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Abstract

Calculating spatial ranges of species and individuals is a crucial problem throughout ecology. However, sample size biases can be

strong, and defining range boundaries can be difficult. These hurdles can be overcome by calculating areas without calculating

boundaries. The first step is to algorithmically define a graph that connects the spatial points where observations have been

made. The routine generates a small number of short edges that form a pattern resembling a mosaic. The edge lengths are

summed, squared, divided by the edge count, and multiplied by a known constant to obtain a total area estimate for the shape.

This non-parametric mosaic area method can work with irregular outlines and clumped point distributions. It is more accurate

than convex hull, kernel density, and hypervolume estimation according to simulation analyses. Mosaic area calculations can

be used in areas ranging all the way from conservation biology to morphometrics.

Abstract

Calculating spatial ranges of species and individuals is a crucial problem throughout ecology. However,
sample size biases can be strong, and defining range boundaries can be difficult. These hurdles can be
overcome by calculating areas without calculating boundaries. The first step is to algorithmically define a
graph that connects the spatial points where observations have been made. The routine generates a small
number of short edges that form a pattern resembling a mosaic. The edge lengths are summed, squared,
divided by the edge count, and multiplied by a known constant to obtain a total area estimate for the shape.
This non-parametric mosaic area method can work with irregular outlines and clumped point distributions.
It is more accurate than convex hull, kernel density, and hypervolume estimation according to simulation
analyses. Mosaic area calculations can be used in areas ranging all the way from conservation biology to
morphometrics.

INTRODUCTION

One of the most fundamental problems in theoretical ecology is estimating the extent of a shape in two-
dimensional space from point data. Two categories of data are relevant: occurrences of species and of
individuals.

Species ranges are important at large scales because geographic range patterns are a bedrock of biogeography
and macroecology, telling us about such things as provincialism (Kreft & Jetz 2010) and latitudinal diver-
sity gradients (Lawrence & Fraser 2020). Estimating ranges based on expert opinion, species distribution
modelling, or otherwise is of great importance in conservation biology (Maréchaux et al. 2017).

At the scale of individuals, home ranges have been studied intensively by wildlife biologists for decades
(Burt 1943). The availability of large data sets derived from GPS technology calls the value of the concept
into question (Kie et al. 2010), but interspecific comparisons of home range data are of such broad interest
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that this information remains relevant. For example, the allometry of home range size is a classical topic in
macroecology (Kelt 2001).

Shape areas also come up in the field of niche modelling, which addresses high-dimensional spaces in addition
to two-dimensional spaces (Blonder et al. 2014; Junker et al. 2016; Qiao et al. 2016). Additionally, the field
of multivariate morphometrics is relevant: estimating the area of occupancy of a morphospace by points
representing species or individuals is fundamentally the same problem. It has often been tackled in the past
by computing statistics that are not explicitly spatial, such as mean pairwise distances (Foote 1991), because
high-dimensional spaces are often considered. However, the connection is clear.

The full list of subjects that rely on area estimation is presumably much larger. Given the breadth and depth
of interest in the topic, it comes as no surprise that a plethora of methods has been proposed. The most
simple is to grid observations and count occupied squares. Gridded data have been used extensively and for
many years in macroecology (Simpson 1964). Under the name ”area of occupancy”, they are still used for
threat status evaluation (IUCN Standards and Petitions Committee 2019) by the International Union for
the Conservation of Nature (IUCN). This approach is not without merits, because occupancy can be used to
estimate population size (He 2012). However, the values are scale-dependent, and gridding will underestimate
if sampling is sparse relative to the scale of interest (Hartley & Kunin 2003).

Another simple alternative is to compute a convex hull around the observations, i.e., to create a minimum
convex polygon, which was a popular approach in wildlife biology for many years (Hayne 1949). Convex hulls
also tend to underestimate, although they will overestimate if there are holes in distributions or if there are
large outliers. But likewise, the IUCN continues to use this method for determining the ”extent of occupation”
of a species, a second major criterion for threat status evaluation (IUCN Standards and Petitions Committee
2019). Indeed, both approaches are still considered to be central by conservation biology researchers, not
just the IUCN (Smith et al. 2020).

Nonetheless, field-based ecologists are strongly cognizant of bias in convex hull areas, so alternatives such
as kernel density estimation have long been commonplace in that area (Worton 1989). The IUCN guidelines
mention this approach only in passing (IUCN Standards and Petitions Committee 2019). A hybrid method
called local convex hull nonparametric kernel estimation also is used by wildlife biologists, but its performance
has been questioned (Lichti & Swihart 2011).

There are many methods other than kernel density estimation, some quite sophisticated. Recently, for ex-
ample, computation of hypervolumes (Blonder et al. 2014) has become popular with niche modellers. This
method assumes the data are bivariate normal or elliptical in their distribution, which is problematic and
has been critiqued (Qiao et al. 2016), and which some researchers have tried to address (Jarviset al. 2019).
However, the method’s popularity earns it serious attention. Meanwhile, palaeobiologists have used other
methods such as computing maximum great circle distances. This approach makes sense when the data
follow a linear trend (Foote et al. 2008), but it has the drawback of putting aside most of the data points.

In any event, many existing approaches have three major flaws addressed with the new method proposed
here. First, they can systematically underestimate or overestimate, depending on their properties. Consistent
accuracy is a rare property. Second, they may not be particularly accurate when the data points form clumped
or irregular patterns. Finally, methods that depend on a series of flexible options and parameters yield results
that are indecisive and therefore not very interpretable.

As I will explain, all three problems can be solved by creating a network of points that resembles a mosaic
and using the edge lengths to obtain an area estimate. This method, which has been implemented in an R
package called mosaic , has a variety of additional applications. For example, areas of overlap between ranges
are directly computable, areas of multi-dimensional shapes can be approximated, and the method allows for
identifying outliers by breaking long edges.

Ecologists have used graph theory in the past, but only when working on selected topics such as landscape
analysis (Foltête et al. 2020). The method outlined here is unrelated to any of this work. For example,
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existing methods that concern area estimation are founded on entirely different theory (Keith, Spring &
Kompas 2019).

Before detailing the new approach, it is important to mention what this paper is and is not about. The goal
is to estimate range area, not range shape. However, mosaic patterns are more intuitive approximations of
range shapes than are convex hulls because they need not be convex. More importantly, range area per se is
of central concern to biogeographers, macroecologists, allometricians, niche modellers, and even the IUCN.
Second, this not a comparative benchmarking analysis. The only goal is to show that the method performs
well, not to definitively prove that it outperforms every proposed alternative. Thus, comparisons will be
limited to three things that are of general interest: convex hulls, kernel density estimators, and hypervolumes.
Finally, many readers will have come to expect that every paper on range estimation methods will be graced
with many equations and framed in terms of complex and most often parametric process models. This is not
one of them. Instead, I will argue that a simple method should be taken seriously because it makes sense
and it works.

MATERIAL AND METHODS

Requisite graph theory

The lengths of the edges in a mosaic graph M are used to obtain a single area estimate. Specifically, the
procedure is to sum the lengths, square the sum, divide by the number of edges e to obtain a value notated
LM

2/e , and then multiply the value by a constant derived below. The equation is implemented by the
mosaic function mgraph .

A minimum spanning tree (MST) could be used for the same purpose. I discuss this idea in more detail
later. MSTs are well-known and can be computed by using any of several algorithms, including a classic
one proposed by Kruskal (1956). Shape area does scale tightly to the proposed function of the MST’s edge
lengths. For example, supposep points (= vertices) are perfectly spaced on a square grid with the grid squares
having edges of length a , yielding pa 2 as the shape’s area. Keeping in mind that there are always p – 1
edges in an MST, the sum is (p– 1) a ; the square is (p – 1)2a 2; and that divided by p is close top a 2 no
matter what the MST’s shape.

However, real-world patterns are not grids. So in order to generalise, we need to switch from regular patterns
to arbitrary distributions and discuss the theory of mosaic graphs. In a mosaic, (1) each point is connected
to at least two others, and (2) no two points remain directly connected if some other point connects to both
of them. Isolated triangles at the edges of the mosaic are allowed by this rule. However, on average, each
empty loop (mosaic piece) is an octagon, there are four edges per piece, and there are five edges for every
four points.

To understand why, note that adding any point inside an n -gon making up a mosaic piece either splits it
or increases its edge count by one (Fig. 1). Suppose A is new, with nearest neighbours B and C. If B and
C are adjacent, the A–B and A–C edges will be retained but the B–C edge will be discarded, increasing
the mosaic piece’s size. If not, then the B–A–C edges will form a wall between two new pieces. Any larger
pattern will have a greater risk of splitting. Thus, the growth and splitting processes will always push mosaic
pieces towards a point count that happens to be balanced around eight (caption of Fig. 1).

Whenever a piece grows, a double junction forms at point A and an edge is removed. A double junction is
still created in the equally likely splitting case, but the junctions at B and C each add one edge. On average,
then, a new point creates one double junction and increases the edge count (degree) of one other point. The
degree of a point rarely goes past three because any new point close to a triple junction will likely pair with
two of the three edges leading to it, resulting in the loss of one edge.

Thus, on average, half of the points in a mosaic are of order two and half of order three. If the order is two
there is one edge per point overall, as in a simple loop, and if three, there are 1.5 per point. Therefore, the
ratio of edges to points is 1.25:1, or five to four, and of points to edges, 0.8. Because every edge inside a
mosaic is shared by two pieces by definition, there are four edges per piece on average. Thus, there are 3.2
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points per piece. These predictions are easily confirmed by simulation using the mosaic assembly algorithm
described below.

Area estimation

So, how does all of this relate to the square of the sum of lengths divided by the edge count,LM
2/e , and

the estimate of a shape’s overall area, A ? Suppose that the average mosaic piece resembled a square, not
an octagon, but also with a perimeter eight times the average edge length a . Each side would be 2a long
and the area would be 4 a 2. The overall area across the graph would therefore be the piece count times 4a
2. In this limited case, A is justLM

2/e because there are four edges per 2 x 2 rectangle on average: given 25
rectangles, the area is 100 a 2; e = 4 x 25 = 100;LM = 4 x 25 a = e a = 100a ; and LM

2/e = 100 a 2 = A .

Because the pieces actually average out to octagons, it might seem that the area of each one would be the
area of a regular octagon, which is 2 (1 + 20.5) a 2 = 4.828a 2. Thus, we might estimate A as 4.828/4LM
2/e = 1.207LM

2/e . However, the maximal size of any polygon is reached when it expands in all directions
to become regular (because it most closely approximates a circle). No matter what the construction process,
polygons subject to any kind of randomness must be smaller. Thus, the 4.828 figure may be too high.

Nonetheless, simulations provide no evidence to support this hypothesis. A good explanation is that the
average edge in a mosaic abuts a larger-than-average piece by definition. For example, if half of the mosaic
consists of 6-edge pieces and half of 10-edge pieces, the average edge abuts a shape of (62 + 102)/16 = 8.5
edges, not eight. The larger a piece, the more closely it approximates a circle, the shape having the lowest
perimeter-to-area ratio: a square with a perimeter of eight has an area of four, whereas a circle with the
same perimeter (circumference) C has an area ofC 2/(4 pi) = 5.093. This effect seems to cancel out the
overestimation due to irregularity in polygon shapes, and as a result, throughout the rest of this paper I
employ the 4.828/4 = 1.207 regularisation constant.

Turning briefly to MSTs, which can be computed using the mosaicpackage’s tgraph function, each includes
about 4/5 as many edges as a mosaic because the edge:point ratio is nearly one in a large MST. However,
an MST’s total length should be less than 4/5 of the corresponding mosaic’s length because an MST should
avoid many long edges. Perhaps, the MST on average simply avoids the longest out every five edges. It can
do this because there are four points for every five edges in the mosaic (see above), and there is a near 1:1
ratio of edges to points in an MST. However, the choice may come down to only two edges because the others
can’t be avoided: if the points form a line, the MST must either cross from the left and leave out the last
edge or vice versa. The longer segment when a line is subdivided at random comprises 3/4 of the length on
average, so the MST’s length should be (3 + 1/4)/5 = 65% that of the mosaic’s. Thus, if LT is the length
of the MST, then instead of A = 1.207LM

2/e we would predictA = 1.207/0.652LT
2/e = 2.857LT

2/e .
However, in practice, MST-based area estimates are highly problematic because the 0.65 constant seems to
vary in simulation according to the shape of the object: for example, it is higher for circles and rings, and
actually close to 0.8. Therefore, an MST-based approach is not recommended.

Mosaic algorithm

The divisive algorithm implemented by the mosaic package’s function mgraph produces mosaics with small
sums of edge lengths, and is as follows. (1) All points (= vertices) are connected to all other points. (2) The
edges are ordered from longest to shortest and inspected in turn. (3) If (a) the two connected points i andj
are both connected to a third point and if (b) i andj are each connected to at least three points in total,
then the edge is broken. If not, then it is kept.

For example, suppose there is a triangle. No edges can be broken because no point is connected to more
than two others. If instead there are four points, at first each of them is connected to three others, so the
longest edge (say, between points 1 and 4) is examined and discarded. Points 2 and 3 are now still triple
junctions. Furthermore, each connects to the other via both 1 and 4. Therefore, the edge between 2 and 3 is
also broken, resulting in a quadrilateral.

Two examples of mosaics produced by this algorithm are shown in Figs. 2A and B. As predicted, the number
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of edges connecting to each point is most often two, frequently three, occasionally four, and very rarely five
or more. Lines very rarely cross. The algorithm occasionally creates a line at the outline of the overall shape
that connects two pieces instead of belonging to a piece itself. There happens to be an example at the lower
right of Fig. 2A. The method handles internal gaps in ranges well specifically because it rarely draws an
edge across a gap, as long as there are enough surrounding points to complete a short circuit (Fig. 2B).
Drawing squares around the edges makes it easier to visualise the contribution of each edge to the overall
area estimate (Figs. 2C, D).

Details of implementation

The mosaic algorithm requires O(p 3) comparisons where p is the point (= vertex) count. It can be speeded
up to O(p 2) by only examining edges connecting nearby pairs. Specifically, if i and j are the endpoints, then
ifi is one of the 20-odd nearest neighbours of j , the edge should be examined; and vice versa. The reason for
the cutoff of 20 is that in the final mosaic, no matter how computed, edges are usually short and points are
always sparsely connected (Fig. 2). This algorithm will skip an edge if there are two or more large and tight
clusters of points each having more points than the cutoff, in which case the user needs to decide whether
a higher one should be imposed. The neighbours-only algorithm speeds up the calculations so much that a
mosaic of 400 points can be arranged within about a second on a laptop computer. A simulation producing
1000 sets of 20-point mosaics takes about four seconds.

Outliers and long edges can of course inflate area estimates. A good, simple means of handling this problem
is to exploit the preceding algorithm. Instead of only examining edges if either point is in the neighbourhood
of the other point, one can require that each point is in the other’s neighbourhood. This ”mutual neighbour”
criterion leads to removing edges that go to individual outliers or small clusters of outliers, in addition to
long edges between large groups of outliers. It is used as the default in the analyses reported here.

Although computing a high-dimensional mosaic graph is trivial, the multiplication and summation procedure
only yields a sensible estimate if there are two dimensions. A good solution is to compute mosaic areas
for all pairs of dimensions; multiply them; and raise the value to the 1/P power where P is the number
of pairs. For example, in two dimensions the power is 1, and in three it is 1/3 because there are three
pairs. This is analogous to projecting a high-dimensional shape on to each side of a hypercube, averaging
the projected areas, and using that as a proxy for the shape’s hypervolume. Although irrelevant to most
ecological problems, this potential implementation makes the mosaic approach more useful in trait space
analysis and morphometrics.

Mosaic hulls

As mentioned, mosaics can be illustrated simply by drawing the graphs (Figs. 2A, B), with the addition
of squares around the edges helping to understand how the area calculation works (Figs. 2C, D). However,
these plots are not as intuitive as convex hulls, which are simple filled polygons – and are misleading when
shapes are actually convex, which is routinely true of large, real-world data sets. Computing mosaic graphs
makes it possible to replace convex hulls with hulls that allow for convexity. The procedure, which is used
by the mhull function in the mosaic package, starts by choosing the most extreme point in one direction
along one axis or the other, and by recording which point is to the immediate left of this one. The rest of the
algorithm is as follows. Suppose that the last-visited point is A, the current point is B, and B is connected
by an edge to A, C, and D. (1) Points like C and D, but not A, are examined. (2) The angles between B and
neighbours like C and D are computed. (3) The points are ordered relative to the angle of a line going back
from B to A, and the next one to the right (say C) is selected. (4) Step 1 is revisited (so B is replaced with
C). (5) The algorithm terminates when the first point is reached again, but only on the occasion that it is
reached from the point to its left.

Kernel density, convex hull, and hypervolume estimates

Two-dimensional kernel density estimates (KDEs) were generated using thekde2d function in R’s MASS
library (Venables & Ripley 2002). Default settings were used, so the smoothing kernel was Gaussian and the
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bandwidth was determined by the normal reference method. Note that a large number of kernel functions
exist as alternatives, as with bandwidth methods, and that these choices have a non-trivial influence on the
results. However, the point here is to see what would happen if a researcher took the path of least resistance
and used the most popular approach.

By convention, KDEs are used by wildlife ecologists to estimate home ranges by taking 95% confidence
intervals (Powell & Mitchell 2012). Likewise, the ”core area” of a range is defined as the 50% confidence
interval. The 95% criterion is arbitrary and has come under criticism (Powell & Mitchell 2012). However,
95% KDEs will be considered in this paper because they are so widely used in the literature.

Convex hull areas were computed using the chull function in thegrDevices R package (R Core Team 2020)
plus the st areafunction in the sf package (Pebesma 2018), after preparing the hulls using st polygon and
st sfc .

Hypervolumes were calculated using the hypervolume gaussianfunction in the R library hypervolume (Blonder
2019). Again, default settings were used. This meant using Gaussian kernel density estimation, a prespecified
formula for calculating the number of random samples per point, a default method for estimating the KDE
bandwidth, a standard deviation count of three (which is important for fixing the actual area), and a fixed
quantile value of 0.95 (likewise). As with other complex methods, the ability to vary numerous flexible
parameters clouds the outcome. The mosaic area method has no flexible parameters.

Data

The American black bear Ursus americanus was arbitrarily chosen to illustrate the method because it was
expected to have a large, well-sampled range. Data were drawn from the Global Biodiversity Information
Facility (GBIF) using the occ data function in R library rgbif (Chamberlain et al. 2020) on 2 September
2020. After processing the data with the st polygon and st sfcfunctions in the R library sf (Pebesma 2018),
convex hull areas were computed using st area .

Monte Carlo simulations were used to compare the four methods. Data were placed randomly within ranges
having simple geometrical shapes. Four sets of simulations were implemented. (1) Comparisons of all four
methods using five points randomly drawn from within a circle in each trial. (2) Comparisons with 20 points
drawn. (3) Comparisons with 20 points drawn from a circle and 80% of the data points in the right-hand
side of the shape randomly removed. (4) Trials using six different shapes, with 10 points being drawn during
each trial and only the mosaic area method being applied in most cases.

RESULTS

Empirical data

There are large holes in the geographic range of the American black bear, such as the Great Basin of the
western United States and a large part of eastern Canada (Fig. 3A). Although the mosaic hull fills in some
gaps (Fig. 3A), it emphasises these two. Squares drawn around the mosaic lines also illustrate them well
(Fig. 3B). By contrast, the IUCN website depicts a solid historical range extending throughout almost the
entirety of North America (https://www.iucnredlist.org/species/41687/114251609).

Mosaic area estimates for individual five-year historical intervals show some random scatter, but no definite
trend, and good consistency with the overall estimate of 602.8 equal-area degree cells (Fig. 4). By contrast,
the overall estimate based on a convex hull is 1853.9 degree cells, not only much higher than most of the
individual mosaic areas but much higher than convex hull areas for the same intervals. These patterns
reinforce the point that the hull areas are doubly biased: they are too low when a data set is small (curve
vs. upper line), but they are too high when a distribution has gaps (upper line).

Simulated data

Mosaic areas are already centred on actual range sizes when sample sizes are very small (five points per
circle: Fig. 5A). Convex hulls consistently underestimate by a large margin, as expected. Less intuitively, the
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remaining two methods consistently overestimate. Based on the r 2 values (caption of Fig. 5), hypervolumes
and mosaic areas are similarly precise. Thus, the issue is accuracy instead of precision.

Twenty data points per trial (Fig. 5B) is still a very low figure because it has long been recommended that
at least 50 data points should be used to fix home ranges (Seaman et al. 1999). Here, the mosaic area values
are still the only ones centred on the line of unity. Specifically, the median of ratios taken against known
values is 0.95. The other three methods all fail. The 95% KDE and hypervolume estimates are still too high,
with median ratios of 1.97 and 1.54. As expected, convex hull areas are biased in the opposite direction, with
a median ratio of 0.60. The best one could say for these three methods is that their biases do not reverse as
sample size increases.

Note that 95% KDEs are no more accurate than anything else when the sample size is five (caption of Fig.
5A) and are not very close to mosaic areas (r 2 = 0.8568 for KDEs vs. mosaic areas). These facts call 95%
KDEs into question: they have no particular justification (Powell & Mitchell 2012), they are too high (Fig.
5), and they are not highly replicable using the best method discussed in this paper.

Spatial clustering of the data (Fig. 5C) biases the mosaic area values only weakly (median estimate:known
area ratio 0.80), causes convex hull areas to fall short almost by the entire 50% that is possible (ratio 0.52),
and also lowers the values for 95% KDEs and hypervolumes. However, they are still overestimates (1.41 and
1.27).

Mosaic areas also can handle a variety of range shapes even when only 10 points are sampled (Fig. 6).
Median ratios of estimated to known areas are not far from one for most shapes: circles (1.00), squares
(1.03), rectangles (1.17), and three-quarter rectangles (1.19). Results are worse for pairs of squares (2.06) and
particularly rings (2.14). The first figure is philosophically problematic because it is hard to say whether two
nearby clumps really should be considered separate shapes. If not, then 2.06 may be a reasonable compromise.
With respect to rings, each one excludes half the area of the enclosing circle, so the approximate 2:1 ratio
means that the method essentially treats rings as circles at this very low sampling level (if not at high levels:
Figs. 1B, D). By contrast, ring areas are dramatically overestimated by 95% KDEs (6.12) and hypervolumes
(4.75). These patterns are not illustrated because the ratios speak for themselves (and to save space). Again,
shape solidity is a widespread assumption that is important for some methods, but not so much for the new
one.

In general, the high performance of mosaic area estimation given this broad array of shapes is perhaps not
too surprising because the underlying logic assumes that any shape can be covered adequately and accurately
by a series of circuits connecting points, which stands to reason. The surprise is that reasonable results can
be obtained with very small data sets.

DISCUSSION

Quantifying range areas is not only important across ecology and evolutionary biology, but societally im-
portant. Specifically, because the IUCN uses this information to determine the status of threatened species
(IUCN Standards and Petitions Committee 2019), the issue of accuracy is no small matter. In light of this
fact, one would hope that the IUCN would reconsider its focus on simple extents and areas of occupation
and also embrace more current methods of area inference.

On this point, mosaic area estimation has several crucial advantages. Unlike convex hulls, which are the
basis of the extent of occupation criterion, mosaics are independent of sample size and have a built-in
routine for handing outliers. Unlike counts of occupied cells, which are interpreted as areas of occupation,
they are independent of scale in addition to sample size. Unlike KDE and hypervolume calculations, mosaic
areas are not upwards biased when shapes are solid, even when sample sizes are small (Fig. 5A). Unlike
those methods, mosaic calculation has no flexible parameters and assumes nothing about the underlying
shape of the distribution. And unlike all the other methods discussed here, mosaic area computation is
explicitly formulated to handle the problem of irregular and non-random point distributions, with even
strong patterning having little effect (Figs. 5C, 6). Autocorrelation is a major concern in this field (Noonan
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et al. 2019).

Much more needs to be done with range area estimation. For one thing, more in-depth testing of a broader
range of methods would be desirable. Papers proposing and testing methods, especially those related to
KDEs, are numerous, and there is no space even to summarise them: see Walteret al. (2015), Junker et al.
(2016), Qiao et al.(2016), Jarvis et al. (2019), and Noonan et al. (2019) for recent examples. I put forth,
however, that based on the current results, even the more complex methods are unlikely to outperform
mosaic area estimation by a large margin. For this hypothesis to be disproven, conventional 95% KDEs and
hypervolumes would have to be shown to be quite poor estimators because they are already substantially
worse than mosaic areas. If there really is a much better parametric method, then the most likely candidate
might be another kernel density estimator of some kind (Noonan et al. 2019).

Another possibility is that a better mosaic-related method might be found. For example, perhaps one could
allow for denser connectivity of points or more complex weighting of edges in area calculations. Also, the
algorithm for selecting edges might perhaps be further optimised without imposing a heavy computational
burden. Advantages of altering the graph theory are unclear, and even if possible, further optimisation may
not be particularly helpful.

Finally, mosaic area estimation is fundamentally non-parametric and depends on deduction from fundamental
graph theory and geometry. Some will see this as a disadvantage. This matter touches on a deep paradigm
conflict in statistics that concerns a simple question: should every method be model-based and fall within
the domain of maximum likelihood or Bayesianism? Strong assumptions and flexible options come with
model-based methods, and full objectivity comes with this one – in addition to high performance. Thus, in a
field bursting with methods of many kinds, there may be room for a different approach to the deep problem
of determining the areas of unknown shapes.
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Hosted file

image1.emf available at https://authorea.com/users/363764/articles/484477-a-simple-graph-

theoretic-method-provides-accurate-range-area-estimates

Figure 1 Potential changes to mosaics resulting from the addition of a point. The point must link to two
others, and it must be closer to half the points than the other because it cannot be at the exact centre of the
shape. If the other two points are neighbours, their edge is dropped and the mosaic remains intact, growing
by one point. Otherwise, it splits. In (A) and (B), the mosaic must grow because the new point must join
neighbours. In (C), the chance is 2/3 if the point lands on one side and certain if it lands on the other. In
(D), there is a 2/3 chance. In (E), there is either a 1/2 or 2/3 chance. In (F), there is a 1/2 chance. With
more points, this chance falls below 1/2. Thus, growth and splitting pushes the point count towards eight.

Figure 2 Mosaics of randomly located points within shapes having diameters of 1. There are 100 in each
panel. (A) and (B) show the raw mosaic graphs; (C) and (D) include rectangles that indicate the contribution
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of each edge to the area estimate. (A) and (C): The shape is a square. There are 56 points with two edges,
38 with three, and six with four. There are 26 mosaic pieces, so the piece/point ratio is 26/100, close to the
0.25 prediction for a compact shape. The true area is 1 and the estimate is 1.098. The median over 1000
trials is 0.975. (B) and (D): The shape is a ring. There are 74 points with two edges and 26 with three. The
piece/point ratio is 14/100, which is low because the pattern is elongate. The true area is pi/8 = 0.393 and
the estimate is 0.373. The median over 1000 trials is 0.370.

Figure 3 Data for Ursus americanus drawn from GBIF. There were 7068 point occurrences. Thirty-eight
obvious outliers with coordinates to the east of 50º W and south of 20º N were excluded. The rest were
grouped into 1162 quarter-degree cells. (A) The full set of observation points embedded in a filled mosaic.
(B) The same mosaic with squares shown around each edge, as in Figs. 2C and D.

Hosted file

image4.emf available at https://authorea.com/users/363764/articles/484477-a-simple-graph-

theoretic-method-provides-accurate-range-area-estimates

Figure 4 Ursus americanus mosaic areas for groups of points falling into historical intervals of five years.
Here, grouping of point observations into cells was conducted separately for sets of points belonging to
different intervals. Red lines = convex hull areas; blue lines = mosaic areas. Horizontal lines show values for
the full data set.

11

https://authorea.com/users/363764/articles/484477-a-simple-graph-theoretic-method-provides-accurate-range-area-estimates
https://authorea.com/users/363764/articles/484477-a-simple-graph-theoretic-method-provides-accurate-range-area-estimates


P
os

te
d

on
A

u
th

or
ea

2
O

ct
20

20
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

g
h
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
60

16
65

37
.7

07
58

97
5

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Hosted file

image5.emf available at https://authorea.com/users/363764/articles/484477-a-simple-graph-

theoretic-method-provides-accurate-range-area-estimates

Figure 5 Performance of four range estimation methods in simulation. A thousand trials are illustrated in
each panel. Underlying data were drawn randomly from within circles of varying sizes, with a mean of zero
and standard deviation of 0.5 on a log scale. Data for each method are offset by a factor of 104 for clarity.
From the top, HV = hypervolumes (dark blue points); KD = 95% kernel density estimates (light blue); CH
= convex hull areas (orange); MA = mosaic areas (red). (A) Sample size is five points. Adjustedr 2 based on
logged values = 0.8252 (HV), 0.7251 (KD), 0.7689 (CH), and 0.8501 (MA). (B) Sample size is 20 points.r 2

= 0.9810 (HV), 0.8950 (KD), 0.9821 (CH), and 0.9652 (MA). (C) Sample size is 20 points, but 80% of the
points in one half of the circle are removed. r 2 = 0.9768 (HV), 0.9185 (KD), 0.9763 (CH), and 0.9699 (MA).

Hosted file

image6.emf available at https://authorea.com/users/363764/articles/484477-a-simple-graph-

theoretic-method-provides-accurate-range-area-estimates

Figure 6 Performance of mosaic area estimation applied to ranges having six different shapes and sizes
that vary from one trial to the next: 2 x 1 rectangles with one quarter removed (green); pairs of squares
separated by one unit of distance horizontally and vertically (reddish violet); 4 x 1 rectangles (turquoise);
squares (gold); rings with holes equal in diameter to that of the outer circle times 0.707, so half the area is
empty (purple); and circles (red).r 2 = 0.9161 (three-quarter squares), 0.9535 (pairs of squares ), 0.9268 (4
x 1 rectangles), 0.9233 (squares), 0.9583 (rings), and 0.9317 (circles). Sample size is 10 data points. Data for
each shape are offset by a factor of 104 for clarity; y-axis scale applies to the lowermost set.
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