Propagation with time-dependent Hamiltonian
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Abstract

In this note, we introduce one basic concept in nonlinear optical spectroscopy: time-dependent Hamiltonian. Then we give one

example of application of the time evolution operator.
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In optical spectroscopy, the choice we face is: (1) working with a time-independent Hamiltonian in a larger
phase space that includes the matter and the radiation field(Shaul Mukamel, 1995); (2) using a time-
dependent Hamiltonian in a smaller phase space of the matter alone.

For any vector |¢) in Hilbert space, its dynamical equation is the time-dependent Schrodinger equation:
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where (fi]t(to)) is the initial expansion coefficients of the wavefunction. We then have
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Therefore, the evolution operator U(t,ty) can be defined as:
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It is immediately follows that
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The eq. 7 gives the evolution operator in a specific representation, i.e., the eigenstates of the Hamiltonian
H.

Here is one example of application of the time evolution operator. Calculate the time evolution operator of a
coupled 2-level system (|1, ) and |¢)p)) with energies €4, €, and a coupling Vg, represented by the Hamiltonian
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Solution: Denote
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Denote A as the eigenvalue of the energy, solve the JiuQi equation
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we get the eigenvalue of the energy: Ay =
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. Then the eigenstates can be calculated.
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Therefore,
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Similarly, replace A_ by A4, we can obtain

cos@e_ixm}

lhy) = [ sinfetx/2

(14)

Thus,from eq. 7, the time evolution operator is
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Using eq.( 13) and ( 14), we obtain the exprssion of U(t,ty):
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Discussion: suppose the system is initially (at time tnp = 0) in the |¢,) state, i.e., |1(0)) =
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. We can
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This is known as Rabi formula and
— )2+ 4V,?
o = V(e = @) + 4Vl (16)

h



is known as Rabi frequency. For example, in the case of alkali atoms, the order of magnitude of the
Rabi frequency is MHz. We assume that (e, — €,)? and 4|V,|?> have the same order of magnitude, i.e.,
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