Loss of food fermentation in Westernized diet: a risk factor for severe COVID-19?

Jean Bousquet¹, Josep Anto², Wienczyslawa Czarlewski³, Tari Haahtela⁴, Susana Fonseca⁵, Guido Iaccarino⁶, Hubert Blain⁷, Cezmi Akdis⁸, and Torsten Zuberbier⁹

¹Université Versailles, St-Quentin-en-Yvelines
²ISGLoBAL
³Medical Consulting
⁴Helsinki University Hospital
⁵GreenUPorto - Sustainable Agrifood Production Research Centre
⁶Federico II University Hospital
⁷CHU Montpellier
⁸University of Zurich
⁹Charité Universitätsmedizin Berlin

July 20, 2020

To the Editor,

The fermentation process, born as a preservation method in the Neolithic age, enabled humans to eat not-so-fresh food and to survive.¹ Fermented foods are “foods or beverages made via controlled microbial growth (including lactic acid bacteria (LAB)) and enzymatic conversions of food components.” ² Not all fermented foods contain live cultures, as some undergo further processing after fermentation: pasteurization, smoking, baking, or filtration. These processes kill or remove the live microorganisms in foods such as soy sauces, bread, most beers and wines as well as chocolate. Live cultures can be found in fermented vegetables and fermented milk (fermented sour milk, yoghurt, probiotics, . . .). The westernized diet is lacking many traditional fermented foods.³

The gut microbiota has an inter-individual variability due to genetic predisposition and diet ³. Some foods like cabbage can be fermented by the gut microbiota. ⁴ The westernized diet has been associated with changes in the gut microbiome.⁵

In this Rostrum, we consider loss of food fermentation either as a reduction of fermented food consumption in the diet or as a change in the microbiome leading to a reduction of fermentation of foods in the gut. This paper is based on the hypothesis that diet may partly explain differences in COVID-19 death rates within and between countries.⁶

Diet and heterogeneity of COVID-19 death rates between and within countries

Large differences exist when assessing death rates between and within countries. Most countries with a very low COVID-19 death rate (Asia, Africa, Central European countries, the Balkans or the Middle East) are well-known to have a diet containing fermented vegetables.

To test the potential role of fermented foods in the COVID-19 mortality in Europe, an ecological study, the European Food Safety Authority (EFSA) Comprehensive European Food Consumption Database, was used to study country consumption of fermented vegetables, pickled/marinated vegetables, fermented milk,
yoghurt and fermented sour milk. Of all the variables considered, including confounders, only fermented vegetables reached statistical significance with the COVID-19 death rate per country. For each g/day increase in consumption of fermented vegetables of the country, the mortality risk for COVID-19 was found to decrease by 35.4%.

Another diet component potentially relevant in the COVID-19 mortality may be the food supply chain and traditional groceries that may be inferred from death rates in Italian regions (Figure 1B). The impact of the long supply chain of food on health is measurable by an increase in metabolic syndrome and insulin resistance. Therefore, areas that are more prone to short supply food and traditional groceries may have been able to better tolerate COVID-19 with a lower death toll.

In Switzerland, the French- and Italian-speaking cantons had a far higher death rate than the German-speaking ones (Figure 3) (Office fédéral de la santé publique, Swissland, https://www.bag.admin.ch/bag/fr/home.html). It may be proposed that the high-death rate cantons were contaminated by French and Italian people. However, the Mulhouse airport serves the region of Basel (Switzerland), the Haut-Rhin department (France) and the region of Freiburg (Germany). There was a COVID-19 outbreak in the Haut-Rhin department, in particular in Mulhouse and Colmar. The death rate for COVID-19 (May 20, 2020) was 935 per million inhabitants in France but only 10 to 25 in Switzerland and 7 in Germany (Figure 2).

COVID-19: ACE2 binding and insulin resistance.

The angiotensin-converting enzyme 2 (ACE-2) is part of the dual system, the renin-angiotensin-system (RAS), and includes the ACE-Angiotensin-II-AT\textsubscript{1}R axis. AT\textsubscript{1}R is involved in most Angiotensin II effects, including oxidative stress generation, pro-inflammatory and pro-fibrotic effects in the respiratory system as well as insulin resistance. SARS-CoV-2 binds and downregulates ACE-2, enhancing the AT\textsubscript{1}R axis. It is likely to be associated with insulin resistance.

Microbiome, fermented food and lacobacilli.

Humans possess two protective layers of biodiversity, and the microbiome has been proposed as an important actor of COVID-19. The environment (outer layer) affects our lifestyle, shaping the microbiome (inner layer). Many fermented foods contain living microorganisms and modulate the intestinal microbiome. The composition of microbiomes varies in different regions of the world. Urbanization in western countries was associated with changes in the gut microbiome and with intestinal diversity reduction. Westernized food in Japan led to changes in the microbiome and in insulin resistance. The gut microbiome of westernized urban Saudis had a lower biodiversity than that of the traditional Bedouin population. Fast food consumption was characterised by reduced Lactobacilli in the microbiome. The links between gut microbiome, inflammation, obesity and insulin resistance are being observed but further large studies are needed for a definite conclusion.

Some COVID-19 patients have intestinal microbial dysbiosis with decreased probiotics such as Lactobacillus and Bifidobacterium. Many bacteria are involved in the fermentation of vegetables but most traditional foods with live bacteria in the low-death rate countries are based on LAB fermentation. Lactobacilli are among the most common microorganisms found in milk and milk products.

Effect of lactic acid bacteria in insulin resistance and related diseases.

Insulin resistance and Lactobacillus.

Hundreds of studies have attempted to find an efficacy of LAB on insulin resistance-associated diseases. However, most of them are underpowered or have some methodological flaws. Moreover, not all LAB strains have the same action on insulin resistance and new better designed studies with the appropriate LAB are required. A large meta-analysis found that the intake of probiotics resulted in minor but consistent
improvements in several metabolic risk factors in subjects with metabolic diseases, and in particular in insulin resistance. Another recent meta-analysis found that an oral supplementation with probiotics or synbiotics has a small effect in reducing waist circumference but no effect on body weight or body mass index (BMI).

Kefir, a fermented milk product, was not found to be more effective than yoghurt in the glycemic control of obesity, possibly because there are insufficient differences between both. Nrf2 may be involved in diseases associated with insulin-resistance. "Ancient foods”, and particularly those containing Lactobacillus, activate Nrf2. The microbiome is highly related to insulin resistance.

Lactobacillus and Nrf2

In mice, several strains of Lactobacillus were found to regulate Nrf2 in models of ageing, cardioprotective effects, and non-alcoholic fatty acid liver disease. Lactobacillus plantarum CQPC11 - isolated from Sichuan pickled cabbages - antagonizes oxidation and ageing in mice. Lactobacillus protects against ulcerative colitis by modulation of the gut microbiota and Nrf2/Ho-1 pathway. The sugary kefir strain, Lactobacillus maliAPS1, ameliorates hepatic steatosis by regulation of Nrf2 and the gut microbiota in rats. In vitro studies have also found an effect of Lactobacilli mediated by Nrf2. Interestingly, the synbiotic combination of prebiotic grape pomace extract and probiotic Lactobacillus sp. reduced intestinal inflammatory markers.

Coronavirus disease in animals and lactic acid bacteria.

The porcine epidemic diarrhea virus (PEDV), or Transmissible Gastroenteritis Coronavirus Infection (TGEV), are worldwide-distributed coronaviruses. Low levels of Lactobacillus were found in the intestine of piglets infected by TGEV or PEDV. Lactobacillus inhibits PEDV or TGEV effects in vitro. Westernized food and fermented vegetables.

Westernized diets contain a reduced amount of fermented vegetables and may be prone to increasing insulin resistance and thereby severe COVID-19. The transcription factor Nrf2 may be at the centre of the regulatory pathways (Figure 3).

COVID-19 and food fermentation.

Although nutritional epidemiology has been criticized on several fronts - its inability to measure diet accurately and its reliance on observational studies to address etiologic questions - there seems to be sufficient evidence to raise several conclusions (to be tested appropriately).

Many factors may play a role in the extension and severity of COVID-19. Diet may represent only one of the possible causes of COVID-19 severity (Table 1). The effects of the microbiome and diet on SARS-CoV-2 infection suggest that their role in the gut could be a target for COVID-19 interventions. It is proposed that countries with a large consumption of traditional LAB-fermented vegetables are those showing lower COVID-19 death rates. This hypothesis should be confirmed by experimental studies (Box 1). If certain foods are found to be associated with a prevention of COVID-19 prevalence or severity, it may be of interest to study their LAB composition in order to eventually find some common mechanisms and targets for therapy.

Jean Bousquet, MD, Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Comprehensive Allergy Center, Department of Dermatology and MACVIA-France, Montpellier, France. Allergy, Berlin, Germany

Josep M Anto, MD, ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), IMIM (Hospital del Mar Research Institute), Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.

Wienczyslawa Czarlewska, MD, Medical Consulting Czarlewska, Levallois, and MASK-air, Montpellier France.

Tari Haahtela, MD, Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland.
Susana C Fonseca, PhD, GreenUPorto - Sustainable Agrifood Production Research Centre, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária, Porto, Portugal

Guido Iaccarino, MD, Federico II University, Department of Advanced Biomedical Sciences, Napoli, Italy.

Hubert Blain, MD, Pole Gérontologie, University Hospital, Montpellier University, MUSE, Montpellier.

Cezmi A Akdis, MD, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland

Torsten Zuberbier, MD, Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Comprehensive Allergy Center, Department of Dermatology, Berlin Germany

JB designed the concept. All the other authors reviewed the concept and approved the paper

References

Table 1: Possible risk factors for COVID-19 infection explaining geographical differences

<table>
<thead>
<tr>
<th>A</th>
<th>Individual level</th>
<th>Country/region level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Contact with a SARS-CoV-2 infected individual ++++</td>
<td>Case zero identified ++++ e.g. Lombardy</td>
</tr>
<tr>
<td>A</td>
<td>Intensity of social contacts ++</td>
<td>+++</td>
</tr>
<tr>
<td>A</td>
<td>Intensity of occupational contacts +++</td>
<td>++</td>
</tr>
<tr>
<td>A</td>
<td>Confinement (level) +++</td>
<td>+++ e.g. US versus EU</td>
</tr>
<tr>
<td>A</td>
<td>Confinement (early measures) +++</td>
<td>+++ e.g. UK versus EU</td>
</tr>
<tr>
<td>Individual level</td>
<td>Country/region level</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Climatic conditions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(temperature, humidity)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>?</td>
<td>++ Hot and humid temperature may reduce infection but epidemic bursts in Brazil, Peru and Ecuador</td>
</tr>
<tr>
<td>A</td>
<td>GDP of a country/region</td>
<td>?</td>
</tr>
<tr>
<td>B</td>
<td>Vitamin D</td>
<td>?</td>
</tr>
<tr>
<td>B</td>
<td>Diet</td>
<td>?</td>
</tr>
<tr>
<td>B</td>
<td>Food</td>
<td>++?</td>
</tr>
<tr>
<td>B</td>
<td>Long food chain supply</td>
<td>++?</td>
</tr>
<tr>
<td>B</td>
<td>Traditional fermented food (example of food)</td>
<td>++?</td>
</tr>
<tr>
<td>B</td>
<td>Air pollution</td>
<td>+?</td>
</tr>
<tr>
<td>B</td>
<td>Underserved area</td>
<td>++</td>
</tr>
<tr>
<td>C</td>
<td>Age</td>
<td>+++</td>
</tr>
<tr>
<td>C</td>
<td>Comorbidities (severity of COVID-19)</td>
<td>+++</td>
</tr>
<tr>
<td>C</td>
<td>Sex</td>
<td>++</td>
</tr>
<tr>
<td>C</td>
<td>Institutionalized person</td>
<td>++</td>
</tr>
</tbody>
</table>

Text Box:

Future research areas:

- Mouse models of COVID to investigate the effects of diet, sulforaphane and similar compounds.

8
- Cellular experiments for the *in depth* investigation of sulforaphane.
- Case control studies.
- Investigation of synergistic effects with other dietary factors and vitamins such as short chain fatty acids, omega 3, vitamin D.
- Identification of the most potent LAB/probiotic strains.
- Multiple omics metabolome analyses of different stages of COVID patients.
- Clinical trials with fermented foods or LABs and other probiotics to prevent severe COVID-19.
- Clinical trials with fermented foods or LABs and other probiotics to reduce severity of COVID-19.

Figure 1: Differences in death rates between Italian regions (July 13, 2020)
Death rate per million

Figure 2: Regional differences of death rates between Switzerland, France and Germany (May 20)

<table>
<thead>
<tr>
<th></th>
<th>May 20, 2020</th>
<th>Deaths</th>
<th>Population</th>
<th>Deaths/million</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basel city (Sw)</td>
<td>49</td>
<td>198,000</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Basel-Lands (Sw)</td>
<td>30</td>
<td>298,000</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Freiburg (DE)</td>
<td>15</td>
<td>213,000</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Haut-Rhin (F)</td>
<td>715</td>
<td>765,000</td>
<td>935</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: Central role of Nrf2 in the impact of fermented vegetables on COVID-19 severity. SARS-CoV-2 downregulates ACE2, inducing an increased insulin resistance associated with oxidative stress through the AT1R pathway. Fermented vegetables are often made from Brassica vegetables that release glucoraphanin converted by the plant or by the gut microbiome into sulforaphane which activates Nrf2 and subsequently reduces insulin intolerance. Fermented vegetables have a high content of Lactobacillus that can activate Nrf2 and impact the microbiome.

Hosted file