)</td>
<td>Values are based on the non-imputed dataset and represented as number (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-squared tests were conducted to examine possible differences in baseline characteristics between the different genotypes.</td>
<td>Chi-squared tests were conducted to examine possible differences in baseline characteristics between the different genotypes.</td>
<td>Chi-squared tests were conducted to examine possible differences in baseline characteristics between the different genotypes.</td>
<td>Chi-squared tests were conducted to examine possible differences in baseline characteristics between the different genotypes.</td>
<td>Chi-squared tests were conducted to examine possible differences in baseline characteristics between the different genotypes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abbreviations: FLG, filaggrin gene; N, number; ++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Including 3 biallelic mutations (2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE LEGENDS

Figure 1. Flow chart of participants included in the study.

Abbreviations: Th, helper T cell; Treg, regulatory T cell.; Tcm, central memory T lymphocytes; TemRA, effector memory RA-positive T lymphocytes; TemRO, effector memory RO-positive T lymphocytes

Figure 2. Absolute numbers of blood T cell subsets stratified by Filaggrin Gene mutation status

Figure 2A shows the median (IQR) cell count per μL of blood for Th and Treg cell numbers stratified for FLG mutation. Figure 2B shows the median (IQR) cell count per μL of blood for CD4+ and CD8+ effector memory T cell numbers stratified for FLG mutation. Abbreviations: IQR, interquartile range; Tcm, central memory T lymphocytes; TemRA, effector memory RA-positive T lymphocytes; TemRO, effector memory RO-positive T lymphocytes; Th, helper T cell; Treg, regulatory T cell. * denotes a two-sided P-value <0.05. Supplementary Table 1 and 3 show absolute numbers and p-values.

Figure 3. Absolute numbers of blood memory B cell subsets stratified by Filaggrin Gene mutation status

Figure 3 shows the median (IQR) cell count per μL of blood for B memory cell numbers stratified for FLG mutation. Abbreviations: IQR, interquartile range; Ig, Immunoglobulin. Supplementary Table 2 shows absolute numbers and p-values.
<table>
<thead>
<tr>
<th>Cell type</th>
<th>Median cell count (cells/µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgM only</td>
<td></td>
</tr>
<tr>
<td>CD27- IgG+</td>
<td></td>
</tr>
<tr>
<td>CD27+ IgG+</td>
<td></td>
</tr>
<tr>
<td>CD27- IgE+</td>
<td></td>
</tr>
<tr>
<td>CD27+ IgE+</td>
<td></td>
</tr>
<tr>
<td>CD27- IgA+</td>
<td></td>
</tr>
<tr>
<td>CD27+ IgA+</td>
<td></td>
</tr>
</tbody>
</table>

Population

- **Wildtype**
- **Filaggrin**

![Bar chart showing cell counts](chart.png)