CRISPR interference of nucleotide biosynthesis improves production of a single-domain antibody

Jenny Landberg¹, Naia Wright¹, Tune Wulff¹, Markus Herrgard¹,¹, and Alex Nielsen¹

¹Technical University of Denmark

May 27, 2020

Abstract

Growth decoupling can be used to optimize production of biochemicals and proteins in cell factories. Inhibition of excess biomass formation allows for carbon to be utilized efficiently for product formation instead of growth, resulting in increased product yields and titers. Here, we used CRISPR interference (CRISPRi) to increase production of a single domain antibody (sdAb) by inhibiting growth during production. First, we screened 21 sgRNA targets in the purine and pyrimidine biosynthesis pathways, and found that repression of 11 pathway genes led to increased GFP production and decreased growth. The sgRNA targets pyrF, pyrG, and cmk were selected and further used to improve production of two versions of an expression-optimized sdAb. Proteomics analysis of the sdAb-producing pyrF, pyrG, and cmk growth decoupling strains showed significantly decreased RpoS levels and an increase of ribosome-associated proteins, indicating that the growth decoupling strains do not enter stationary phase and maintain their capacity for protein synthesis upon growth inhibition. Finally, sdAb production was scaled up to shake-flask fermentation where the product yield was improved 2.6-fold compared to the control strain with no sgRNA target sequence. An sdAb content of 14.6% was reached in the best-performing pyrG growth decoupling strain.

Hosted file

Regular growth and production

Growth decoupling
overnight cultures
a + aTc
- aTc
OD
proteomics
24 h sampling
PT7 Ptet
sgRNA tetR pSLQ1236
dCas9 T7 Plac tetR psdAb sdAb Chromosome Plasmids
VHH CH3 CH2 Chamelid heavy chain antibody
Single-domain antibody

PyrB PyrI PyrC PyrD PyrE PyrF PyrG PyrH Ndk Cmk

1.10.3 3.50 0.6 0.9 1.5 2 2.5
GO process terms
- Ribosomal small subunit assembly
- Ribosomal large subunit assembly
- Response to heat
- rRNA base methylation
- Translation
- Fatty acid biosynthetic process
- PEP-dependent sugar phosphotransferase system
- Cellular response to DNA damage stimulus

GO compartment terms
- Cytosolic small ribosomal subunit
- Cytosolic large ribosomal subunit
- Integral component of plasma membrane
- Outer membrane-bounded periplasmic space
- Periplasmic space
- Plasma membrane
- Cell outer membrane
- Integral component of membrane

<table>
<thead>
<tr>
<th>pyrF</th>
<th>pyrF</th>
<th>pyrG</th>
<th>pyrG</th>
<th>cmk</th>
<th>cmk</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIR1</td>
<td>TIR2</td>
<td>TIR1</td>
<td>TIR2</td>
<td>TIR1</td>
<td>TIR2</td>
</tr>
</tbody>
</table>

Upregulated

Downregulated

(a) OD, sdAb-TIR1

(b) OD, sdAb-TIR2

Content (%), sdAb-TIR1

Content (%), sdAb-TIR2