The abundant fraction of soil microbiomes regulates rhizosphere function in crop wild progenitors

Miguel de Celis1, María José Fernández-Alonso2, Ignacio Belda3, Carlos García4, Raúl Ochoa Hueso5, Javier Palomino2, Brajesh K Singh6, Yue Yin7, Jun-Tao Wang6, Luis Abdala-Roberts8, Fernando Alfaro9, Diego Angulo10, Manoj-Kumar Arthikala11, Jason Corwin12, Guilan Duan13, Antonio Hernández-Lopez11, Kalpana Nanjareddy11, Babak Pasari14, Teresa Quijano-Medina8, Daniela S Rivera9, Salar Shaaf15, Pankaj Trivedi12, Qingwen Yang16, Eli Zaady17, Yong-Guan Zhu7, Manuel Delgado-Baquerizo18, Rubén Milla2, and Pablo García-Palacios1

1CSIC ICA
2Instituto de Investigación en Cambio Global (IICG-URJC)
3Universidad Complutense de Madrid
4CEBAS-CSIC
5Universidad de Cadiz
6Western Sydney University
7Chinese Academy of Sciences
8Universidad Autónoma de Yucatán
9Universidad Mayor
10Centro de Investigación Científica de Yucatán
11Universidad Nacional Autónoma de México
12Colorado State University
13Research Centre for Eco-Environmental Sciences Chinese Academy of Sciences
14Islamic Azad University
15Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)
16Chinese Academy of Agricultural Sciences Institute of Crop Sciences
17Gilat Center for Arid and Semi-Arid Agricultural Research
18Instituto de Recursos Naturales y Agrobiología de Sevilla

May 05, 2024

Abstract

The rhizosphere influence on the soil microbiome and function of crop wild progenitors remains virtually unknown, despite its relevance to develop microbiome-oriented tools in sustainable agriculture. Here, we quantified the rhizosphere influence — a comparison between rhizosphere and bulk soil samples — on bacterial, fungal, protists and invertebrates communities and on soil multifunctionality across nine crop wild progenitors in their sites of origin. Overall, rhizosphere influence was higher on abundant taxa across the four microbial groups, and had a positive influence on increased rhizosphere carbon storage and nutrient contents compared to bulk soils. The rhizosphere influence on abundant soil microbiomes were more important for soil multifunctionality than rare taxa and environmental conditions. Our results are a starting point to uncover the roles of both abundant and rare soil taxa in enhancing multifunctionality in agroecosystems.
Hosted file