Histological, metabolomic, and transcriptomic differences in fir trees from a peri-urban forest under chronic ozone exposure

Juan P. Jaramillo-Correa¹, Verónica Reyes-Galindo², Svetlana Shishkova³, Estela Sandoval-Zapotitla⁴, Cesar M. Flores-Ortiz⁵, Daniel Piñero⁶, Lewis Spurgin⁷, Claudia Martín⁷, Ricardo Torres-Jardón⁸, Claudio Zamora-Callejas⁹, and Alicia Mastretta-Yanes¹⁰

¹Institute of Ecology, Universidad Nacional Autónoma de México
²Universidad Nacional Autónoma de México Instituto de Ecología
³Universidad Nacional Autónoma de México Instituto de Biotecnología
⁴Universidad Nacional Autónoma de México Instituto de Biología
⁵Universidad Nacional Autónoma de Mexico
⁶Universidad Nacional Autónoma de México
⁷University of East Anglia
⁸Universidad Nacional Autónoma de Mexico, Instituto de Ciencias de la Atmósfera y Cambio Climático
⁹Bienes Comunales Santa Rosa Xochiac
¹⁰CONACYT Research Fellow assigned to CONABIO

May 23, 2024

Abstract

Urbanization modifies ecosystem conditions and evolutionary processes. This includes air pollution, mostly as tropospheric ozone (O3), which contributes to the decline of urban and peri-urban forests. A notable case are fir (Abies religiosa) forests in the peripheral mountains southwest of Mexico City, which have been severely affected by O3 pollution since the 1970s. Interestingly, some young individuals exhibiting minimal O3—related damage have been observed within a zone of significant O3 exposure. Using this setting as a natural experiment, we compared asymptomatic and symptomatic individuals of similar age (15 years old; n = 10) using histological, metabolomic and transcriptomic approaches. Plants were sampled during days of high (170 ppb) and moderate (87 ppb) O3 concentration. Given that there have been reforestation efforts in the region, with plants from different source populations, we first confirmed that all analysed individuals clustered within the local genetic group when compared to a species-wide panel (Admixture analysis with ~1.5K SNPs). We observed thicker epidermis and more collapsed cells in the palisade parenchyma of needles from symptomatic individuals than from their asymptomatic counterparts, with differences increasing with needle age. Furthermore, symptomatic individuals exhibited lower concentrations of various terpenes (ß-pinene, ß-caryophyllene oxide, α-caryophyllene and ß-α-cubebene) than asymptomatic trees, as evidenced through GC-MS. Finally, transcriptomic analyses revealed differential expression for thirteen genes related to carbohydrate metabolism, plant defense, and gene regulation. Our results indicate a rapid and contrasting phenotypic response among trees, likely influenced by standing genetic variation and/or plastic mechanisms. They open the door to future evolutionary studies for understanding how O3 tolerance develops in urban environments, and how this knowledge could contribute to forest restoration.
Histological, metabolomic, and transcriptomic differences in fir trees from a peri-urban forest under chronic ozone exposure

Verónica Reyes-Galindo¹,²*, Juan Pablo Jaramillo-Correa¹, Svetlana Shishkova³, Estela Sandoval-Zapotitla⁴, Cesár Mateo Flores-Ortiz⁵, Daniel Piñero¹, Lewis G. Spurgin⁶, Claudia A. Martin⁶, Ricardo Torres-Jardón⁷, Claudio Zamora-Callejas⁸, Alicia Mastretta-Yanes⁹,¹⁰*

¹ Department of Evolutionary Ecology, Institute of Ecology, Universidad Nacional Autónoma de México, AP 70-275 Mexico City, CDMX 04510, México
² Programa de Maestría en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, CDMX, México
³ Departamento de Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
⁴ Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, AP 70-640 Mexico City, CDMX 04510, México
⁵ Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Tlalnepantla 54090, México
⁶ University East of Anglia, School of Biological Sciences, Norwich, UK
⁷ Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, CDMX 04510, México
⁸ Bienes Comunales Santa Rosa Xochiac, Mexico City, CDMX, México
⁹ Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Mexico City, CDMX 14010, México
¹⁰ Consejo Nacional de Ciencia y Tecnología. Mexico City, CDMX, 03940, México.
*Corresponding authors:
Veronica Reyes-Galindo: veronica.rg.pb@gmail.com
Alicia Mastretta-Yanes: amastretta@conabio.gob.mx
Juan Pablo Jaramillo-Correa: jaramillo@ecologia.unam.mx

Key words: Abies religiosa, ozone pollution, transcriptomic, terpenes, natural conditions.

Abstract
Urbanization modifies ecosystem conditions and evolutionary processes. This includes air pollution, mostly as tropospheric ozone (O_3), which contributes to the decline of urban and peri-urban forests. A notable case are fir ($Abies religiosa$) forests in the peripheral mountains southwest of Mexico City, which have been severely affected by O_3 pollution since the 1970s. Interestingly, some young individuals exhibiting minimal O_3—related damage have been observed within a zone of significant O_3 exposure. Using this setting as a natural experiment, we compared asymptomatic and symptomatic individuals of similar age (\leq15 years old; $n = 10$) using histological, metabolomic and transcriptomic approaches. Plants were sampled during days of high (170 ppb) and moderate (87 ppb) O_3 concentration. Given that there have been reforestation efforts in the region, with plants from different source populations, we first confirmed that all analysed individuals clustered within the local genetic group when compared to a species-wide panel (Admixture analysis with ~1.5K SNPs). We observed thicker epidermis and more collapsed cells in the palisade parenchyma of needles from symptomatic individuals than from their asymptomatic counterparts, with differences increasing with needle age. Furthermore, symptomatic individuals exhibited lower concentrations of various terpenes (β-pinene, β-caryophyllene oxide,
α-caryophylene and β-α-cubebene) than asymptomatic trees, as evidenced through GC-MS. Finally, transcriptomic analyses revealed differential expression for thirteen genes related to carbohydrate metabolism, plant defense, and gene regulation. Our results indicate a rapid and contrasting phenotypic response among trees, likely influenced by standing genetic variation and/or plastic mechanisms. They open the door to future evolutionary studies for understanding how O₃ tolerance develops in urban environments, and how this knowledge could contribute to forest restoration.

Introduction

Rapid urbanization has severely disturbed entire ecosystems since the beginning of the industrial age (Bai et al., 2017), raising the important questions of how species cope with human-transformed environments and which molecular, evolutionary and ecological processes are involved (Rivkin et al., 2019). It is regularly thought that for species to persist in urban areas, they must adapt rapidly (Johnson & Munshi-South, 2017). However, for adaptation to occur, selection needs to operate on heritable variation, which can determine whether a species persists or disappears from urban areas. Rapid adaptation seems particularly important for pollution tolerance, one of the strongest and most abrupt challenges that an urban species may face (Santangelo et al., 2018). This is especially challenging for long-lived species, such as forest trees, implying that adaptation must occur within a few generations or be complemented by plastic responses (Müller-Starck & Schubert, 2001). The genetic basis and plastic responses to pollution have been studied using a plethora of methods, from traditional provenance trials to genomic and transcriptomic analyses (Papadopulos et al., 2020; Whitehead et al., 2017). However, most research has been done under controlled conditions, meaning that studies in natural settings are
needed for exploring the differential phenotypic responses in putatively tolerant versus sensitive individuals, and verifying if the same genes and pathways pinpointed in controlled studies can also be detected in the field.

One of the most common and harmful urban pollutants is tropospheric ozone (O₃), which is generated by photochemical reactions that involve by-products of fossil fuel burning (Churkina et al., 2017). Ozone is toxic to plants and has caused significant damage to forest ecosystems in and around heavily polluted cities (Ashmore, 2005; Cho et al., 2011). Given the key role that urban forests perform as providers of ecosystem services, understanding how O₃ tolerance operates in trees is a pivotal step for informing conservation and reforestation programs of degraded (peri-)urban forests. This requires field studies with an urban-ecology perspective, aiming to understand how O₃ tolerance develops and operates in natural settings, where tree responses to O₃ are also expected to be more complex and entangled with other sources of stress (Nunn et al., 2006).

In plants, O₃ damage, and the molecular mechanisms underlying the response to O₃ exposure, has been studied for over 20 years, using both field and laboratory experiments with controlled conditions (Felzer et al., 2007; Hayes et al., 2020). O₃ enters the plant through the stomata and triggers the formation of different reactive oxygen species (ROS), causing metabolic stress and resulting in cellular death, as ROS travel through the apoplast (Tausz et al., 2007). Several candidate genes have been postulated to cope with O₃-mediated metabolic stress (e.g., Hayes et al., 2020). However, strategies seem to differ between species and among populations within species (Baier et al., 2005; Hasan et al., 2021; Ludwików & Sadowski, 2008). For instance, differential sensitivity to ozone has been documented between poplars from more polluted and less polluted areas in the USA, according to
both common garden and field experiments (Berrang et al., 1991). Furthermore, differential foliar damage (related to O$_3$ exposure) has been observed among sacred fir (Abies religiosa) provenances in central Mexico (Hernández-Tejeda & Benavides-Meza, 2015).

More than 5 million vehicles circulate daily in Mexico City (CDMX; INEGI, 2018), making it one of the most air-polluted cities in the world (ONU, 2018). Its geographic location, mostly enclosed within a high-elevation valley, and the high fossil fuel consumption generates perfect conditions for tropospheric O$_3$ formation and accumulation (Bravo-Alvarez & Torres-Jardón, 2002; Molina et al., 2019). For instance, while O$_3$ concentration in unpolluted air ranges between 20-50 ppb (Seinfeld, 1989), daily levels in CDMX continuously reached 200 ppb during the 1990s (SEDEMA, 2020; Fig. 1a). Such elevated values still persist as isolated peaks (reaching up to 180 ppb by 2017; SEDEMA, 2020; Fig. 1a), particularly between March and June, when temperatures in CDMX are the highest and precipitation the lowest (CONANP, 2006). Given that days with good air quality (i.e. <70 ppb) are still scarce (Fig 1a) and that O$_3$ maxima are still well above the tolerable thresholds for human and ecosystem health (NOM-020-SSA1-2104; SEDEMA Report, 2017), a constant selective force with strong episodic peaks, that coincide with the start of the growing season for most local plant species, is assumed to occur within the peri-urban forests of CDMX.

Atmospheric drainage in CDMX mostly occurs between the southwestern mountains, which are dominated by sacred fir forests (Fig. 1d; Alvarado-Rosales et al., 2017). There is an ongoing decline of these forests, associated with the detrimental effects of O$_3$ (de Bauer & Hernández-Tejeda, 2007), inadequate management, excessive water extraction and recurrent forest fires (Alvarado R.,
Firs within these forests exhibit O$_3$ damage in the form of reddish needles, which are rich in phenolic compounds and have degraded vacuoles and disintegrated spongy and palisade parenchyma (Alvarado-Rosales & Hernández-Tejeda, 2002; Alvarez et al., 1998). Damage becomes visible in one-year-old needles, which die after the third year of exposure. When compared to unpolluted areas of the species’ range, such damage often leads to decreased vigour and increased susceptibility to several pests (Alvarado-Rosales & Hernández-Tejeda, 2002; Hernández-Tejeda & Benavides-Meza, 2015).

Although previous studies have described O$_3$ damage symptoms and pointed to this pollutant as the main cause for fir forest decline in CDMX (Alvarado R., 1989; Alvarado-Rosales & Hernández-Tejeda, 2002; de Bauer & Hernández-Tejeda, 2007), little attention has been paid to phenotypic differences for O$_3$-related symptoms until recently (Hernández-Tejeda & Benavides-Meza, 2015), when some apparently healthy young plants were observed within a heavily damaged stand. Complementing these observations in one of the most polluted cities of the world with methodological approaches to examine the effect of O$_3$ on plants can improve our understanding of how O$_3$ tolerance develops and operates in natural settings. For instance, at the histological level, we could expect more cellular damage in symptomatic trees than in asymptomatic individuals. Similarly, a deficient regulatory response to the oxidative stress caused by O$_3$ can be translated in the differential accumulation of certain metabolites, like some specific terpenes that have been observed in asymptomatic plants from various species after ozone exposure (Miyama et al., 2019; Kopaczyk et al., 2020). Lastly, transcriptomic analyses can help to narrow down the number of genes involved in the response to O$_3$ exposure.
and to examine plastic responses in gene expression under varying levels of O\textsubscript{3} (DeBiasse & Kelly, 2016).

Here, we explored the differential histological, metabolomic (terpene) and transcriptomic responses to ozone pollution within a natural peri-urban forest dominated by \textit{A. religiosa}. Given that previous reforestation attempts have been carried out in this zone, we first determined the geographic origin of individuals and then looked for differentially expressed genes between asymptomatic and symptomatic trees during days of high and relatively low ozone concentrations. This study represents a first step to guide peri-urban forest management from an eco-evolutionary perspective.

Material and methods

Study area and sampling

The study site is located near CDMX, in one of the most exposed areas to tropospheric ozone, the “Cruz de Coloxtitla” ravine, in the village of Santa Rosa Xochiac, next to the ‘Desierto de los Leones’ National Park (Alvarado-Rosales et al., 2017; Fig. 1d). We traced a quadrant of 80x137 m (19.285 N, -99.301 E; Fig. 2a) within this zone and focused on young (10-15 years old) \textit{Abies religiosa} [(Kunth) Schlechtendahl et Chamisso] trees. We chose five plants exhibiting large numbers of reddish needles, indicative of damage by O\textsubscript{3} (Miller et al., 1994; hereafter referred to as “symptomatic” trees), as described elsewhere (Alvarado-Rosales & Hernández-Tejeda, 2002; Alvarez et al., 1998). Additionally, we selected five apparently healthy individuals, which had no visible damage in any branch (“asymptomatic” trees from hereon; Fig. 2-b, S2). Symptomatic and asymptomatic trees (n=10) were distributed heterogeneously within the zone and were separated by at least five meters from
each other (Fig. 2a). Needle samples were collected for each tree in three time
points with contrasting O$_3$ concentration: moderate (April 15th, 2017; 87 ppb),
intermediate (May 13-14th 2017, 120-94 ppb) and high (May 17th, 2017; 170 ppb; Fig.
1b-c), according to daily measurements from the nearest (PEDREGAL, PE)
大气站 (available at
Needles were preserved in RNA Later and stored at -70°C until processing. The first
sampling period roughly coincided with the start of the bud-burst period for this
population (personal observations). Sampling was performed for all individuals
between 13:30-15:30 hrs (Fig. 1c); needles were selected from three sections of the
same branch, in six branches per individual. Each branch section corresponded to a
particular growth period (i.e., 2015, 2016 and 2017; Fig. 2b). No symptomatic
individual had leaves more than three years old.

Genotyping and geographic origin of tolerant trees
Reforestation efforts in the study zone involved germlasm from foreign
provenances (Hernández-Tejeda & Benavides-Meza, 2015). To verify that sampled
plants originated locally, from natural regeneration, we employed previously
published SNP data for 318 individuals from 19 populations of A. religiosa distributed
across its natural range (Giles-Pérez et al., 2022). This data was used to assign the
collected individuals to previously reported genetic clusters (Fig. 3a). To do so, we
used 80 mg of needle tissue for DNA extraction using liquid nitrogen and the
QUIAGEN DNeasy® Plant Mini Kit (cat. No. 69104), following the manufacturer’s
protocol. DNA integrity was checked in 1% agarose gel$^\|$ and its concentration
quantified with a Qubit™ v 3.0. Libraries were prepared following the protocol from
Poland & Rife (2012) after digestion with restriction enzymes MspI (C | CGG) and
PstI (TGCA | G); a Pippin prep (SAGE sciences) was used to select the adequate
fragment size before PCR amplification and sequencing. DNA sequencing was
conducted in an Illumina’s HiSeq2500 SE100 lane (100bp) and in a Nextseq lane
(100 bp) were at the Institute of Integrative Biology and Systems at Université Laval,
Canada (http://www.ibis.ulaval.ca/en/services-2/genomic-analysis-platform/). Read
quality was examined using FastQC
(http://www.bioinformatics.braham.ac.uk/projects/fastqc/) before and after
demultiplexing and quality filtering. Reads were assembled de novo, and ipyrad was
used for SNP calling (Eaton, 2014). Parameters used were: mindepth_statistical 8,
mindepth_majrule 100000, clust_threshold 0.9. To optimize SNP calling, we followed
the recommendations from Mastretta-Yanes et al. (2015), modified for ipyrad. We
aimed keeping SNPs genotyped in at least 90% of individuals and with minor allele
frequencies (MAF) above 0.05. Individuals with more than 10% missing data were
discarded with PLINK1.9 (Purcell et al., 2007), and additional random individuals
were removed until retaining only 3-5 trees of each population, along with the ten
focus individuals of this study.

Pairwise relatedness between each pair of individuals within populations was
calculated using PLINK 1.9 (Chang et al., 2015), as closely related individuals could
bias further analyses, including population structure and assignment (Sethuraman,
2018). Only one of the focus (symptomatic) individuals was randomly discarded
because of high relatedness (r>0.25) with another symptomatic tree (Fig. S3).

ADMIXTURE v 1.3.0 (Bhatta et al., 2019) was used to infer population structure by
supposing between 1 and 5 genetic clusters (K); optimal K was assumed to be the
one with smallest cross validation error (CV).
Anatomical analyses

Transverse histological sections were prepared for five needles per branch from three branches of each tree, all sampled during the high O₃ concentration periods. Following sampling, needles were embedded in distilled water according to Sandoval et al. (2005) and cut in 7-10 mm sections. Sections were immersed overnight in a fixative solution composed of 50% ethanol, 10% formaldehyde, 35% double distilled water and 5% glacial acetic acid (FAA). After washing with distilled water and dehydration in a graded terbutylic alcohol series, sections were embedded in Paraplast™, by adding 12-15 flakes every 30 min in an oven at 58 °C, until doubling the alcohol volume. Sections were stored at 56 °C for 3 weeks until forming solid blocks (inclusion cubes), which were further sectioned with a rotating microtome (American Optical 820; 12µm). Ten to 15 transversal tissue sections were obtained per needle. The sections were first hydrated and dyed with safranin, then dehydrated within a graded ethanol series and stained with dye fast green (FCF), using a previously standardized method for sacred fir (Sandoval et al., 2005). Afterwards, they were mounted on slides and dried for 15 days in an oven at 56° C. We looked for cell structures previously reported as symptoms of O₃ damage (Fig. S2; Gimeno & Ibars, 2009). Samples were photographed in an Axioskope Car Zeiss photomicroscope for examining tissue-level damage, compared to a reference description of A. religiosa (Alvarez et al., 1998).

Terpenes analysis

Two and three year-old needles (corresponding to the growth years of 2015 and 2016) collected during moderate (87 ppb) and high (170 ppb) O₃ concentration
periods were used to quantify relative terpene abundances (Ibrahim et al., 2019).

Approximately 80-95 mg (fresh-weight) tissue preserved in liquid nitrogen was
macerated with a mortar and pestle with 2 mL of dichloromethane, transferred to
microtubes, and centrifuged (within tubes) for 1 min at 14,000 rpm. The supernatant
was recovered and dried with compressed air, and the pellet was resuspended in
450 µl of dichloromethane and 50 µl of 1mg/mL 1-isopropylphenol (as internal
standard). After homogenization, 2 µl were injected into a gas chromatograph with a
Split/splitless injector (Agilent Technologies 6850 Network GC System) coupled to a
mass spectrometer (5975C VL MSD with Triple-Axis Detector) and a Xylan
(Quadrex) 30 m * 0.25 mm * 0.25 µm capillary column. Analyses were performed at
230°C in the splitless mode (3 min). The initial temperature was set at 70°C for 2
min, then increased to 230°C at a rate of 20° C / min, and maintained for 5 min.
Helium (i.e., carrier gas) was injected at a rate of 1 mL / min; the temperatures of the
transfer line, ionization source, and quadrupole analyzer were 280°C, 230°C, and
150°C, respectively. Analyses were performed by electronic impact at 70 eV using
the full spectrum scan mode (SCAN). For relative quantification, peak areas were
integrated and normalized to the internal standard. Each peak (associated to a
specific metabolite) was validated according to its retention time and mass spectrum
based on the National Institute of Standards and Technology (NIST) library.

Only terpenes with similar fragmentation patterns or retention times (TR),
observed in at least 60 % of the samples and with at least 80% identification
probability were retained. A matrix of relative abundance per 100 g of tissue was
then generated for comparison between tree conditions (asymptomatic vs.
symptomatic), periods (high and moderate O₃), and needle age (2015, 2016; Fig. 1)
through a linear model using R (R Core Team, 2021), assuming a Gamma
distribution. We compared the goodness of fit of the models with the Akaike’s information criterion. The better model was Metabolites Concentration ∼ Condition * Period. We performed non-paired comparisons, with Wilcoxon tests, to explore variations in metabolite composition between asymptomatic and symptomatic groups, between periods (87 ppb vs 170 ppb) and needle ages (one year vs two years). Analyses were performed in the stats package 4.1.2 (R Core Team, 2021) and results were visualized with ggplot2 3.3.5 (Wickham, 2016).

Differential expression analyses

One- and two-year old needles (2015 and 2016) sampled during the moderate (87 ppb) and high (170 ppb) O₃ concentration periods were further analyzed for differential expression through RNA sequencing. Total RNA was isolated using a Spectrum RNA Plant™ kit (cat. No. STRN50, SIGMA) from 40 to 45 mg of tissue. RNA integrity was evaluated by 1% agarose gel electrophoresis, and its quality and purity were determined using NanoDrop (ultradifferential spectrophotometer) according to the 260/280 and 260/230 ratios. RNA concentration was quantified with a Qubit™ RNA IQ assay (Invitrogen). The 18 sequencing libraries from poly(A)+ enriched RNA (Table S5) were prepared, and then sequenced in a Hi-Seq 4000 in a 150PE sequencing lane at the University of Berkeley, USA (https://www.berkeley.edu/).

Demultiplexing was performed by the sequencing service. We performed quality checks with FastQC and removed adapters and low-quality reads with
Trimmomatic (Bolger et al., 2014) using the following parameters: -phred33, ILLUMINA CLIP: TruSeq3-PE-2.fa: 2: 30: 10, LEADING: 3, TRAILING: 3, SLIDING WINDOW: 10 MINLEN: 50. Reads were mapped to the *Abies balsamea* transcriptome (Van Ghelder et al., 2019; Bioproject PRJNA437248 in Genbank) with BWA-MEM (Li & Durbin, 2009). Once the reads were mapped, we quantified the transcript abundance by counting the mapped reads per transcript for each sample (Table S6). Differential expression analyses were performed with DESeq2 (Love et al., 2014) and edgeR (Robinson et al., 2010) in R for the following comparisons: (1) symptomatic vs. asymptomatic individuals during the high O₃ concentration period (170 ppb); (2) asymptomatic trees during the moderate (87ppb) vs. high O₃ concentration (170ppb) periods; and (3) symptomatic individuals during the moderate (87ppb) vs. high O₃ concentration (170ppb) periods.

Transcripts with p-values lower than 0.005, after fold change correction (Benjamini et al., 2001), were considered differentially expressed. Only those transcripts detected by both methods were retained and analysed for identifying the most likely open reading frames. They were then annotated with TRAPID 2.0 (Van Bel et al., 2019) and BLASTx (https://blast.ncbi.nlm.nih.gov/Blast.cgi) using the non-redundant database (nr); we retained the first five hits for each transcript. For those transcripts that could not be annotated, we performed BLASTx searches against the Gymnosperm transcriptomes available at the Congenie database(congenie.org). Proteins of annotated transcripts were finally assigned to their respective metabolic pathways using KOALA (KEGG Orthology And Links Annotation (Kanehisa et al., 2016)).

Results
Genotyping and geographic origin of trees

After *de novo* assembly and filtering, 1,550 SNPs were genotyped for the 88 retained *A. religiosa* individuals distributed along most of its range (Giles-Pérez et al., 2022), and for the ten focus samples of this study. Although the optimal number of genetic clusters (*K*) for the Admixture analysis was 2, a higher value (*K* = 5) had a better resolution for differentiating groups in the eastern and western most parts of the species distribution, allowing individual assignment. Both the symptomatic and asymptomatic trees of this study were assigned to the central-Mexico cluster, to which trees from neighboring populations, such as Ajusco and Nevado de Toluca also belong (Fig. 3). This result indicates that only local germplasm was included in our study.

Anatomical differentiation

Tissue differences were found between symptomatic and asymptomatic trees and among growth years (*i.e.*, needles developed in 2015 and 2016 and sampled in 2017) within individuals (Fig. 2b, Fig. S2). Needles of symptomatic trees exhibited a thicker epidermis and more collapsed cells than those of the asymptomatic ones, mainly within the palisade parenchyma (Fig. 2b). In contrast, the spongy parenchyma, resin channels and vascular tissues looked similar in the needles of symptomatic and asymptomatic individuals. Cell collapse became more evident with needle age in symptomatic trees (*i.e.*, higher for 2015 than for 2016 needles), while asymptomatic individuals showed less cell collapse in the two-year-old needles (2015) than in the one-year-old needles (2016; Fig. 2b).

Terpenes analysis
Compounds identified in all extracts included: \(\delta\)-cadinene, \(\alpha\)-cubebene, \(\beta\)-cubebene, \(\alpha\)-caryophyllene, \(\beta\)-caryophyllene oxide, L-\(\alpha\)-bornyl acetate, and \(\beta\)-pinene (Fig. 4).

The best model for explaining the differences in concentration of these shared terpenes (Nagelkerke’s R2 = 0.645), indicated an association with the tree’s condition (symptomatic and asymptomatic) and the period of exposition (87 ppb vs 170 ppb), with needle age being less relevant. Indeed, concentrations of all shared terpenes exhibited significant differences (\(p < 0.001\), \(p < 0.01\), or \(0.05\), Fig. 4) between symptomatic and asymptomatic individuals during the period of moderate ozone concentration. In addition, there were statistical differences in the terpene concentrations of asymptomatic trees between periods (87 ppb vs 170 ppb), but no differences were found between periods for the symptomatic trees or between needle ages (one- or two-years).

Differential expression analyses (RNA-seq)

After quality filtering, 605,147,387 paired reads were retained for 18 samples, with an average of 33,619,299 reads per sample. The percentage of reads mapped to the reference transcriptome (\textit{A. balsamea}) ranged between 84.5 % and 96.7% per sample (Table S6), indicating \textit{excellent} transcript coverage. Eleven differentially expressed transcripts were identified in the needles of the symptomatic and asymptomatic trees (fold change) during the high O\textsubscript{3} concentration period using both the DESeq2 and edgeR methods (Fig. 5a). Five of them were upregulated and six were downregulated in asymptomatic individuals. Six of these transcripts could be
annotated (Table S1) and were involved in carbohydrate metabolism, gene regulation, and defense, according to KOALA. All of these transcripts belong to gene families whose members are involved in different aspects of abiotic and biotic stress response (see Table S1 for details), four of which have been previously associated with O₃ response in controlled experiments with plants: LRR receptor-like protein kinases (two annotated transcripts), an L-type lectin-domain containing receptor kinase, and a chitinase (Table S1).

When comparing transcript expression between trees with the same phenotype collected during low and high O₃ concentration periods, we observed six and twenty-two differentially expressed transcripts for the symptomatic and asymptomatic individuals, respectively; 17 of which could be annotated (Fig. 5b-c, Table S2-3). Remarkably, the number of differentially expressed transcripts in the asymptomatic plants was almost four times higher than that in symptomatic trees.

Among the five upregulated transcripts differentially expressed between periods in the symptomatic individuals, two transcripts were involved in the regulation of gene expression (encoding a NAC transcription factor and histone 1.3 variant) and one was involved in cell wall remodeling (encoding a xyloglucan endotransglucosylase). The only downregulated transcript for these symptomatic trees encoded an enzyme from the UDP-glucosyl transferase family involved in various metabolic processes, including flavanol, tetrapyrrole, and terpene biosynthesis (Table S2). Homologues in other plant species for four of the upregulated transcripts have been previously associated with ozone response, including the abovementioned NAC transcription factor and UDP-glucosyl transferase (Table S2).
For the asymptomatic trees, 16 of the 22 differentially expressed transcripts between periods could be annotated (Table S3). For two of them, no homologous amino acid sequences were found, but the results of BLASTn performed in the Congenie database suggest that these could respectively represent a conifer specific non-coding RNA, and a conifer-specific peptide or protein. As for the annotated transcripts of these symptomatic individuals, they belong to gene families involved in response to abiotic and biotic stress, and the regulation of gene expression, four of these transcripts have been reported in controlled O₃ experiments in plants (Table S3). Interestingly, these include the linker histone H1, which was also upregulated in the symptomatic trees during the high O₃ concentration period.

Discussion

In this study, we explored the histological, metabolomic, and transcriptomic changes between symptomatic and asymptomatic fir trees within a natural population that has been heavily exposed to tropospheric O₃ for over 40 years. According to our genetic ancestry analysis, all the studied individuals belong to the local gene pool, which suggests that the observed differences are the likely result of intrinsic evolutionary processes within this population. Such differences include histological traits whose disparity increases with needle age, and contrasting terpene composition and gene expression. Our results illustrate how signals of O₃ tolerance can arise in a natural population after a few decades of frequent exposure and shed light on the metabolic and gene regulation mechanisms involved in conifers.

Asymptomatic trees have a local genetic origin
Comparing the genetic ancestry of our focus trees with other populations allowed us to confidently assign them to the previously reported central-Mexican genetic cluster (Giles-Pérez et al., 2022; Fig. 3b). This is important given that various reforestation efforts with foreign germplasm have been performed in the study zone and that some provenances have shown differential sensitivity to O_3 (Hernández-Tejeda & Benavides-Meza, 2015). Given that reforested trees have still not reached reproductive maturity, O_3 tolerance at the study site is the likely product of local processes, based on either plasticity or standing genetic variation (see below). Should genetic factors be involved, we hypothesize that only a relatively large effective population size could allow for the rapid evolutionary changes that are necessary to respond to such a strong environmental pressure in such a short term (1-2 generations if we consider a generation time of 25 years for sacred fir). Detailed quantitative and population genomics studies are thus necessary to evaluate tolerance heritability, estimate demographic parameters, and pinpoint the genomic bases of such putative adaptation.

Histological O_3 damage begins after only a few days of exposure

Overall, the symptoms observed herein were similar to those reported for other plant species experimentally exposed to O_3 under controlled conditions, at both the macroscopic and histological levels (Chaudhary & Rathore, 2021; Moura et al., 2022). Such symptoms are different from those expected from other possible stresses, such as drought or disease, which produce yellowish needles and a more homogeneously affected foliage (including needle loss; Chastagner, 2001; Johnson et al., 2005). In contrast, in this study, the reddish needle symptoms indicative of O_3
damage were first observed in 2-year-old needles, and foliage loss was limited to 3-year-old or older needles. At the histological level, the needles of all individuals bore signs of damage, albeit to a much lower degree for the asymptomatic trees than for the symptomatic individuals (Fig. 2b, S2). This suggests a multivariate response to O$_3$ exposure that results in a continuous rather than in a discrete phenotype, likely controlled by polygenic or epigenetic factors. Our data further shows that O$_3$ damage begins at the tissue level during the first 30 days after bud burst (2017 buds; Fig. 2b), even if symptoms are still not noticeably macroscopically. Such precocious signs have been described for other conifers, for which they could appear as early as the fifth day of exposure (Evans & Fitzgerald, 1993). Both the visible and histological damages in firs aggravate with needle age (Fig. 2), which indicates a cumulative and irreversible effect of O$_3$ exposure (Schraudner et al., 1998), similar to that reported in controlled experiments in other plant species (Lee et al., 2020).

Cell collapse was particularly important within the palisade parenchyma (Fig. 2b, S2; Alvarez et al., 1998; Evans & Fitzgerald, 1993; Terrazas & Bernal-Salazar, 2002), which has been attributed to oxidizing agents that act on the middle lamella of the cell wall and promote its degradation (Gimeno & Ibars, 2009). Such degradation increases intercellular spaces and leads to cell death (Alvarez et al., 1998), and it is often accompanied by the accumulation of phenolic and tannin compounds that produce the characteristic reddish coloration of O$_3$ damage (Fig. 2b, S2; Gostin, 2010).

Symptomatic individuals had thicker epidermis than asymptomatic individuals (Ep; Fig. 2b). Such thickening has already been associated with O$_3$ response in conifers (Kivimäenpää et al., 2017) and might indicate increased synthesis of cell
wall components under O$_3$ stress (Sandermann et al., 1997). Interestingly, we did not find any differences in cuticle and resin duct structure between symptomatic and asymptomatic trees (Fig. 2b, S2), which was reported as a recurrent sign of O$_3$ damage in pines (Vollenweider et al., 2003). This suggests that either firs have a greater tolerance to O$_3$ than pines or that such symptoms can only be observed when comparing individuals unexposed and exposed to O$_3$ (which was impossible to settle in our study, because there are no zero-exposure periods in our study site throughout the year). Our own casual field observations suggest that pines (i.e., Pinus ayacahuite, P. harwegii and P. veitchii) growing in the study site seem to be more affected than firs in terms of mortality, needle loss, and needle coloration.

Asymptomatic trees produce terpenes related to response to biotic and abiotic stress and recovery after stress

Changes in cell structure in ozone-damaged plants may result from rampant oxidative stress (Baier et al., 2005; Iriti & Faoro, 2008). These may be produced by a deficient regulatory response, which results in the differential accumulation of certain metabolites, including terpenes (Kopaczyk et al., 2020; Miyama et al., 2019).

Although we observed no clear anatomical differences in the resin ducts between symptomatic and asymptomatic trees, which could have indicated contrasting metabolite accumulation (Fig. 4), there were significant differences in terpene composition, particularly sesquiterpenes, between asymptomatic and symptomatic phenotypes during the moderate O$_3$ period. This is particularly compelling because sesquiterpenes, which were also found to increase their concentration in angiosperms when exposed to O$_3$ (Kanagendran et al., 2018; Pellegrini et al., 2012),
have been shown to degrade reactive oxygen species (ROS) and reduce cellular damage (Loreto & Fares, 2007; Vickers et al., 2009).

In our study, sesquiterpenes such as β-pinene, Δ-cadinene and β-caryophyllene were observed at higher concentrations in the asymptomatic than the asymptomatic trees prior to the high O₃ concentration period (Fig. 4). Such compounds have been associated with antioxidant and larvicidal functions in several plant species, including pines (Govindarajan et al., 2016; Kanagendran et al., 2018; Loreto et al., 2004; Ortiz de Elguea-Culebras et al., 2017). These terpenes could be allowing the asymptomatic trees to better cope with biotic and abiotic stresses once O₃ exposure increases (Pellegrini et al., 2012). The whole biosynthetic pathway leading to these compounds should be of particular interest for future functional and evolutionary studies in firs and other plants. However, given that insects often attack already weakened trees (like those exposed to O₃), such studies should also focus on disentangling the metabolic response to ozone exposure and insect defense.

Asymptomatic trees further produced a larger quantity of metabolites related to recovery after stress than symptomatic plants when we compared the metabolite composition between moderate and high O₃ periods (Fig. 4). Particularly β-pinene, which has been previously related to the plant recovery after a high O₃ exposure in Nicotiana tabacum (Kanagendran et al., 2018). This reinforces the idea that O₃ exposure is the main cause of forest degradation at our study site.

The members of the family of UDP-glycosyltransferase (UGT) enzymes participate in terpene biosynthesis (AB_008838_T.1; Table S2). The lower concentration of terpenes during the high O₃ period (Fig. 4) may be associated with the down-regulation of these transcripts in symptomatic trees when comparing the low (87 ppb) and high (170 ppm) O₃ concentration periods (Table S2). However, our
study should be complemented by examining the concentration of other metabolites, like flavonoids or tannins, in the future. Indeed, our results indicated that the expression of transcripts involved in the flavonoid metabolic pathway could exhibit considerable differences compared with those found for terpene metabolism, as demonstrated by the transcriptomic data (AB_000811_T.1; Table S1). In any case, the metabolic signatures reported here could already be used to identify trees that are not adequately recovering after O\textsubscript{3} exposure in affected forests.

Transcripts related to stomatal opening and response to stress are up-regulated in asymptomatic trees

To further examine the molecular basis of O\textsubscript{3} response, we performed a differential transcript expression analysis (DTE). We found differentially expressed transcripts when comparing asymptomatic and symptomatic trees during the high O\textsubscript{3} concentration period (Table S1, Fig. 5a) and when independently comparing concentration periods for individuals with the same phenotype (Table S2-S3, Fig. 5b-c). Homologs of several of these transcripts have been previously reported as differentially expressed in controlled O\textsubscript{3} exposure experiments in angiosperms (Natali et al., 2018; Tammam et al., 2019; Waldeck et al., 2017), which suggests that the molecular mechanisms underlying response to O\textsubscript{3} are conserved on a large evolutionary time scale.

The differentially expressed transcripts during high O\textsubscript{3} concentration periods were associated with defense against pathogens and stomata opening, and included transcripts related to chitinases and LRR protein kinases. These proteins are known to play important roles in recognizing and responding to pathogens in plants (Vaghela et al., 2022; Wang et al., 2023), and their differential expression suggests
either a response to an unaccounted pathogen attack (e.g., fungi) or that this
signaling pathway is activated under both O₃ exposure and other stressors. Again,
this indicates the need for further studies to disentangling the response to O₃ and
biotic stress defense. Interestingly, some members of the LRR kinases gene family
are also associated with the initial physiological reaction of plants to O₃ exposure,
which involves stomatal closure (Hasan et al., 2021). Thus, studying stomata
closure, and its underlying genes, should be a priority for future studies in natural
plant populations affected by O₃ pollution.

Comparing transcriptional profiles among trees with the same phenotype,
asymptomatic or symptomatic, also showed differential responses to increased O₃
concentration. In other words, the upregulated and downregulated transcripts belong
to different GO categories. Among the upregulated transcripts in symptomatic
individuals during the moderate O₃ period (Fig. 5b, Table S2), a homolog of the
xyloglucan endo-transglycosylase and a non-apical meristem (NAM) transcription
factor from the large NAC family stand out, as some of their homologs have been
shown to play a key role in cell repair after O₃ exposure (Zhang et al., 2017) and are
activated by O₃ during apoplastic ROS signaling (De Clercq et al., 2013). The
activation of these pathways in symptomatic trees when O₃ concentration is low,
might be indicative of decreased sensitivity to this pollutant when compared to the
asymptomatic trees.

During the high O₃ period, asymptomatic individuals upregulated some
transcripts (Fig. 5c, Table S3) related to plant resistance (NB-ARC-domain proteins),
plant defense (peroxidases), and the flavonoid biosynthesis (chalcones) pathway
(Dao et al., 2011; Krasensky et al., 2017). In other words, when O₃ concentration
increases, asymptomatic trees may be activating mechanisms related to stress.
response. Moreover, transcripts encoding for *UDP-glycosyltransferase (UGT)* family members (Fig. 5b, Table S2), which are essential components of the plant secondary metabolism pathway that helps detoxify harmful compounds (Pan et al., 2019), are downregulated in asymptomatic trees. *UGTs* are also essential for regulating various aspects of plant growth and development (Mateo-Bonmatí et al., 2021).

All in all, the variety of pathways differentially activated between symptomatic and asymptomatic trees highlights the complexity of studying plant transcriptomic responses in natural conditions (Nunn et al., 2006). Indeed, several sources of stress are expected to act at the same time in degraded forests subjected to air pollution. To disentangle the various mechanisms involved, it is advisable to use controlled experiments, such as ozone top chambers (Abeyratne & Ileperuma, 2006; Palomäki et al., 1998), in combination with *in situ* studies in natural settings to understand how plants respond to stress under real-life scenarios. However, although several sources of stress are at play in peri-urban forests of Mexico City, our histological, terpenes, and transcriptomic analyses confirm that O₃ pollution is an important stressor that triggers a rapid and differential phenotypic response in firs, likely modeled by standing genetic variation and/or plastic mechanisms. The evolutionary basis of such differences remains open to be explored. Since epigenetic variation is related to gene activity and expression (Richards et al., 2017; Srikant & Drost, 2021), and can accumulate faster than DNA mutations, their role in the phenotypic response to O₃ pollution must be addressed in future studies.

Data accessibility and benefit-sharing
Histological images and processed terpenes, genotype (vcf files) and transcriptomic (expression tables) data are available at the Dryad repository XXXXX (available upon acceptance). Pipelines and code for all analyses is available at the Github repository (https://github.com/Verolarrachtai/Abies_religiosa_vs_ozone). Transcriptome raw sequences data were deposited in GeneBank under accession numbers XXXX (available upon acceptance). Demultiplexed sequencing data, including those samples previously analyzed in a phylogenetic survey (i.e., 80 samples, Giles et al., 2022), were deposited in NCBI with the Bioproject ID: PRJNA856692; while filtered variant files used for population genomic analyses, code and pipelines are hosted on Dryad Repository at XXXX (available upon acceptance) and on GitHub at XXXX (available upon acceptance).

Author contributions
VRG, CZC and AMY performed sampling. VRG performed lab work and analyses. VRG, JPJC and AMY designed the study, interpreted results, and drafted the manuscript. LS, CAM, SS, ESZ, RTJ, CMF and DP contributed to data analyses and interpretation. All authors produced and approved the final version of the manuscript.

Acknowledgements
We thank Héctor Mario Benavides-Meza, INIFAP, and the community of Bienes Comunales Santa Rosa Xochiac, Mexico, for field assistance. We are grateful to T. Garrido-Garduño, A. Guerra and N. Galvez-Reyes for laboratory assistance.
Analyses were carried out on CONABIO’s computing cluster, supported by Ernesto Campos Murillo and the ‘Subcoordinación de Soporte Informático’.
This project was financially supported by grants from the “Consejo Nacional de Ciencia y Tecnología” (CONACyT; National Problems-247730 to AM-Y; CB-2016-284457 and COOB2016-01-278987 to JPJ-C), the “Dirección General de Asuntos del Personal Académico at UNAM (PAPIIT IN224723) and the internal budget of IE-UNAM, both to JPJ-C. This work is part of the MSc thesis of VR-G at the ‘Programa de Maestría en Ciencias Biológicas, Universidad Nacional Autónoma de México’ who further thanks the support of Consejo Nacional de Ciencia y Tecnología through a MSc Scholarship (no. 714560).

References

Alabdallah, N. M., Waseem, M., Waseem, M., Jahan, M. S., Ahammed, G. J.,
El-Mogy, M. M., El-Yazied, A. A., Ibrahim, M. F. M., Xiang-Wen Fang, & Fang,
X.-W. (2021). Ozone Induced Stomatal Regulations, MAPK and
Phytohormone Signaling in Plants. International Journal of Molecular
Sciences, 22(12), 6304.

relationships for tropical crops reveal potential threat to legume and wheat
production, but not to millets. Scientific African, 9, e00482.

provenances of pine and Sacred fir to photochemical oxidants. 6(30), 32-51.

Iriti, M., & Faoro, F. (2008). Oxidative Stress, the Paradigm of Ozone Toxicity in

Jáuregui, E. (2002). The Climate of the Mexico City Air Basin: Its Effects on the
Formation and Transport of Pollutants (pp. 86-117).

foliar pathogen Swiss needle cast on wood quality of Douglas-fir. Canadian

Visual abstract:
Figure 1 Change of O$_3$ concentration in the Mexico City (CDMX) metropolitan area since 1990 (a) Air quality is represented by colors: green, good (0-70ppb); yellow, regular (71-95ppb); orange, bad (96-154ppb); red, very bad (155-204ppb) and purple, extremely bad (> = 205). Modified of SEDEMA (2020) (b) average O$_3$ concentration during the study period (April and May, 2017). Black circles show collection days. (c) O$_3$ concentration as measured at the nearby station to the sampling site (PEDREGAL) during the sampling period. Modified of SEDEMA (2018) (d) wind direction and O$_3$ concentration in CDMX at 6:00 am (~ 50 ppb; left) and at 15:00 pm (~ 130 ppb; middle; see colorimetric scale at right) on a regular day between April and May. Blue boxes indicate the location of the study site. Arrow size indicates wind speed; vector at right (below colored bar) shows 5 m / s.
Figure 2 Distribution of focus trees (asymptomatic in green, T1-5; symptomatic in red, D1-5) within the study site, and location of the study site within Mexico City metropolitan area and Mexico (a) Transverse histological sections of needles from asymptomatic (left) and symptomatic (right) sacred fir individuals (*Abies religiosa*) for three growth periods (2015, 2016, 2017) (b) All bars = 10µm. PP, palisade parenchyma; SP, spongy parenchyma.
Figure 3. Assignment of studied individuals to the species genetic clusters based on admixture results (derived from 1,550 SNPs). Symptomatic trees indicated in red below figure; asymptomatic trees in green. Plots are shown for k = 2 to k = 5, all of which denote identical cluster assignments for both types of trees. Individuals (n= 88) are shown as vertical bars colored in proportion to their estimated ancestry for each cluster. Black lines separate populations listed from West to East along the species distribution.
Figure 4 Relative sesquiterpene concentrations (mg / 100g dry weight) in needles from symptomatic (red) and asymptomatic (green) sacred fir (*Abies religiosa*) individuals during two periods with contrasting O$_3$ concentration (87ppb and 170 ppb). Measures taken from one- (continuous line) and two-year old (dashed line) needles. Bars show variability in comparison to the IQR. See table S4 to consult the statistical analyzes of interactions.

Figure 5 Differential Expression Analysis of RNA transcripts with two methods (DESeq2 in blue; edgeR in yellow; retained transcripts were those detected by both methods, in purple; $p < 0.005$). Volcano plots for asymptomatic vs. symptomatic trees during the high O$_3$ period (a); high vs. moderate O$_3$ concentration periods for symptomatic individuals (b); and high vs moderate O$_3$ concentration periods for asymptomatic trees (c). Differentially expressed transcripts were selected with thresholds of fold change > 2 (represented by two dotted black vertical lines) and $p < 0.005$ (represented by dotted black horizontal lines).
Supplementary Images
Figure S1 Photographs of the branches for each sampled sacred fir tree. (a) asymptomatic trees (b) symptomatic trees.
Figure S2 Histological sections of needles from asymptomatic (left) and symptomatic (right) sacred fir (Abies religiosa) individuals from two growing seasons (2017 top; 2015 bottom). All bars = 10μm. PP, palisade parenchyma; SP, spongy parenchyma; X-P, xylem and phloem.
Figure S3 Relatedness between sacred fir (Abies religiosa) individuals used for genetic assignment analyses. Asymptomatic individuals from study sites in green, symptomatic trees in red.
Table S1 Differentially expressed transcripts in symptomatic vs asymptomatic sacred fir (Abies religiosa)

<table>
<thead>
<tr>
<th>Contig ID</th>
<th>Log$_2$ fold changea</th>
<th>Query length, nts</th>
<th>Scoreb / Max query cover in the 1st 5 hits, %</th>
<th>Annotation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB_000588_T.1</td>
<td>7.257</td>
<td>707</td>
<td>L / 40</td>
<td>Hypothetical protein KI387_017072, partial [Taxus chinensis]</td>
<td>The only hit returned by the ncbi Blastx</td>
</tr>
<tr>
<td>AB_045531_T.1</td>
<td>4.450</td>
<td>1192</td>
<td>M / 68</td>
<td>Hypothetical protein</td>
<td>Mostly bacterial hits</td>
</tr>
<tr>
<td>AB_015092_T.1</td>
<td>1.614</td>
<td>1944</td>
<td>H / 89</td>
<td>Nuclear fusion defective 4-like, Nodulin-like</td>
<td>Nuclear fusion defective 4 in A. thaliana is involved in response to salt stress (Sottosanto et al. 2007).</td>
</tr>
<tr>
<td>AB_036475_T.1</td>
<td>1.437</td>
<td>650</td>
<td>H / 78</td>
<td>Chitinase class VII / II / IV / or EP3-like / 4 / 5</td>
<td>Chitinases are involved in responses to various abiotic and biotic stresses. An acidic chitinase is over-regulated after ozone exposure in tobacco (Ernst et al. 1992)</td>
</tr>
<tr>
<td>AB_018867_T.1</td>
<td>1.302</td>
<td>409</td>
<td>L / 37</td>
<td>Unknown [Picea sitchensis]</td>
<td>Four hits in 2 unknown proteins of P. sitchensis (Could be conifer-specific protein)</td>
</tr>
<tr>
<td>AB_029334_T.1</td>
<td>-1.187</td>
<td>2594</td>
<td>H / 72</td>
<td>Probable L-type lectin-domain containing receptor kinase S.5</td>
<td>L-type lectin receptor kinases are involved in defense response to bacteria and oomycetes (Bouwmeester and Govers 2009).</td>
</tr>
<tr>
<td>AB_029013_T.1</td>
<td>-1.371</td>
<td>1214</td>
<td>VL / 21</td>
<td>Hypothetical protein</td>
<td>Three hits in two different OFRs</td>
</tr>
<tr>
<td>Accession</td>
<td>Log2 Fold Change</td>
<td>Length</td>
<td>Tissue</td>
<td>Description</td>
<td>Details</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>AB_035458_T.1</td>
<td>-2.8306</td>
<td>928</td>
<td>H / 99</td>
<td>Leucine-rich repeat (LRR) receptor-like serine/threonine protein kinase</td>
<td>A large family of LRR receptor-like kinases (RLK) participate in all aspects of plant development, in response to abiotic stresses, in defense processes and in plant-microbe interactions. Loss of the LRR-RLK GHR1 resulted in O3 sensitivity in A. thaliana, likely mediated by the associated disruption of stomatal function (Sierla et al. 2018).</td>
</tr>
<tr>
<td>AB_038616_T.1</td>
<td>- 4.951</td>
<td>752</td>
<td>H / 88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB_027319_T.1</td>
<td>-7.549</td>
<td>895</td>
<td>L / 39</td>
<td>Tetratricopeptide repeat (TPR)-like / patatin-like phospholipase domain protein / oidiuim resistance required protein 1/ TOM1-like protein 2</td>
<td>Members of TPR protein superfamily includes ones with potential to interact with Hsp90/Hsp70 as co-chaperones in nucleus and cytoplasm, thus participating in response to biotic stresses; RNA binding proteins involved in mRNA edition in plastid and mitochondria, are involved in plant development. Patatin-like phospholipase domain proteins involved in plant development, synthesis of secondary metabolites, cell death, defense responses, response to abiotic stresses (Lebeda et al. 2014).</td>
</tr>
<tr>
<td>AB_038562_T.1</td>
<td>-23.104</td>
<td>951</td>
<td>No hit</td>
<td>No hit</td>
<td>No significant similarity either in BLASTn search in NCBI nr database, neither in congenie.</td>
</tr>
</tbody>
</table>

\(^a\) Positive value: up regulated in symptomatic trees; Negative value: down regulated in symptomatic trees;

\(^b\) H: high (>200); M: medium (80-200); L: low (50-80); VL: very low (40-50).
Table S2 Differentially expressed transcripts in symptomatic sacred fir trees during high vs moderate O$_3$ concentration periods.

<table>
<thead>
<tr>
<th>ID Locus</th>
<th>Log$_2$ fold changea</th>
<th>Query length, nts</th>
<th>Scoreb / Max query cover in the 1st 5 hits, %</th>
<th>Annotation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB_002157_T.1</td>
<td>4.255</td>
<td>609</td>
<td>VL / 30</td>
<td>Hypothetical protein [Acinetobacter baumannii]</td>
<td>NCBI BLASTn returns five hits of mRNA sequences of Picea glauca with 81.49% to 87.93% identity</td>
</tr>
<tr>
<td>AB_028063_T.1</td>
<td>3.717</td>
<td>1034</td>
<td>No hit</td>
<td>No hit</td>
<td>Members of the huge family of NAC transcription factors are involved in many aspects of plant development, defense response to bacteria and other organisms, response to water deprivation and to abscisic acid, secondary metabolic processes. ANAC013, ANAC016, ANAC017, ANAC053 and ANAC078 regulate oxidative stress in A. thaliana (De Clercq et al. 2013).</td>
</tr>
<tr>
<td>AB_029211_T.1</td>
<td>3.265</td>
<td>1193 (H / 76)</td>
<td>H / 44</td>
<td>No Apical Meristem, (NAC) transcription factor (Unannotated protein [Picea sitchensis])</td>
<td>Members of the huge family of NAC transcription factors are involved in many aspects of plant development, defense response to bacteria and other organisms, response to water deprivation and to abscisic acid, secondary metabolic processes. ANAC013, ANAC016, ANAC017, ANAC053 and ANAC078 regulate oxidative stress in A. thaliana (De Clercq et al. 2013).</td>
</tr>
<tr>
<td>AB_023740_T.1</td>
<td>2.911</td>
<td>1320</td>
<td>H / 62</td>
<td>Xyloglucan endotrans glucosylase (XET) /hydrolase; Glycosyl hydrolase family 16</td>
<td>XET enzymes participate in cell wall remodeling, thus modulating its expansion and strength. The contig covers complete XET CDS. Expression of XET coding gene XTR9 increased in response to O$_3$ (Zhang et al. 2017).</td>
</tr>
<tr>
<td>Accession</td>
<td>Log2 Ratio</td>
<td>FDR</td>
<td>P-Value</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>------------</td>
<td>-----</td>
<td>---------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>AB_015079_T.1</td>
<td>2.094</td>
<td>1291</td>
<td>M / 24</td>
<td>Linker histone H1 Linker (H1) histones are the most variable histones; H1.3 variant of A. thaliana is involved in adaptive responses to abiotic stress (Rutowicz et al. 2015).</td>
<td></td>
</tr>
<tr>
<td>AB_008838_T.1</td>
<td>-1.7</td>
<td>1312</td>
<td>H / 89</td>
<td>UDP-glucosyl transferase (UGT) 7-deoxylogane tin glucosyltransferase The enzymes of the UGT family act on a variety of substrates and participates in many metabolic processes, including flavonol (e.g. UGT78D1/At1g30530), tetrapyrrole (e.g. UGT85A1/AT1G22400) or terpenoid (e.g. UGT89B1/ AT1G73880) biosynthesis. Some UGTs involved in response to abiotic and biotic stresses (Rehman et al. 2018). Transcription of UGT78D2/At5g17050 gene was decreased after O₃ exposure for 2 days (Booker et al. 2012).</td>
<td></td>
</tr>
</tbody>
</table>

a Positive value: up regulated during high O₃ concentration periods; Negative value: down regulated during high O₃ concentration periods;
b H: high (>200); M: medium (80-200); L: low (50-80); VL: very low (40-50).
Table S3 Differentially expressed transcripts in asymptomatic sacred fir trees during high vs. moderate O₃ concentration periods.

<table>
<thead>
<tr>
<th>ID Locus</th>
<th>Log₂ fold changeᵃ</th>
<th>Query length, nts</th>
<th>Scoreᵇ / Max query cover in the 1st 5 hits, %</th>
<th>Annotation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB_010244_T.1</td>
<td>7.274</td>
<td>2007</td>
<td>H / 59</td>
<td>Metal tolerance protein (MTP) 5, 11 Cation diffusion facilitator (CDF) efflux family protein</td>
<td>Plant MTPs from CDF family are involved in enhancing resistance to heavy metal tolerance</td>
</tr>
<tr>
<td>AB_022453_T.1</td>
<td>6.398</td>
<td>613</td>
<td>M / 56</td>
<td>Pathogenesis-related (PR) thaumatin family protein</td>
<td>PR thaumatin family proteins are involved in defense response, response to fungus, to osmotic stress, to water deprivation, to wounding, regulation of metabolism and plant development (e.g. AT4G36010 and AT1G20030 in A. thaliana).</td>
</tr>
<tr>
<td>AB_040533_T.1</td>
<td>6.07</td>
<td>561</td>
<td>H / 90</td>
<td>Disease resistance-responsive dirigent-like protein</td>
<td>Many dirigent-like proteins are involved in defense response; some in response to wounding, cell wall biogenesis and metabolic processes.</td>
</tr>
<tr>
<td>AB_025629_T.1</td>
<td>5.388</td>
<td>1582</td>
<td>H, M / 88</td>
<td>LRR and NB-ARC domain disease resistance protein; disease resistance protein RPP13, NB-ARC domain disease resistance (R) proteins in plants are involved in pathogen recognition and subsequent activation of innate immune responses. Besides, Glyma12g01420 was upregulated in response to elevated ozone in Glycine max (Leisner et al.</td>
<td></td>
</tr>
<tr>
<td>Gene Accession</td>
<td>Gene ID</td>
<td>Expression</td>
<td>Sex</td>
<td>Function</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>------------</td>
<td>-----</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>AB_022256_T.1</td>
<td>4.635</td>
<td>1436</td>
<td>H / 82</td>
<td>S-adenosyl methionine (SAM) synthase</td>
<td></td>
</tr>
<tr>
<td>AB_013716_T.1</td>
<td>3.549</td>
<td>1989</td>
<td>H / 74</td>
<td>3-ketoacyl (oxoacyl)-CoA synthase</td>
<td></td>
</tr>
<tr>
<td>AB_043005_T.1</td>
<td>3.549</td>
<td>1193</td>
<td>M / 63</td>
<td>B-box-type Zinc finger and CCT domain protein CONSTANS-LIKE (COL)</td>
<td></td>
</tr>
<tr>
<td>AB_000610_T.1</td>
<td>3.054</td>
<td>1461</td>
<td>H / 68</td>
<td>beta-1,3-glucanase, or glucan endo-1,3-beta-glucosidase</td>
<td></td>
</tr>
</tbody>
</table>

Small family of plant S-adenosylmethionine synthases, or methionine adenosyltransferase (MAT) produces SAM from methionine and ATP. Methyl group of SAM can be transferred to a variety of molecules that includes nucleic acids, proteins, lipids and secondary metabolites. Therefore, the methylation rates for a variety of substrates affects multiple aspects of plant fitness. Besides, in plants SAM is a precursor of ethylene and polyamines. Histone and DNA methylation is highly important for the regulation of gene expression (Sekula et al. 2020).

Members of the 3-ketoacyl-CoA synthase family are involved in the biosynthesis of very long chain fatty acids (VLCFAs), therefore, in cuticle development and wax and suberin synthesis. They also have an important role in response to cold, to light stimulus, to osmotic stress and to wounding.

COL transcription factors are involved in regulation of plant growth and development, control of flowering time and responses to stresses (Khatun et al. 2021).

Beta-1,3-glucanases degrade plant callose and components of plant, fungi and bacteria cell walls, therefore, are involved in defense response. Some of them are also involved in
<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Log2 Fold Change</th>
<th>FPKM</th>
<th>Expression Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB_021997_T.1</td>
<td>2.999</td>
<td>2144</td>
<td>H / 81</td>
<td>Isocitrate lyase/Phosphoenol pyruvate phosphomutase Isocitrate lyase is a glyoxylate cycle enzyme; it is involved in plant salt tolerance (Yuenyong et al. 2019).</td>
</tr>
<tr>
<td>AB_002147_T.1</td>
<td>2.926</td>
<td>1211</td>
<td>H / 82</td>
<td>Peroxidase 72 class III peroxidase A. thaliana Peroxidase 72 (AT5G66390) is involved in lignin biosynthesis and in response to oxidative stress; many class III peroxidases are located in cell wall and involved in cell wall modification; some may play a role in generating (\text{H}_2\text{O}_2) during defense response. Near-ambient concentrations of ozone can induce ascorbate peroxidase APX1 gene expression in A. thaliana and tobacco (Kubo et al. 1995, Wang et al. 1999). At least part of the induction of heat shock proteins during light stress in Arabidopsis is mediated by (\text{H}_2\text{O}_2) that is scavenged by APX1.</td>
</tr>
<tr>
<td>AB_000596_T.1</td>
<td>2.883</td>
<td>475</td>
<td>No hit</td>
<td>Carboxylesterase 15; alpha/beta hydrolase fold Carboxylesterases hydrolyze esters of short-chain fatty acids and involved in metabolism of jasmonic acid and salicylic acid and in systemic acquired resistance. They belong to the larger alpha/beta hydrolase fold superfamily of enzymes.</td>
</tr>
<tr>
<td>AB_013152_T.1</td>
<td>1.832</td>
<td>1494</td>
<td>H / 65</td>
<td>Early nodulin-like (ENODL) with cupredoxin/plastocyanin domain Cupredoxins contain type I copper centers and are involved in inter-molecular electron transfer reactions. ENODLs extracellular proteins are anchored in the plasma membrane.</td>
</tr>
</tbody>
</table>
AtENODL1 (AT5G53870) transcript is up-regulated in leaves of *A. thaliana* subjected to a combination of drought and heat stress. AtENODL2 (AT4G27520) is involved in responses to water deprivation, abscisic acid, salt stress, light and temperature stimuli (Rizhsky et al. 2004).

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Log2 Fold</th>
<th>Ensembl</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB_031334_T.1</td>
<td>1.736</td>
<td>752</td>
<td>Zinc finger Ran-binding domain-containing protein 2; RNA-binding protein c17h9.04c; UPF0481 protein</td>
</tr>
<tr>
<td>AB_015079_T.1</td>
<td>1.73</td>
<td>1291</td>
<td>Histone H1</td>
</tr>
<tr>
<td>AB_039330_T.1</td>
<td>1.601</td>
<td>974</td>
<td>Hypothetical protein (plants), Set1 complex component ash2</td>
</tr>
<tr>
<td>AB_013119_T.1</td>
<td>1.429</td>
<td>465</td>
<td>No hit</td>
</tr>
<tr>
<td>AB_018867_T.1</td>
<td>-1.431</td>
<td>409</td>
<td>Unknown protein [Picea sitchensis only]</td>
</tr>
<tr>
<td>AB_000811_T.1</td>
<td>-1.949</td>
<td>1592</td>
<td>Flavonol synthase</td>
</tr>
</tbody>
</table>

Mammalian zinc finger Ran-binding domain-containing protein 2 is an RNA-binding protein involved in alternative splicing. Linker (H1) histones are the most variable histones; H1.3 variant of *A. thaliana* is involved in adaptive responses to abiotic stress (Rutowicz et al. 2015).

H3K4me is an epigenetic modification involved in the regulation (induction) of gene expression. Two Picea NCBI BLASTn hits suggest that it could be conifer-specific polyA RNA. Could represent a conifer-specific protein

Some 2OG-Fe(II) oxygenases (as AT5G24530
in A. thaliana) participates in flavonoid biosynthesis; therefore, they may be involved in response to salicylic acid and defense response to bacteria, oomycetes and fungus. A homology to GA2ox9 that contribute to cold stress tolerance and involved in response to water deprivation and wounding (Lange et al. 2020), is also revealed.

<table>
<thead>
<tr>
<th>AB_029470_T.1</th>
<th>-3.459</th>
<th>1182</th>
<th>H / 69</th>
<th>(Iso)eugenol synthase 1, isoflavone reductase, propenylphenol synthase 1 NmrA-like protein NAD(P)H-binding NAD dependent epimerase/dehydratase family</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB_008960_T.1</td>
<td>-5.169</td>
<td>1226</td>
<td>H / 80</td>
<td>The inferred proteins possess similarity to several classes of enzymes with Rossman fold. Among them are the isoflavone reductases involved in response to oxidative stress and to wounding, as well as the propenylphenol synthases involved in synthesis of phenylpropanoid compounds, propenyl-phenols (Wibe et al. 1997), presumed to serve mainly in defense against herbivores and parasites.</td>
</tr>
<tr>
<td>AB_000071_T.1</td>
<td>-6.206</td>
<td>1408</td>
<td>H / 60</td>
<td>Ferritin, desiccation-related protein PCC13-62</td>
</tr>
</tbody>
</table>

A Positive value: up regulated during high O₃ concentration periods; Negative value: down regulated during high O₃ concentration periods;
B H: high (>200); M: medium (80-200); L: low (50-80); VL: very low (40-50).

Table S4 Wilcoxon Test. Interactions between Condition (asymptomatic or symptomatic), Needle age (2015 or 2016) and Period (high or moderate).
<table>
<thead>
<tr>
<th>Condition</th>
<th>Metabolite</th>
<th>Sig.</th>
<th>Metabolite</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic - Symptomatic</td>
<td>α-caryophyllene</td>
<td>0.0004871**</td>
<td>α-caryophyllene</td>
<td>N.S.</td>
</tr>
<tr>
<td></td>
<td>α-Cubebene</td>
<td>0.007197*</td>
<td>α-Cubebene</td>
<td>N.S.</td>
</tr>
<tr>
<td></td>
<td>β-Caryophyllene</td>
<td>0.0001299**</td>
<td>β-Caryophyllene</td>
<td>N.S.</td>
</tr>
<tr>
<td></td>
<td>β-Cubebene</td>
<td>0.004525*</td>
<td>β-Cubebene</td>
<td>N.S.</td>
</tr>
<tr>
<td></td>
<td>β-Pinene</td>
<td>0.0004871**</td>
<td>β-Pinene</td>
<td>N.S.</td>
</tr>
<tr>
<td></td>
<td>δ-Cadinene</td>
<td>0.0007253**</td>
<td>δ-Cadinene</td>
<td>N.S.</td>
</tr>
<tr>
<td></td>
<td>Bornyl acetate</td>
<td>0.0115*</td>
<td>Bornyl acetate</td>
<td>N.S.</td>
</tr>
<tr>
<td>Needles age</td>
<td>α-caryophyllene</td>
<td>N.S.</td>
<td>α-caryophyllene</td>
<td>N.S.</td>
</tr>
<tr>
<td>one-year and two years exposure</td>
<td>α-Cubebene</td>
<td>N.S.</td>
<td>α-Cubebene</td>
<td>N.S.</td>
</tr>
<tr>
<td></td>
<td>β-Caryophyllene</td>
<td>N.S.</td>
<td>β-Caryophyllene</td>
<td>N.S.</td>
</tr>
<tr>
<td></td>
<td>β-Cubebene</td>
<td>N.S.</td>
<td>β-Cubebene</td>
<td>N.S.</td>
</tr>
<tr>
<td></td>
<td>β-Pinene</td>
<td>N.S.</td>
<td>β-Pinene</td>
<td>N.S.</td>
</tr>
<tr>
<td></td>
<td>δ-Cadinene</td>
<td>N.S.</td>
<td>δ-Cadinene</td>
<td>N.S.</td>
</tr>
<tr>
<td></td>
<td>Bornyl acetate</td>
<td>N.S.</td>
<td>Bornyl acetate</td>
<td>N.S.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Period 87ppb - 170 ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolite</td>
</tr>
<tr>
<td>α-caryophyllene</td>
</tr>
<tr>
<td>α-Cubebene</td>
</tr>
<tr>
<td>β-Caryophyllene</td>
</tr>
<tr>
<td>β-Cubebene</td>
</tr>
<tr>
<td>β-Pinene</td>
</tr>
<tr>
<td>δ-Cadinene</td>
</tr>
<tr>
<td>Bornyl acetate</td>
</tr>
</tbody>
</table>
(***) Significant at the 0.0001 probability level. (**) Significant at the 0.001 probability level. (*) Significant at the 0.05 probability level. (.) Significant at the 0.1 probability level. (ns) nonsignificant.

Table S5 Number of genes mapped for each sample.

<table>
<thead>
<tr>
<th>Tree condition</th>
<th>O3 concentration period</th>
<th>ID sample</th>
<th>Number of genes identified as expressed**</th>
<th>Number of genes with no reads mapped*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic</td>
<td>high</td>
<td>Asymptomatic 1</td>
<td>37,601</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asymptomatic 2</td>
<td>33,200</td>
<td>4,401</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asymptomatic 3</td>
<td>34,182</td>
<td>3,419</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asymptomatic 4</td>
<td>34,840</td>
<td>2,761</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asymptomatic 5</td>
<td>33,366</td>
<td>4,235</td>
</tr>
<tr>
<td></td>
<td>moderate</td>
<td>Asymptomatic 1</td>
<td>35,460</td>
<td>2,141</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asymptomatic 2</td>
<td>34,256</td>
<td>3,345</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asymptomatic 4</td>
<td>35,031</td>
<td>2,570</td>
</tr>
<tr>
<td>Symptomatic</td>
<td>high</td>
<td>Symptomatic 1</td>
<td>34,048</td>
<td>3,553</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Symptomatic 2</td>
<td>33,983</td>
<td>3,618</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Symptomatic 3</td>
<td>34,060</td>
<td>3,541</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Symptomatic 4</td>
<td>33,663</td>
<td>3,938</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Symptomatic 5</td>
<td>33,981</td>
<td>3,620</td>
</tr>
<tr>
<td></td>
<td>moderate</td>
<td>Symptomatic 1</td>
<td>35,738</td>
<td>1,863</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Symptomatic 2</td>
<td>35,020</td>
<td>2,581</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Symptomatic 5</td>
<td>34,293</td>
<td>3,308</td>
</tr>
</tbody>
</table>

Number of genes with no reads mapped: refers to genes without any reads mapped to the reference transcriptome of *A. balsamea*, considering the total number of mapped genes.

** Number of genes identified as expressed**: refers to genes with reads mapped to the reference transcriptome of *A. balsamea*.
Table S6 RNA-seq data per sample.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Total reads</th>
<th>Mapped</th>
<th>Mapped %</th>
<th>Properly paired</th>
<th>Properly paired %</th>
<th>Singletons</th>
<th>Singletons %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic 1</td>
<td>26628465</td>
<td>25110645</td>
<td>94.30%</td>
<td>23207744</td>
<td>87.79%</td>
<td>190570</td>
<td>0.72%</td>
</tr>
<tr>
<td>Asymptomatic 2</td>
<td>29394389</td>
<td>27421473</td>
<td>93.29%</td>
<td>25506062</td>
<td>87.47%</td>
<td>216864</td>
<td>0.74%</td>
</tr>
<tr>
<td>Asymptomatic 3</td>
<td>28885822</td>
<td>26935913</td>
<td>93.25%</td>
<td>25005412</td>
<td>87.24%</td>
<td>206331</td>
<td>0.72%</td>
</tr>
<tr>
<td>Asymptomatic 4</td>
<td>27148620</td>
<td>24890979</td>
<td>91.68%</td>
<td>23160294</td>
<td>85.90%</td>
<td>190051</td>
<td>0.70%</td>
</tr>
<tr>
<td>Asymptomatic 5</td>
<td>25402180</td>
<td>22810050</td>
<td>89.80%</td>
<td>21279266</td>
<td>84.36%</td>
<td>153044</td>
<td>0.61%</td>
</tr>
<tr>
<td>Asymptomatic 1</td>
<td>86373044</td>
<td>80384008</td>
<td>93.07%</td>
<td>74602376</td>
<td>87.09%</td>
<td>601512</td>
<td>0.70%</td>
</tr>
<tr>
<td>Asymptomatic 2</td>
<td>39848295</td>
<td>36957834</td>
<td>92.75%</td>
<td>34301814</td>
<td>86.78%</td>
<td>271419</td>
<td>0.69%</td>
</tr>
<tr>
<td>Asymptomatic 3</td>
<td>30581813</td>
<td>28117524</td>
<td>91.94%</td>
<td>26128276</td>
<td>86.06%</td>
<td>188559</td>
<td>0.62%</td>
</tr>
<tr>
<td>Symptomatic 1</td>
<td>29917209</td>
<td>26626122</td>
<td>89%</td>
<td>24575346</td>
<td>82.81%</td>
<td>204199</td>
<td>0.69%</td>
</tr>
<tr>
<td>Symptomatic 2</td>
<td>20519755</td>
<td>19680381</td>
<td>95.91%</td>
<td>18198494</td>
<td>89.39%</td>
<td>124258</td>
<td>0.61%</td>
</tr>
<tr>
<td>Symptomatic 3</td>
<td>34920801</td>
<td>33514452</td>
<td>95.97%</td>
<td>30677044</td>
<td>88.59%</td>
<td>257139</td>
<td>0.74%</td>
</tr>
<tr>
<td>Symptomatic 4</td>
<td>33932229</td>
<td>30786857</td>
<td>90.76%</td>
<td>28520838</td>
<td>84.73%</td>
<td>245596</td>
<td>0.73%</td>
</tr>
<tr>
<td>Symptomatic 5</td>
<td>34662281</td>
<td>32472479</td>
<td>93.68%</td>
<td>30328610</td>
<td>88.12%</td>
<td>230530</td>
<td>0.67%</td>
</tr>
<tr>
<td>Symptomatic 1</td>
<td>29755812</td>
<td>25145836</td>
<td>84.51%</td>
<td>23338336</td>
<td>79.07%</td>
<td>219234</td>
<td>0.74%</td>
</tr>
<tr>
<td>Symptomatic 2</td>
<td>32034433</td>
<td>29891742</td>
<td>93.31%</td>
<td>27696704</td>
<td>87.09%</td>
<td>228013</td>
<td>0.72%</td>
</tr>
<tr>
<td>Symptomatic 5</td>
<td>39785361</td>
<td>35702980</td>
<td>89.74%</td>
<td>32688214</td>
<td>82.84%</td>
<td>330867</td>
<td>0.84%</td>
</tr>
</tbody>
</table>

Supplementary references

