A Critical Review of Interconnect Options for SIW Technologies

Asif Alam1, Muhammad Shah Alam1, Khalid AlMuhanna1, and Atif Shamim1

1Affiliation not available

May 30, 2024
A Critical Review of Interconnect Options for SIW Technologies

ASIF ALAM1, (Student Member, IEEE), MUHMMAD SHAH ALAM2, (Senior Member, IEEE), KHALID ALMUHANNA2, (Member, IEEE), AND ATIF SHAMIM3, (Fellow, IEEE)

1Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174 USA
2Department of Electrical Engineering, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
3Department of Electrical and Computer Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Corresponding author: Asif Alam (e-mail: aalam055@fiu.edu)

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU- RG23034)

ABSTRACT Despite extensive research on integrating Substrate Integrated Waveguide (SIW) technologies with conventional transmission technologies such as Microstrip Transmission Line (MSTL), Co-planar Waveguide (CPW), Rectangular Waveguide (RWG), and Coaxial lines, a comprehensive evaluation and design framework has yet to be explored. This review addresses this critical gap by providing a detailed examination of recent advancements in interconnect technologies at millimeter-wave (mmWave) frequencies. The paper identifies unresolved challenges and introduces a novel Figure-of-Merit (FoM) designed to evaluate and decide the state-of-the-art in interconnect technologies. Furthermore, it proposes a novel design flow that aids interconnect designers by integrating reported advances into a well-defined process. As such, the study provides a basis for further developments in this area and uses the advantages of existing technologies and SIW to ease the integration on mmWave systems.

INDEX TERMS Wideband, millimeter-wave, rectangular waveguide, substrate integrated waveguide, air-filled substrate integrated waveguide, RWG to SIW, RWG to AFSIW

I. INTRODUCTION

VARIOUS millimeter-wave (mmWave) frequency bands are projected to be used by high-speed wireless sensors and RADAR systems [1]–[3]. The classical RWG is a mainstream technology for designing these high-performance systems, but it is not suitable for low-cost and mass production because of its expensive and bulky non-planar structures [4]. The SIW technology has been a popular platform [5]–[8] for over two decades and offers a viable alternative to RWG technology [4]. Furthermore, it is actively used in developing high-end microwave systems spanning from gigahertz to terahertz frequency range [9].

The two main types of SIW technologies are used in mmWave applications, namely the one with dielectric-filled technology, SIW, which is most commonly used [5], [10], and the other with dielectric material removed, AFSIW [11], [12], which achieves higher performances in terms of low insertion loss and high power handling capacity [11], [13]–[16]. Both these technologies are widely used in the development of next-generation mmWave systems, as evident from the reported papers in the literature [11], [12], [17], and recently filed patents [18]–[20]. In developing next-generation communication systems utilizing these technologies, it is often required to interface them with the external systems that rely on interconnect technologies, like MSTL, CPW, RWG, and Coaxial line, to develop upcoming mmWave communication systems. Although these interconnects are fairly documented in the literature, however, their comprehensive evaluation and design framework are yet to be explored.

Therefore, this paper aims to review the state-of-the-art in each case by subjecting them to a novel FoM analysis where qualitative and quantitative aspects are investigated in terms of FoM1 and FoM2, respectively. Furthermore, this review introduces a novel design flow specifically developed to facilitate designers in designing and optimizing these millimeter-wave interconnects. This approach not only fills a significant gap in the current literature but also sets the groundwork for future innovations in mmWave communication systems. Research gaps in each interconnect case, especially for their operation in upper mmWave are identified and future directions are provided.
II. GEOMETRICAL STRUCTURE

A. SUBSTRATE INTEGRATED WAVEGUIDE
The classic SIW employs a double-layer PCB process in which the substrate embeds two parallel rows of metallic via holes that limit the area of wave propagation. Figure 1(a) shows the structure of SIW with the vias on both sides. Its other geometrical parameters are the width \(a_1\), the diameter of the vias \(d\), and the distance between two successive vias of the same row \(s\), respectively. The \(a_1\) of a SIW is defined as the distance between its two vias rows and taken from center to center, and it is related to the cut-off frequency \(f_{c, gSIW}\) [21], [22] as:

\[
a_1 = \frac{c}{2f_{c, gSIW} \sqrt{\varepsilon_r}}
\]

(1)

Where \(c\) is the speed of light in free space, and \(\varepsilon_r\) is relative permittivity. The SIW cavity behaves identically to a conventional metallic cavity when \(d/s \geq 0.5\) and \(d/\lambda_0 \leq 0.1\) [23]. Furthermore, conditions such as \(d < s < 2d\) must be satisfied to avoid the bandgap effect [6], [23]–[25], which arises due to periodic structures of vias in SIW.

B. AIR-FILLED SUBSTRATE INTEGRATED WAVEGUIDE
The AFSIW [26], [27] utilizes a multilayer PCB process, as shown in Figure 1(b). Substrates 1 and 3 realize the conducting top and bottom surfaces, while substrate 2 is sandwiched in the middle, which contains an air-filled region \(W\) separated by a gap of dielectric slab \(w_1\) and arrays of metallic vias on both sides of the substrate of height \(h\). The cutoff frequency \(f_{c,AFSIW}\) of the wave traveling in the AFSIW satisfies (2), and it is used to determine the width \(W\) [28].

\[
tan \left(\frac{w_1 \pi \sqrt{\varepsilon_r}}{\sqrt{\varepsilon_r}} \right) = cot \left(\frac{W \pi f_{c,AFSIW}}{c} \right)
\]

(2)

where, \(W\) and \(w_1\) are the widths of air-filled and dielectric-filled regions of AFSIW, respectively (see Figure 1(b)), \(c\) is the light’s speed, and \(\varepsilon_r\) is the dielectric constant. The via diameter and separation between the center-to-center of the vias used in the AFSIW is determined using the technique described in [24], [25]. Substrates 1 and 3 can be utilized to realize baseband or digital circuits for a more cost-effective wireless system solution.

III. ANALYSIS METHODOLOGY AND PROPOSED FIGURE-OF-MERIT

Several studies on the design of millimeter-wave interconnects for SIW technologies involving MSTL, CPW, RWG, and Co-axial have been reported in the literature [29]–[44]. It is pertinent to note that this paper focuses specifically on the millimeter-wave range; thus, only works reported in the millimeter-wave band are considered. For brevity, the paper reproduces direct design equations reported in the literature while non-direct/supporting equations are referenced.

A. ANALYSIS METHODOLOGY
To identify the state-of-the-art millimeter-wave interconnect design utilizing SIW technologies, a novel and comprehensive Figure-of-Merit (FoM) is introduced, which is used to objectively evaluate various interconnect configurations and decide on a state-of-the-art design. The evaluation process is outlined in Fig 2. Once the state-of-the-art design is identified, a thorough analysis is carried out to extract valuable design knowledge, focusing on key aspects such as the physical layout and configuration of the interconnect (design structure), any governing design equations that influence its performance, and any unique design considerations specific to the design.

These extracted design insights are then incorporated into a comprehensive design flow, consisting of two distinct parts, where the first outlines the higher level design process (See Fig 3) true for all the interconnects, while the second part showcases the lower level design flow for each of the state-of-the-art interconnect as described in Sections IV and V.

After the design flow is proposed, the critical research gaps especially for their operation in higher millimeter-wave frequencies, and potential future research directions are identified and discussed in each interconnect case, which will pave the way for further advancements and optimizations in this field. These combined approaches, encompassing evaluation, design analysis, and design flow development, eventually streamline the design and development process for high-performance millimeter-wave interconnects involving conventional transmission technologies with emerging SIW or AFSIW.
B. PROPOSED FIGURE-OF-MERIT (FOM)

The proposed FOM comprehensively analyzes the numerous mmWave interconnects of different types for SIW Technologies interconnects. It uses qualitative and quantitative features, where \(FOM_1 \) covers the former and \(FOM_2 \) the latter. The qualitative aspects covered by the \(FOM_1 \) look at whether the design equations, multi-layer substrate integration, design flow, and design simplicity are used or not while the \(FOM_2 \) examines the quantitative aspects, taking into account bandwidth and insertion loss, which continue to be the foundation metrics to determine state-of-the-art as reported by the authors [27], [41], and their expressions are described below.

\[
FOM_1 = DF[Y/N] + DE[Y/N] + DS[Y/N] + OI[Y/N] + ML[Y/N] \tag{3}
\]

Where the parameters in (3) are described as follows:

- **Design Flow (DF):** Scored 1 for a clearly defined and well-documented design flow and 0 for its absence.
- **Design Equation (DE):** Scored 1 for the presence of design equation, 0 for no equations.
- **Design Simplicity (DS):** Scored 1 for a design exhibiting ease of fabrication and integration and 0 for complex designs.
- **Optimization Index (OI):** Scored 1 for easy optimizations and 0 for length optimization processes.
- **Multi-Layer Capability (ML):** Scored 1 if it supports multi-layer integration and 0 for no multi-layer integration.

\[
FOM_2 = \frac{BW[GHz]}{IL[dB]} \tag{4}
\]

\(BW \) and \(IL \) stand for bandwidth and insertion loss, respectively, which are crucial performance [27], [41] to consider when evaluating interconnect performance.

Therefore, these \(FOM_1 \) and \(FOM_2 \) serve as both incentives and rationale for determining the state-of-the-art performance of a particular interconnect design using SIW Technologies.

IV. SIW INTERCONNECTS

SIW interconnects have been the subject of extensive study [29]–[44]. The following subsections describe the two primary kinds of structures—double-layer and multi-layer configurations—for which \(FOM \) analysis assesses their performances, as explained in section III.B. Every design is discussed in terms of equations, design flow, and structural issues, and finally, the state-of-the-art design is summarized in the form of the design flow, backed up by any equation supplied in the state-of-the-art to ease the design
process. Eventually, the challenges encountered, unfulfilled research objectives, and promising future directions for SIW interconnect research are covered.

A. MSTL TO SIW

Several designs from MSTL to SIW transition in double and multi-layer configurations have been reported in the literature [29]–[32] as discussed below.

1) Double Layer

The FoM analysis is applied to evaluate the state-of-the-art interconnects. The results in Table 1 revealed that, among the reported double-layer designs, the interconnect described in [29] achieved the highest performance. As seen in Fig. 4, its structure uses a simple design with a linearly tapered micro-strip section to provide effective impedance matching, and the taper width \(w \) is related, as indicated in (5). The measured and simulated results for \(S_{11} \) and \(S_{21} \) [29] in the frequency bands from 25 – 38 GHz were achieved as shown in Fig. 5.

\[
1 \frac{w_e}{w} = \begin{cases} \frac{66}{b} \ln \left(\frac{h}{w} + 0.25 \frac{w}{b} \right) & ; w/h < 1 \\ \frac{120\pi}{\eta h [w/h + 1.393 + 0.667 \ln w/h + 1.444]} & ; w/h > 1 \end{cases} \tag{5} \]

Using the curve fitting technique, the following equation can be derived:

\[
1 \frac{w_e}{w} = \frac{4.38}{a_c} e^{-0.627 \frac{\lambda}{\lambda_0} + \frac{\lambda}{\lambda_0} - \frac{\lambda}{\lambda_0} \sqrt{1 + \frac{12 h}{w}}} \tag{6} \]

Where \(b \) is the width of the SIW, \(h \) is the substrate height, \(\eta \) is the free-space impedance, \(\varepsilon_r \) is the dielectric constant of the substrate, \(w_e \) is the width of the waveguide.

By equating (5) and (6), the width \(w \) can be determined. The taper length \(l \) (see Fig. 4) is taken a multiple of a quarter of wavelength to minimize the return loss and can be expressed as [29].

\[
l = 0.25k \left(\frac{\lambda_0}{\sqrt{\varepsilon_{reff}}} \right) = 0.25k \lambda_0 \tag{7} \]

Where, \(\lambda = \left(\frac{\lambda_0}{\sqrt{\varepsilon_{reff}}} \right) \), \(\lambda_0 \) is the free-space wavelength at the center frequency of operation, and \(\varepsilon_{reff} \) is the effective dielectric constant of the MSTL, and \(k = 1, 2, 3, \ldots \), and can be optimized in EM solver to achieve the best results for return loss.

These findings, as discussed above, are used, and a design flow is proposed, as shown in Fig. 6. While [29] offers a solid foundation, achieving faster design turnaround, a simplified set of analytical equations is still lacking, making the design process relatively longer. Moreover, the reported work showcases measured results in the lower millimeter wave band, neglecting the higher-end V (50 – 75 GHz) and W (75 – 110 GHz) bands.

Therefore, it is of high interest that simplified equations are to be developed, as well as the applicability of this technique in the higher millimeter wave band is to be demonstrated, the literature is insufficient, and more work is needed to solve these research gaps.

2) Multi Layer

In this configuration of MSTL to SIW interconnect, only one reported work [32] was found. A 3-D configuration and transition parameters are shown in Fig. 7 (a)–(c). The ridges in the transition can be made using one single groove shown in Fig. 7 (c) or some via-hole arrays in Fig. 7 (d); however, the transition remains relatively complex due to its multi-layer nature. The work reports reasonable performance for \(S_{11} \) and \(S_{21} \) in the lower mm-wave range from 22-28 GHz, as shown in Fig. 8.

The design process followed in the work is not very direct and remains lengthy, [32] utilizes the transverse resonance method (TRM), which is used to calculate the cutoff wavelength \(\lambda_c \) and characteristic impedance. The well-known characteristic impedance equations \(Z_0 \) of SIW, ridged waveguide, and MSTL are then used to find the initial
A Design 50 Ω MSTL
Find w by Equating (5)&(6)
Find l using (7)
Optimize & Simulate
Verify S_{11} & S_{21}
End

B Evaluate W_2-W_4 Using Characteristic Impedance Curve
Optimize & Simulate
Obtain Initial S_{11} & S_{21}
Re-optimize
Verify S_{11} & S_{21}

FIGURE 6. Design flow for state-of-art for MSTL to SIW Interconnects

FIGURE 7. MSTL to SIW - Multilayer [32] (a) Top-view (b) Side-view (c) Tri-metric view (d) Top-view transmission system

dimension by graphically plotting them with respect to the parameter being calculated [41], [45]. After the individual characteristic impedance curves are plotted, the solution of these curves gives initial values for W_2, W_3, and W_4, which need to be further optimized to yield better results.

The design insights presented in [32] were used to propose a design flow shown in Fig. 6. As evident from the reported works that [32] limited research on multi-layer MSTL to SIW showcases a critical research gap in the literature when compared to their well-studied double-layer counterparts. The crucial gap in these works is that they require extensive design optimization processes; moreover, accurate modeling of these multi-layer structures remains challenging due to the complex nature of the interconnect. Moreover, a significant discrepancy is also observed when comparing FoM_1 and FoM_2 of double-layer and multi-layer interconnects, which is due to relatively worse performance as well as a lack of well-defined design process. This underscores the need for improved design approaches tailored explicitly for multi-layer configurations with direct analytical design equations. Furthermore, the interconnect applicability in the V and W bands remains under-reported.

Therefore, it is evident that there is a critical research gap and that it is of high interest to resolve it to pave the way for a fully integrated system on substrate (SoS) to support emerging communication applications.

B. CBCPW TO SIW

Extensive research in this category has been carried out [33]–[37], a detailed analysis is conducted again and is discussed below.

1) Double-Layer

A similar FoM analysis is conducted again; Table 1 shows that out of all the double-layer designs provided, the interconnect design from [34] performed the best in terms of FoM_1 and FoM_2. The proposed transition structure can be equivalently set as a generalized impedance inverter (K) in its equivalent form, whose parameter can accurately be extracted using the TRL (Thru, Reflect, Line) calibration technique [34]. In the TRL procedure, the transitions are considered as the two error boxes, which account for port discontinuities at P_1 and P_2 in an EM solver. Only two TRL calibration standards—thru and line connections—are
utilized in the error box evaluation process. Their S-matrix is then readily computed using 3D EM simulator, and they ultimately yield the propagation constant and normalized impedance of the transition, which is represented as follows:

\[
\frac{K}{\sqrt{Z_1 Z_2}} = \sqrt{\frac{L}{L-1}}
\]

(8)

Where \(L \) is the insertion loss of the inverter measured between source and load impedances matched, respectively, to \(Z_1 \) and \(Z_2 \). The above procedure is used to design a transition using the linear tapering concept. In this case, the parameters that need to be optimized are the angle \(\theta \) of the taper and the length \(l \) of the interconnect (See Fig. 9) [34], as these have a substantial impact on the impedance matching and overall performance of the transition. The reported work doesn’t include straightforward analytical equations to extract these parameters. It follows the process of plotting \(K \) for different lengths \(l \) and \(\theta \) to maximize \(K \). This technique is then used to achieve the best results for \(S_{11} \) and \(S_{21} \) in the frequency range 26-40 GHz, as shown in Fig. 10 with optimized interconnect parameters. The design technique, including the procedural steps, is summarized in the design flow given in Fig. 11 for the CBCPW-SIW interconnect design.

2) Multi-Layer
In the multi-layer category, authors found a single reported paper [33] in the mm-wave range, and its structure utilizes shorting vias in the interconnect region in the proposed 3-layer transition configuration, as shown in Fig. 12, whereas Fig. 13 explains the E-field gradation in CPW-to-SIW transition. As shown in Fig. 12, the ECPW section plays a role in the intermediary field matching between the horizontal CPW E-field and the vertical SIW E-field as the ridged waveguide. The gradation of the E-field distributions shows that the horizontal CPW E-field is converted to the vertical SIW E-field within a short length of the ECPW from B-B’ to D-D’, achieving wide bandwidth. The steps and procedure involved in the multilayer configuration is summarized in Fig. 11. The simulated \(S_{11} \) and \(S_{21} \) for different lengths of ECPW [33] are shown in Fig. 14. The key issue in this is that the parameters can’t be extracted through design equations and have to be determined after extensive optimization in an EM solver. Therefore, a pure parametric technique is available for multi-layer interconnect design in this case, and this limited research on multi-layer interconnects highlights a critical gap in the existing literature. Further efforts are required to address the modeling complexities and optimize the design of multi-layer interconnects to meet the demands of future system-on-substrate technologies. Moreover, the interconnect design applicability is only showcased in the lower millimeter wave range, while its applicability in the higher millimeter wave range, V and W bands, is not examined. Furthermore, when the \(FoM_1 \) and \(FoM_2 \) analysis of double-layer and multi-layer substrate interconnects are compared, a drastic difference is observed, thus further highlighting the performance gap.

In conclusion, it is readily obvious that there is a critical research gap that needs to be filled to enable the development of a fully integrated SoS to support new emerging applications.

C. RWG TO SIW
In this interconnect category, several reported works in literature [38]–[41], a detailed analysis is conducted again and is discussed below.

1) Double Layer
A similar analysis is conducted again on the reported works to evaluate state-of-the-art interconnect [38]–[41]. Among the reported interconnect, the interconnect [41] reported by the authors achieves the highest \(FoM \) in terms of \(FoM_1 \) and \(FoM_2 \) as given in Table 1 compared to others [38]–[40]. As far as its structure is concerned, it relies on a linearly tapered concept (See Fig. 15), where the impedance is gradually...
transformed. The length of the interconnect L_{SIW} minimizes the insertion loss and leads to excellent impedance matching, is expressed as:

$$L_{SIW} \cong 0.35 \sqrt{K_0^2 \lambda^2 + K_1^2 \lambda^2} \quad (9)$$
Find L_{SW} Using (9) & Simulate
Verify S_{11} & S_{21}
End

Adjust Interconnect Aperture Location

FIGURE 16. Design flow for state-of-art for RWG to SIW Interconnects

FIGURE 17. RWG to SIW - Double Layer [41]

K_1 = \frac{a_1 - a_0}{b_1} \left(\frac{\epsilon_{eff} f^{-\frac{\lambda_0}{a_1}}}{\frac{\lambda_0}{a_1}} \right)^2 (11)

\epsilon_{eff} = A + A^3 \left[\epsilon_{r1} \left(1 - \frac{t}{b} \right) + \frac{\epsilon_{r2}}{b} \right] B (12)

Where, b_1 and b_0 represent the width of the RWG and the SIW cavity, while a_1 and a_0 represent the height of the waveguide and SIW cavity respectively, while \epsilon_{eff} is the effective dielectric constant of the interconnect and can be known using (12), and while \lambda_0 is the free space wavelength calculated at the cutoff frequency of the waveguide. The excellent results for S_{11} and S_{21} for the tapered transition [41] are shown in Fig. 16.

Considering that the analytical design equations and the interconnect performance are showcased in the higher mmWave bands, it is clear that the literature is adequate. The design steps and procedure, as discussed above, are incorporated, and the state-of-the-art design flow is presented, as shown in Fig. 17.

2) Multi-Layer

Although the reported works [38]–[41] haven’t shown the interconnect integration on a multi-layer substrate. However, in the authors’ work, just by adjusting the positioning of the interconnect, it can easily be extended to a multi-layer substrate scenario. The authors [41] have already reported on the analytical equation, which produces good performance and the fact that it can even be expanded to multi-layer scenarios; therefore, it is evident that these interconnects have a research gap and there is a need to showcase the applicability of the interconnect in a multi-layer scenario, which requires to be filled to develop SoS for upcoming areas. Therefore, the literature is inadequate, and more work is needed to showcase multi-layer compatibility.

D. COAXIAL TO SIW

When considering interconnects from coaxial to SIW, the literature is very scarce, with only one reported work found in the mmWave range [42] found. However, the FoM analysis is still carried out, and the results are summarized in Table 1.

FIGURE 18. Three-dimensional configuration and position of the coaxial line in the transition [42]

FIGURE 19. S-parameters of the Co-axial-to-SIW transition [42]
FIGURE 20. Design flow for state-of-art for Coax to SIW Interconnects

TABLE 2. Performance Comparison Other Technologies with AFSIW technology Interconnects

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Transition Structure</th>
<th>IL (dB)</th>
<th>BW (GHz)</th>
<th>Design Complexity</th>
<th>Design Equations</th>
<th>Design Flow/Procedure</th>
<th>Optimization Index</th>
<th>Multi-layer</th>
<th>FoM1</th>
<th>FoM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>[41]</td>
<td>RWG to AFSIW</td>
<td>0.7</td>
<td>25</td>
<td>Low</td>
<td>Yes</td>
<td>Yes</td>
<td>Easy</td>
<td>Yes</td>
<td>5</td>
<td>35.71</td>
</tr>
<tr>
<td>[43]</td>
<td>MSTL to AFSIW</td>
<td>0.75</td>
<td>2.3</td>
<td>High</td>
<td>Yes</td>
<td>Yes</td>
<td>Easy</td>
<td>Yes</td>
<td>4</td>
<td>3.0</td>
</tr>
<tr>
<td>[44]</td>
<td>MSTL to AFSIW</td>
<td>0.9</td>
<td>14</td>
<td>High</td>
<td>Yes</td>
<td>Yes</td>
<td>Easy</td>
<td>No</td>
<td>4</td>
<td>15.50</td>
</tr>
</tbody>
</table>

1) Double Layer
The FoM analysis is carried out [42], as summarized in Table 1. In this interconnect configuration, the coaxial probe feeds the aperture slot, where electromagnetic (EM) wave changes from TEM mode to TE_{10} mode, as shown in Fig. 18. When the design process of this interconnected is considered, a pure parametric analysis is used. The dimensions of the support pieces are chosen based on mechanical compatibility, while the copper strips (stubs) and an aperture slot are designed to act as an intermediate half-wavelength resonator between the line and SIW. A pure parametric analysis decides their dimensions.

The simulated and measured S-parameters results show a reasonable correlation from the 19.63–62.7 GHz frequency range, as shown in Fig. 19. Although the reported work includes procedural steps; however, these steps rely mainly on parametric analysis. Therefore, it is clear that the reported work mainly utilizes a pure parametric analysis to evaluate all the parameters. Considering the purely parametric process, a design flow is proposed, as shown in Fig. 20.

In conclusion, it is clear from the literature that the work is inadequate, and more work is required to extend its applicability to the higher W band. Moreover, future work needs to develop direct analytical design equations.

2) Multi Layer
Although the interconnect structure [42] can easily be expanded to a multi-layer design by adjusting the aperture location to achieve the best performance and following the same parametric process. The process is outlined in the design flow chart shown in Fig. 20. Since the literature only uses parametric optimization to achieve adequate results and lacks an analytical equation, more work is required to fill this research gap. Moreover, work must still be done to showcase multi-layer compatibility and pave the way for developing SoS for new applications.

V. AIR FILLED SIW INTERCONNECT
There are very limited reported works [41], [43], [44] in this interconnect category. A similar FoM investigation is carried out to determine the state-of-art and is discussed in detail in the next subsection.

A. MSTL TO AFSIW
In this case, only a single reported work is available in the literature in both double and Multi-layer cases [43], [44]. However, the FoM analysis is carried out, and the results are summarized in Table 1.

1) Double Layer
The only reported work consists [44] of an artificial slab along with a classic linearly tapered MSTL; the artificial slabs are used to improve impedance matching, as shown in Fig 21 (a)-(b).

![Fig 21](image-url)

The initial parameters of the interconnect are calculated using (13)-(16), which are further optimized in an EM solver to achieve good results for S_{11} and S_{21}. The measured results of the reported interconnect are shown in Fig. 22.

\[
W_{tms} = 1.7W_{ms} \quad (13)
\]
\[
l_{tms} = \frac{\lambda_{ms} f_0}{4} \quad (14)
\]
Considering all the design findings, a design flow is proposed and is showcased in Fig 23. As evident from the reported work, it is clear that more work is required to develop design equations so that optimization can be eliminated. Therefore, the literature seems inadequate in this case, and more work is certainly needed. Moreover, the applicability of the technique is to be shown in the higher V and W bands.

2) Multi-Layer

The multi-layer interconnect [43] uses a slot coupling method, where a single slot is employed (See Fig. 24(a)) to couple the electric field lines (See Fig. 24(c)). Moreover, to couple the field effectively, a copper line supported by layer $S3$ is introduced between the AFSIW structure (layer $S2$) and the MSTL structure (layer $S4$). This results in improved impedance matching and enhanced E-coupling in the AFSIW (See Fig. 24(c)). In Fig. 25, the S-parameters of the back-to-back transition obtained in simulation and measurement over the frequency range of 27.5 GHz to 29.8 GHz. It is also important to note that the work includes no design equations; a pure parametric flow is relied upon. All the design insights and findings are considered, and a design flow is proposed, as shown in Fig 23.

Although this work provides a path forward, there is much work to be done, especially when the FoM analysis is considered, where the difference between the double and multi-layer interconnects is significant. Moreover, the interconnects don’t report design equations, which makes the work rely on a parametric process. Furthermore, the technique’s applicability is not shown in the V and W bands. Therefore, it is clear that there is a research gap, and future studies need to cover this research gap.

B. CPW TO AIR FILLED SIW

There’s no standalone interconnects have been reported in the literature for CPW to AFSIW; instead, all reported interconnects first couple power from CPW to SIW, after
FIGURE 26. CPW to AFSIW Transition in Multi-layer Configuration [11], [46]

...the E fields are coupled into the Air filled SIW structure, as shown in Fig. 26 (a)-(b) [11], [46]. In both designs, the first CPW to SIW is designed following the process described in Fig. 11 in multi-layer configuration. In the first case (See Fig. 26 (a)), the interconnect from SIW to air-filled is designed by employing a linear or exponential transition, although its length \(L \) always remains the point of concern. However, as long as the tapering is smooth, good impedance matching can be achieved, whereas in other cases (See Fig. 26 (b)), windows are etched on the bottom of the substrate 3 for E-wave coupling. From the above discussion, it is very obvious that there exists a critical research gap in the literature as far as these interconnects are concerned. Therefore, it is desirable to have a direct interconnect rather than coupling power first to SIW and then to AFSIW. Although the reported [11], [46] can be used to develop interconnect in this, however, a lot of work is needed. Therefore, there is a lot of scope for future work, which is required to fill the existing research gap for developing systems on substrate for emerging applications.

C. RWG TO AIR FILLED SIW

There is one reported work [41] in this transition category; a similar analysis is conducted and is discussed below.

1) Double Layer

To evaluate the state of the art, the FoM analysis is carried out. The results in Table 1 reveal that the interconnect [41] reported by the authors gains the highest FoM score in terms of \(F_{M_1} \) and \(F_{M_2} \). The interconnect structure is shown in Fig. 15, which is very simple, where a linearly tapered waveguide feeds the EM Waves in the AFSIW cavity. The transition length \(L_{AFSIW} \) is derived, which minimizes the insertion loss and gives excellent impedance matching, is expressed as:

\[
L_{AFSIW} \approx 0.35 \sqrt{K_0^2 \lambda^2 + K_1^2 \lambda^2}
\] (17)

\[
K_0 = \frac{(b_1-b_0)}{b_0} - \frac{a_1-a_0}{a_0} \left(\frac{\varepsilon_{eff} - (\frac{\lambda_0}{a_0})^2}{\varepsilon_{eff} - (\frac{\lambda_0}{2a_0})^2} \right)^2
\] (18)

\[
K_1 = \frac{(b_1-b_0)}{b_1} - \frac{a_1-a_0}{a_1} \left(\frac{\varepsilon_{eff} - (\frac{\lambda_0}{a_0})^2}{\varepsilon_{eff} - (\frac{\lambda_0}{2a_0})^2} \right)^2
\] (19)

The measured and simulated S-parameters for this interconnect are shown in Fig. 27, and a fairly good correlation is achieved. The design steps and procedure, as discussed above, are incorporated, and the state-of-the-art design flow is shown in Fig. 28.

Considering the analytical design equations and the performance of the interconnect, it is clear that the literature is adequate. Therefore, the literature is sufficient in this case.

2) Multi Layer

The concept and technique presented in the double-layer case [41] could easily be extended to multi-layer scenarios by adjusting the aperture location and following a similar design flow. However, no reported works have shown the applicability of this technique on multi-layer substrate scenarios. Therefore, the literature is adequate in this case, and more work is needed, especially when SoS applications are considered.

D. COAXIAL TO AIR FILLED SIW

When considering coaxial to air-filled SIW interconnects, no works are reported in the millimeter wave range, which targets this interconnect. Therefore, there is a clear-cut research gap, and there is a lot of scope for future work in both double and multi-layer configurations for developing systems on the substrate for upcoming mmWave communication applications.

VI. RESEARCH GAP AND FUTURE DIRECTION

This section highlights a critical research gap in the design of multi-layer millimeter-wave (mmWave) interconnects. While numerous studies (e.g., [29]–[31], [35]) have established...
analytical equations for double-layer SIW and AFSIW configurations, their application to multi-layer structures remains limited. Conversely, multi-layer interconnect design often relies heavily on purely parametric optimization using electromagnetic (EM) solvers (e.g., [43]).

This necessitates further research encompassing SIW and AFSIW technologies, particularly for multi-layer configurations. A comprehensive investigation that leverages analytical modeling alongside optimization techniques would significantly enhance the performance of on-substrate mmWave systems. The performance metrics, \(F_{oM1} \) and \(F_{oM2} \), further highlight the research gap. As observed in Figure 29(a) and (b), a significant difference exists between the \(F_{oM} \) values for double and multi-layer configurations. Interconnects with higher \(F_{oM} \) values in the upper right quadrant of the \(F_{oM2} \) vs. \(F_{oM1} \) plot are generally preferred.

For future applications targeting the upper mmWave regime, AFSIW emerges as a promising choice due to its inherently lower losses and broader bandwidth capabilities [41]. However, realizing this potential necessitates addressing certain limitations. Notably, the current literature on high-performance AFSIW interconnects in double and multi-layer configurations remains limited.

Furthermore, existing studies, apart from those presented by the authors in [41], exhibit potential performance issues and design complexity challenges associated with AFSIW interconnects. These limitations warrant further investigation to fully harness the potential of AFSIW technology for future mmWave systems.

The findings emphasize the need to bridge the research gap in multi-layer mmWave interconnects. Developing robust analytical models for AFSIW and SIW in both double and multi-layer configurations, coupled with efficient optimization techniques, will pave the way for high-performance mmWave systems.

Therefore, it is clear that the literature is shallow at a macro level, and more work is needed to fully utilize the SIW technologies, which aim to support the future of millimeter wave communication.

FIGURE 27. Design flow for state-of-art for RWG to Air-Filled SIW Interconnects

FIGURE 28. RWG to AFSIW - Double layer [41]

FIGURE 29. FoM Comparative Analysis for different transition technologies (a) SIW (b) AFSIW

VII. CONCLUSION

This work addressed the critical challenge of interconnecting SIW technologies with traditional transmission lines at millimeter-wave (mmWave) frequencies. A key contribution is the introduction of a novel Figure of Merit (\(F_{oM} \)) encompassing both qualitative and quantitative aspects to assess the performance of various interconnects in both double and multi-layer configurations. Thus, the \(F_{oM} \)
facilitates the identification of the optimal interconnect solution for specific design requirements. Furthermore, the work establishes a state-of-the-art design flow for each considered interconnect type, supported by existing design equations. This comprehensive approach streamlines the design process for mmWave SIW technologies interconnected. The proposed FoM not only serves as a valuable design tool but also unveils critical research gaps. The lack of well-defined design methodologies and supporting equations, particularly for higher mmWave frequencies, presents a significant opportunity for future advancements.

This research emphasizes the limitations of current design approaches, especially for multi-layer configurations, which often rely heavily on EM optimizations. The development of analytical solutions represents a promising future direction, as it holds the potential to enable the design of high performance with wider operating bandwidths and lower insertion losses with a short design cycle.

To summarize, this work, through the introduction of the FoMs and the exploration of the design process, paves the way for significant advancements in mmWave system integration on substrates. This novel approach offers valuable guidance and tools for researchers and engineers working in this rapidly evolving field.

REFERENCES

KHALID ALMUHANNA (Member, IEEE) received his B.S (cum laude), M.S. and Ph.D. degrees in Electrical and Computer Engineering at George Mason University, USA, in 2005, 2008 and 2015, respectively. In 2016, he joined the Electrical Engineering Department at the Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi Arabia, as an Assistant Professor, and has since assumed the role of Department Head, Director of the Research and Development Office and is currently the Vice Dean of Innovation and Technology Transfer at the Deanship of Innovation and Entrepreneurship. His research interests include statistical signal processing, communications, and Bioengineering.

ATIF SHAMIM (Fellow, IEEE) received his MS and PhD degrees in electrical engineering from Carleton University, Canada in 2004 and 2009 respectively. He was an NSERC Alexander Graham Bell Graduate scholar at Carleton University from 2007 to 2009 and an NSERC postdoctoral Fellow from 2009 to 2010 at Royal Military College Canada and KAUST. In August 2010, he joined the Electrical and Computer Engineering Program at KAUST, where he is currently a Professor and principal investigator of IMPACT Lab. He was an invited researcher at the VTT Micro-Modules Research Center (Oulu, Finland) in 2006. His research work has won best paper awards in IEEE ICMAC 2021, IEEE IMS 2016, IEEE MECAP 2016, IEEE EuWiT 2008, first prize in IEEE IMS 2019 3MT competition and IEEE AP-S Design Competition 2022, finalist/honorable mention prizes in IEEE AP-S Design Competition 2020, IEEE IMS 2017 (3MT competition), IEEE IMS 2014, IEEE APS 2005, and R. W. P. King prize for journal papers in IEEE TAP 2017 and 2020. He has been selected as the Distinguished Lecturer for IEEE AP-S (2022-2024). He has won the King’s Prize for the best innovation of the year (2018) for his work on sensors for the oil industry. He was given the Ottawa Centre of Research Innovation (OCRI) Researcher of the Year Award in 2008 in Canada. His work on Wireless Dosimeter won the ITAC SMC Award at Canadian Microelectronics Corporation TEXPO in 2007. Professor Shamim also won numerous business-related awards, including 1st prize in Canada’s national business plan competition, and was awarded the OCRI Entrepreneur of the Year award in 2010. He is an author/co-author of 300 international publications, an inventor on more than 40 patents, and has given close to 100 invited talks at various international forums. His research interests are in innovative antenna designs and their integration strategies with circuits and sensors for flexible and wearable wireless sensing systems through a combination of CMOS and additive manufacturing technologies. He is a Senior Member of IEEE, founded the first IEEE AP/MTT chapter in Saudi Arabia (2013) served on the editorial board of IEEE Transactions on Antennas and Propagation (2013-2019), and as a Guest Editor for IEEE AWPL Special issue (2019), and is currently serving as an Associate Editor for IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology. He serves on numerous IEEE committees such as IEEE Technical Committees on Antenna Measurements (AP-S), Microwave Controls (MTT-S 13), and Additive Manufacturing (CRFID).