Optogenetic tools for manipulation of cyclic nucleotides, functionally coupled to CNG-channels

Thilo Henss, Jatin Nagpal, Shiqiang Gao, Ulrike Scheib, Alessia Pieragnolo, Alexander Hirschhäuser, Franziska Schneider-Warne, Peter Hegemann, Georg Nagel, and Alexander Gottschalk

1Goethe-Universität Frankfurt am Main
2University College Cork
3University of Würzburg
4NUVISAN ICB GmbH
5Università degli Studi di Padova
6Philipps-Universität Marburg
7University of Freiburg
8Humboldt University of Berlin

October 7, 2020

Abstract

Background and Purpose
The cyclic nucleotides cAMP and cGMP are ubiquitous second messengers participating in the regulation of several biological processes. Interference of cNMP signalling is linked to multiple diseases and thus is an important component of pharmaceutical research. The existing optogenetic toolbox in C. elegans is restricted to soluble adenylyl cyclases, the membrane-bound Blastocladiella CyclOp and hyperpolarizing rhodopsins, yet missing are membrane-bound photoactivatable adenylyl cyclases and hyperpolarizers on the basis of K+ currents.

Experimental Approach
For the characterization of the photoactivatable nucleotidyl cyclases, we expressed the proteins alone or in combination with cyclic-nucleotide gated channels in C. elegans muscle cells and cholinergic motor neurons. To investigate the extent of optogenetic cNMP production and the ability of the systems to de- or hyperpolarize the cells, we performed behavioural analyses (locomotion, muscle contraction) and measured the cNMP content in vitro.

Key Results
We implemented Catenaria CyclOp as a new tool for cGMP production, allowing fine-control of cGMP levels. As photoactivatable membrane-bound adenylyl cyclases, we established YFP::BeCyclOp(A-2x) and YFP::CaCyclOp(A-2x), enabling more specific optogenetic cAMP signalling compared to soluble ACs. For the hyperpolarization of excitable cells by K+ currents, we introduced the cAMP-gated K+ channel SthK from Spirochaeta thermophila with either bPAC or BeCyclOp(A-2x), and the Blastocladiella emersonii cGMP-gated K+ channel BeCNG1 with BeCyclOp.

Conclusion and Implications
We established a comprehensive suite of optogenetic tools for cNMP manipulation for the nematode, which will be useful for applications in many cell types, including sensory neurons which use mainly cGMP as second messenger, and for potent hyperpolarization using K+ ions.

Hosted file
BeCNG1::YFP

BeCycloP::SL2::mCherry

BeCycloP and BeCNG1 in body wall muscle

$\tau \approx 0.45 \text{ s}$

$n = 25-32$

Mean body length [%]

before stimulation after