Detected climate change signals in atmospheric circulation: mechanisms, puzzles and opportunities

Tiffany A Shaw¹, Julie M. Arblaster², Thomas Birner³, Amy Hawes Butler⁴, Daniela I.V. Domeisen⁵, Chaim I Garfinkel⁶, Hella Garny⁷, Kevin M Grise⁸, and Alexey Yurievich Karpechko⁹

¹University of Chicago
²Monash University
³Ludwig-Maximilians University
⁴NOAA Chemical Sciences Laboratory
⁵ETH Zurich
⁶Hebrew University of Jerusalem
⁷Deutsches Zentrum für Luft- und Raumfahrt
⁸University of Virginia
⁹Finnish Meteorological Institute

April 29, 2024

Abstract

The circulation response to climate change shapes regional climate and extremes. We have moved into a new era where circulation signals have been detected across many regions and seasons. The detected circulation signals represent an exciting opportunity for improving our understanding of dynamical mechanisms, testing our theories and reducing uncertainties. They have also presented some puzzles that represent an opportunity for better understanding the circulation response, its contribution to climate extremes, interactions with cloud feedbacks, and connection to thermodynamic discrepancies. The next decade or so is likely to be a golden age for dynamics with many advances possible.

Hosted file

Detected climate change signals in atmospheric circulation: mechanisms, puzzles and opportunities

T. A. Shaw¹, J. M. Arblaster², T. Birner³,⁸, A. H. Butler⁴, D. I.V. Domeisen⁵,⁶, C.I. Garfinkel⁷, H. Garny⁸, K. M. Grise⁹, and A. Yu. Karpechko¹⁰

¹The University of Chicago, Chicago, IL, USA.
²ARC Centre of Excellence for the Weather of the 21st Century, Monash University, Victoria, Australia.
³Ludwig-Maximilians-University Munich, Munich, Germany.
⁴National Oceanic and Atmospheric Administration, Chemical Sciences Laboratory, Boulder, CO, USA.
⁵Université de Lausanne, Lausanne, Switzerland
⁶ETH Zurich, Zurich, Switzerland
⁷Fredy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Israel.
⁸Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany,
⁹University of Virginia, Charlottesville, VA, USA
¹⁰Finnish Meteorological Institute, Helsinki, Finland.

Corresponding author: first and last name (tasl@uchicago.edu)

Key Points:

- While circulation changes are thought to be more uncertain, many circulation signals have been detected across different regions and seasons
- Detected circulation signals represent an exciting opportunity for understanding the dynamical response to climate change
- Discrepancies have also emerged and in combination with new tools considerable progress is likely in the coming decades
The circulation response to climate change shapes regional climate and extremes. We have moved into a new era where circulation signals have been detected across many regions and seasons. The detected circulation signals represent an exciting opportunity for improving our understanding of dynamical mechanisms, testing our theories and reducing uncertainties. They have also presented some puzzles that represent an opportunity for better understanding the circulation response, its contribution to climate extremes, interactions with cloud feedbacks, and connection to thermodynamic discrepancies. The next decade or so is likely to be a golden age for dynamics with many advances possible.

Plain Language Summary

Regional climate change signals in atmospheric circulation (wind and pressure) have emerged from the noise in many regions and seasons. Some of the signals are expected whereas others are not. The next decade represents an exciting time to better understand the dynamical mechanisms underlying the signals and their relationship to thermodynamical signals with the goal of improving regional climate prediction.

1 Introduction

The emergence and attribution of thermodynamic signals in response to anthropogenic climate change is well appreciated. Indeed global-mean warming over land and ocean, amplified warming in the tropical upper troposphere, rising of the tropopause, cooling of the stratosphere, regional land warming, and Arctic amplification of surface warming have all been attributed to human activities (IPCC 2021). Most recently thermodynamically driven changes in regional hot extremes, heavy precipitation and drought have also been confidently attributed to human activities in some regions (IPCC 2021, Fig. SPM.3). This progress on thermodynamic signals has been achieved through a multi-pronged approach: detection of observed signals, attribution to human activities, and understanding of the underlying mechanisms using climate model simulations that exhibit fidelity in the signal and mechanisms.

Atmospheric circulation is well-known to affect regional climate through changes in fluid-dynamic variables, including atmospheric wind, pressure, and associated influences of moisture, clouds and radiation. Many generations of climate models have predicted robust circulation responses to climate change at the end of the century, including an upward shift and acceleration of the subtropical jet stream, weakening of the Hadley circulation, expansion of the Hadley circulation, poleward shifts of the eddy-driven jet streams, strengthening of the storm
tracks in the Southern Hemisphere and seasonally varying storm track responses in the Northern Hemisphere. In general, circulation signals are thought to be more uncertain, especially at the regional scale, due to large internal variability and the lack of sufficiently strong constraints on atmospheric dynamics (Shepherd, 2014). Furthermore, opposing thermodynamic responses to climate change, e.g. Arctic versus tropical warming, cloud shortwave versus longwave responses, aerosol cooling versus greenhouse gas warming, etc also can lead to a weak net dynamical response (Shaw et al., 2016). Hence dynamic variables are considered to have a lower signal-to-noise ratio, which has cascading impacts on hydrological cycle signals (Elbaum et al 2022).

Over the last decade we have come into a time where an increasing number of circulation signals have been detected in observational products. Here we define a detected circulation signal as a statistically significant linear trend over the satellite era or longer. The detected circulation signals, which are summarized below, have been noted in regions and seasons where the signal-to-noise ratio is typically high, e.g. the tropics and summertime. Some have already been attributed to human activities, with the best-known anthropogenic circulation signal being the response to ozone depletion during Southern Hemisphere summertime. However others have not and there may be a role for internal variability in some recently documented circulation trends.

This perspective summarizes the detected circulation signals, recent progress on understanding dynamical mechanisms, and puzzles, including the role of internal variability versus the forced response versus observational uncertainty, model-observation discrepancies and impact of mean state biases. We highlight the importance of linking the analysis and understanding of dynamic and thermodynamic signals. In particular, while many thermodynamic signals that have emerged are expected based on predictions, some exhibit discrepancies with observations, e.g. the “pattern effect” of SST trends. These thermodynamic signals are linked to atmospheric circulation, e.g. via thermodynamic gradients and cloud radiative effects. Finally, we highlight how circulation signals, along with existing and emerging tools, represent an exciting opportunity for making progress in the next few decades on understanding the dynamical mechanisms behind the circulation response to climate change.
2 Detected circulation signals

The most robust circulation signal to date induced by human emissions is the circulation response to ozone depletion in the Southern Hemisphere as summarized below. In the past decade several more circulation signals have been detected. Table 1 summarizes detected circulation signals across different regions, hemispheres, and seasons in reanalysis products during the satellite era. Some signals have emerged over localized regions such as the South-West Western Australia and are connected to regional hydro climate signals, whereas in other regions such as the Mediterranean the signal will take more time to emerge (Fig. 1). While many signals have been detected, in only a few cases has a formal attribution to human activities been performed. Thus for the moment many detected signals represent statistically significant linear trends in the time series and the role of internal variability and/or reanalysis biases still needs to be assessed. In many cases the sign of the signal is consistent with model predictions, however there are some cases where there is a discrepancy between the signal in observations and models. Asterisks indicate known discrepancies in observed versus modeled signals.

Figure 1: Regional circulation signal. Time series of (a,b) SLP and (e,f) precipitation from 1955 in observations (red line, HadSLPv2 for SLP, and CRU TS v4.07 for precipitation) over the Mediterranean during DJF (left) and South-West Australia during JJA (right). Five-year smoothed mean (blue line) and range (vertical blue line) of the 15-member historical-GHG only simulation in CESM2 of SLP and precipitation. (b,c) Spatial structure of SLP trends from 1950-
2019 in observations with stippling indicating statistically significant linear trends at the 0.05 level.

Box 1: Circulation response to ozone depletion - a strong signal as an opportunity to test our understanding and modeling capabilities of dynamical changes

The chemical depletion of Antarctic ozone loss, and its thermodynamic consequences, was first observed in the mid-1980s and peaked around year 2000, and is linked to the strongest circulation trends we have seen in the observed historical record. It thus offers the opportunity to test our theoretical understanding and modeling capabilities of dynamical changes. The direct consequence of ozone depletion is an increase of the meridional temperature gradient in the lower stratosphere. The circulation trends that result from this, which have been observed and generally well reproduced by climate models, are increases in the stratospheric polar vortex strength and an associated delay of the spring-time breakdown of the stratospheric polar vortex, and a poleward shift of the tropospheric jet stream in austral summer. This poleward shift of the jet goes along with a shift of the southern Hadley cell edge (WMO 2018). Past and projected trends in southeastern South American rainfall have been thought to be potentially linked to circulation changes forced by ozone depletion/recovery, but superposition of multiple driving mechanisms and large model spread hinders clear attribution (Díaz et al., 2021; Mindlin et al., 2021, 2023).

Since around the year 2000, ozone is slowly recovering and a pause in trends in the Southern hemisphere jet stream position and Hadley cell edge was reported a few years ago (Banerjee et al., 2020; Zambri et al., 2021). Model simulations support the attribution of this change in dynamical trends to ozone recovery. However, strong ozone depletion has occurred since 2020 (Kessenich et al., 2023), and the previously detected pause in jet shift trends has “de-emerged” (see Figure Box 1 below) though there is some sensitivity to the start year of the trend. Forcing by greenhouse gases generally is expected to cause a delay of the stratospheric polar vortex breakdown and a poleward shift of the tropospheric jet stream, thus counteracting the forcing from ozone recovery (e.g., Arblaster & Meehl, 2006; McLandress et al., 2010; Mindlin et al., 2021; Rao & Garfinkel, 2021; Thompson et al., 2011). Whether the recent “de-emerging” of
the pause in trends is related to greenhouse gas forcing, recent influences of volcanic and wildfire aerosols (e.g., Yook et al., 2022), or natural variability is currently unknown.

Figure Box 1: Jet stream position response to ozone depletion. Jet position in DJF from ERA5, reproducing Banerjee et al, 2020, for years 1980-2017 (black lines), and extending the timeseries to 2022 (red lines). Trends are fitted by continuous piecewise linear regression (following Banerjee et al), and trend values are -0.5°/dec for the ozone depletion period, 0.0°/dec for 2000-2017 and -0.3°/dec for 2000-2022.

3 Progress in understanding mechanisms
Many dynamical mechanisms have been proposed to explain the robust circulation responses predicted by generations of climate models (Shaw, 2019). Here we summarize recent progress on understanding mechanisms in response to greenhouse gas and aerosol forcing. The response to greenhouse gas forcing is organized into mechanisms related to tropical, extratropical, and Arctic thermodynamic processes (including diabatic processes) and oceanic boundary conditions.

3.1 Response to greenhouse gas forcing

3.1.1 Tropical thermodynamics
A robust thermodynamic response of the tropical atmosphere to greenhouse gas forcing is upper tropospheric warming, which follows from moist adiabatic adjustment (Manabe & Wetherald, 1975, Held 1993). Tropical upper tropospheric warming combined with cooling in the lower stratosphere further increases the meridional temperature gradient near the tropopause. The
increased meridional temperature gradient is consistent with increased vertical zonal wind shear in the upper troposphere (Allen & Sherwood, 2008; Lee et al., 2019) and an upward shift and strengthening of the subtropical jet via thermal wind balance. Imposing an increase of CO$_2$ only in tropical latitudes in idealized aquaplanet model simulations confirms this mechanistic interpretation (Shaw & Tan, 2018). The result was confirmed in slab-ocean atmospheric general circulation models (Shaw 2019).

While tropical thermodynamics is clearly important for the acceleration of the subtropical jet and has been proposed to explain the poleward shift under climate change (Butler et al., 2010; Lorenz & DeWeaver, 2007; Lu et al., 2014), several recent mechanistic studies using idealized models have suggested it does not play a leading order role for the changes in extratropical jet position. These studies imposed CO$_2$ concentrations only in specific latitude bands (Shaw & Tan 2018), altered the surface boundary flux of moisture (Tan & Shaw, 2020), and modified the convection scheme (Garfinkel et al., 2024). They found that while tropical thermodynamics are important for the response of Hadley cell intensity and position and the subtropical jet strength, the poleward shift of the near-surface storm track and jet in response to CO$_2$ is not due to tropical diabatic processes (Fig. 2). Rather, these recent studies suggest the midlatitude near-surface response is due to diabatic processes in the subtropics and midlatitudes. Consistently, the poleward shift of the midlatitude near-surface jet and the strengthening of the subtropical jet happen on distinct timescales, suggesting they are driven by different processes (Chemke & Polvani, 2019; Menzel et al., 2019).
Figure 2: Response of zonal-mean zonal wind to latitudinally dependent quadrupling of CO2 concentration in aquaplanet simulations. Response shown in shading with contour interval of 1 m/s, black contours show climatology with interval 10 m/s with negative contours dashed. Taken from Shaw & Tan (2018).

3.1.2 Extratropical diabatic processes

Within the extratropics, several mechanisms involving diabatic processes (moisture, surface fluxes, latent heating and cloud radiative effects) have been shown to be important for the circulation response. A robust thermodynamic consequence of a warmed climate is an increased meridional water vapor gradient because the tropics moisten more than the poles (Shaw & Voigt, 2016). This increased gradient across the extratropics leads to increased moisture and surface flux gradient, increased poleward moisture flux, increased latent heat release and an upward shift of tropopause height and high clouds. These diabatic changes have been linked to increased subtropical static stability, shifts in the Hadley cell edge, jet stream and storm tracks and a poleward deflection of individual storms (Garfinkel et al., 2024; Lachmy, 2022; Shaw & Tan, 2018; Tamarin-Brodsky & Kaspi, 2017; Tan & Shaw, 2020; Voigt et al., 2021). Consistently increasing CO2 only in midlatitudes leads to a poleward shift of the lower-tropospheric jet stream (Fig. 2).

The fundamental role of moist diabatic and cloud radiative processes have been quantified by “locking experiments" whereby cloud radiative (Ceppi & Hartmann, 2016; Voigt &
Shaw, 2015) and surface flux (Tan & Shaw, 2020) responses have been disabled or prescribed in climate model simulations. In addition there have been advances in dynamical frameworks that incorporate and quantify the response of moisture (e.g., PV inversion with latent heat release, moist static energy framework)(Barpanda & Shaw, 2017; Tamarin-Brodsky & Kaspi, 2017; Shaw et al. 2018, Lachmy, 2022; Garfinkel et al 2024; Ghosh et al., 2024). This recent progress demonstrates that moist processes are crucial for understanding the circulation response and that focusing on dry processes (e.g. the temperature or eddy heat flux response) alone is insufficient. However, it is important to note that moist diabatic processes like convection and clouds in climate models are parameterized and their response to climate change remains highly variable across models. This is in part due to cloud-circulation feedbacks that complicate straightforward interpretation of the role of cloud radiative effects.

3.1.3 Arctic thermodynamics

The Arctic is warming much faster than the global-mean (Rantanen et al., 2022), which was predicted by climate models (Manabe & Wetherald, 1975) well before it was observed. The dynamical mechanism for how Arctic amplification influences jet stream strength involves a reduction in the meridional temperature gradient and near-surface baroclinicity, which leads to a weakening and equatorward shift of the jet through thermal wind balance and eddy feedbacks (Butler et al., 2010; Cohen et al., 2014).

Though the dynamical mechanisms for the influence of Arctic amplification on mid-latitude jet streams are generally agreed upon, the expected signals are not apparent in observational products during wintertime when the Arctic Amplification signal is largest (Blackport & Screen, 2020). This may be because of competing influences on the jet stream from the tropics or extratropics (Barnes & Screen, 2015). Despite the inability to link observed jet stream trends to Arctic thermodynamic processes during wintertime, new modeling intercomparison efforts have made progress in understanding and constraining the tropospheric jet stream’s response to future sea ice loss (Smith et al., 2022). These studies suggest that climate models simulate too-weak feedbacks between transient eddies and the tropospheric jet stream (Hardiman et al., 2022) and constraining models to account for this bias suggests that the role of Arctic amplification and sea ice loss for the future jet response is likely underestimated by climate models (Screen et al., 2022).
During summertime, when the Arctic Amplification signal is weakest, there is a clear weakening signal in jet strength (Coumou et al., 2015, 2018). Recent modeling results suggest the summertime jet weakening is not driven by Arctic changes and is instead likely related to high latitude warming over land and/or aerosol changes (Dong et al., 2022; Kang et al., 2023). The connection between the summertime increasing stationary wave amplitude in the Northern Hemisphere (Sun et al., 2022; Teng et al., 2022) and Arctic climate change is still actively debated. Recent work suggests the stationary wave signal is connected to a teleconnection from the tropical Pacific (Sun et al. 2022) and that soil moisture deficits can amplify this pattern (Teng et al. 2022).

A related effect is the observed signal of an increase in midlatitude heatwaves in summertime (e.g., Russo & Domeisen, 2023), which have been shown to be underestimated in coupled climate models due to discrepancies in the circulation (Fig. 4, Vautard et al., 2023). The increased summertime heat waves have been suggested to be related to increased “waviness” of the jetstream and the increased occurrence of so-called resonance events (Kornhuber et al., 2017; Mann et al., 2018), often associated with double jets (Rousi et al., 2022). Although it is clear that phase locking of planetary-scale waves can indeed lead to temperature extremes through a change in local atmospheric conditions (Jiménez-Esteve et al., 2022), it is not clear if concurrent heatwaves across multiple longitude areas are indeed linked (Domeisen et al., 2023) or if they simply happen at the same time due to similar processes occurring in several longitudinal areas (White et al., 2022; Wirth et al., 2018), such as the occurrence of Rossby wave packets or blocking, which are the most often identified atmospheric drivers for heatwaves (Fragkoulidis et al., 2018; Pfahl & Wernli, 2012).

3.1.4 Ocean-driven thermodynamics

Predictions from early climate models highlighted hemispherically asymmetric thermodynamic responses due to climate change driven in part by ocean circulation. In particular, cooling (or lack of warming) over the Southern Ocean arises due to the transient response of the ocean circulation (Stouffer et al., 1989), while the Arctic exhibits amplified warming due in part to ice-albedo feedbacks (Manabe & Stouffer, 1980) and ocean energy transport (Chemke et al., 2021). Over the tropical Pacific the Walker Circulation is projected to weaken, however ocean dynamical mechanisms can offset this response (Clement et al., 1996) and the mechanisms are
uncertain (Wills et al., 2022). Finally, North Atlantic SSTs exhibit a warming hole with multiple drivers (Keil et al., 2020).

Hemispheric asymmetry is also clear in end of century projections of the atmospheric circulation response: storm tracks strengthen in the Southern Hemisphere across the seasonal cycle but exhibit opposing seasonal changes in the Northern Hemisphere (O’Gorman, 2010; Shaw et al., 2018) and the Hadley cell edge shift is stronger in the Southern Hemisphere (Watt-Meyer et al., 2019). Over the satellite period, hemispherically asymmetric signals have emerged in the storm tracks with the Southern storm track getting stronger and the Northern Hemisphere storm track getting weaker (Shaw et al., 2022). The mechanism underlying this hemispheric asymmetry has been related to energetic asymmetries: increased top-of-atmosphere radiation asymmetry due to Arctic sea ice losses (Hartmann & Ceppi, 2014) and an increased surface flux gradient asymmetry due to equatorward ocean energy transport (Armour et al., 2016). In addition, the oceanic Atlantic Meridional Overturning circulation shapes the projected response of the North Atlantic storm track (Chemke et al., 2022, Woollings et al. 2012).

3.2 Response to aerosol forcing

Most previous work has focused on the circulation response to increased CO$_2$ concentration, however several recent studies have highlighted the leading order role of tropospheric aerosol forcing for some regional circulation signals. For example, the observed weakening of the Northern Hemisphere summertime jet across Eurasia over 1979-2019 can be almost entirely attributed to anthropogenic aerosol forcing (Dong et al. 2022). Changes in anthropogenic aerosols have also been implicated in the weakening and poleward shift of the subtropical summertime Mediterranean jet from the 1970s to 2010s (Dong & Sutton, 2021), the weakening of the austral winter subtropical jet (Rotstayn et al., 2013), and the poleward expansion of the Northern Hemisphere Hadley cell edge (Allen et al., 2012; Zhao et al., 2020).

The role of tropospheric aerosols has been revealed using standard attribution methods including single forcing experiments from DAMIP simulations (Gillett et al., 2016). The mechanism proposed to explain the circulation response to aerosol forcing over Eurasia is that a reduction in aerosol optical depth over Europe is associated with increased surface radiation across Eurasia, while increased aerosol optical depth over Africa and southeast Asia reduced surface radiation across much of the subtropics. The radiative changes reduced the meridional surface temperature gradient from the tropics to the extratropics, reducing vertical wind shear.
and weakening the summertime jet over Eurasia. Other studies have proposed additional mechanisms for anthropogenic aerosol influence on the atmospheric circulation that are more closely linked to the indirect influence of aerosols on clouds. For example, sulfate aerosols may brighten clouds which reflect more radiation to space, leading to a change in radiative balance that promotes poleward heat transport by the atmosphere and ocean (Needham & Randall, 2023).

Stratospheric aerosols that naturally originate from, e.g. volcanic eruptions, reflect incoming solar radiation and can temporarily cool surface climate; however, these particles also absorb longwave radiation and warm the stratosphere, driving changes in the circulation. Substantial uncertainties remain about the magnitude of the circulation response and its effects on regional climate (Paik et al., 2023). Stratospheric aerosol changes are not included in future climate projections yet may be an important source of decadal circulation variability. In addition, climate intervention proposals to inject aerosols into the stratosphere in order to cool surface climate may have substantial regional climate impacts due to circulation changes induced by stratospheric aerosol heating (Wunderlin et al., 2024), though the response depends on where the aerosols are injected (Bednarz et al., 2023).

4 Puzzles

4.1 Model-observation discrepancies

The lengthening observational record has provided some “puzzles” where there are apparent discrepancies between observed and modeled signals. There are several well-known thermodynamic discrepancies, including opposite signed SST trends in observations and models in the tropical Pacific (Lee et al., 2022; Seager et al. 2022; Wills et al., 2022) and Southern Ocean (Wills et al., 2022; Kang et al., 2023). There are also cases where models significantly underestimate (Arctic Amplification; Rantanen et al., 2022) and overestimate (larger recent tropical upper tropospheric warming trends; Po-Chedley et al., 2021) trends.

In addition, important circulation discrepancies have been identified. In particular, the Walker circulation trend is toward a strengthening in observations but a weakening in models (Chung et al., 2019). Similar to thermodynamic discrepancies, there are also cases where models capture the signal but it is underestimated as compared to reanalysis trends: increased Southern Hemisphere storminess trends (Chemke et al., 2022; Shaw et al., 2022), Northern Hemisphere summertime circulation trends (Chang et al., 2016), North Atlantic low-level jet trend (Blackport
& Fyfe 2022, Fig. 3). In other cases the models overestimate the trends (strengthening of the upper-tropospheric jet stream; Woollings et al., 2023).

Figure 3: Trends in North Atlantic lower-tropospheric (700 hPa) jet stream strength in reanalysis data and across climate model ensembles. Taken from Blackport & Fyfe (2022).

The relationship between thermodynamic and dynamic discrepancies is an active area of research. Given that many proposed mechanisms for the circulation response to climate change are directly related to warming in the tropical upper troposphere, e.g. acceleration and upward shift of the subtropical jet, it stands to reason that accounting for tropical upper tropospheric warming discrepancies among observations and models is also necessary for circulation features. Furthermore, based on our theoretical understanding of tropical teleconnections (Yang et al., 2021), the tropical SST trend discrepancy should impact the extratropical circulation, as model biases in atmosphere - ocean feedbacks in the tropics can heavily impact teleconnections to the extratropics (Bayr et al., 2019). Recent papers examining heatwave trends over Europe suggest there is a model-observation trend discrepancy that is due in large part to a circulation trend discrepancy, although the details of this circulation trend discrepancy are not well understood and remain to be investigated (Fig. 5; Vautard et al., 2023). The relationship between thermodynamic and dynamic discrepancies needs to be further understood.
Figure 4: Climate models underestimate trends in heat extremes. Dynamical (a) and thermodynamical (b) contributions to the summer TXx (summer maximum of maximal daily temperature) trends from ERA5 ECMWF Reanalysis (red line), E-OBS observation (orange line), and the 170 CMIP6 model simulations (names in ordinate) that were available (black dots) averaged over Western Europe. Taken from Vautaurd et al. (2023).

4.2 **Disentangling forced response from internal variability**

One of the major challenges in comparing observed and model circulation signals is the confounding factors of internal variability, which can be responsible for multi-decadal trends in observations that can either mask or exacerbate forced trends in the climate system, and observational uncertainty. For example, recent work for the Brewer-Dobson circulation trends shows that observational uncertainty can be large enough to account for the discrepancy in Brewer-Dobson circulation trends in the middle stratosphere (Garny et al, submitted to RoG).

One way to separate the forced response from internal variability is through single forcing experiments such as those in DAMIP. For example, if the signal is present only in response to GHG forcing or aerosol forcing, and observational and model uncertainty is low, then it is likely a forced response. If the signal is in the experiment with natural forcings (or in the preindustrial control experiment), then one cannot rule out the role of internal variability.
Another way to quantify the role of internal variability is using large ensemble simulations in which individual models are run many times with identical external forcing and slightly different initial conditions (Deser et al., 2020; Maher et al., 2021). The two approaches are combined in single-model initial condition large ensembles (SMILEs). With the help of SMILEs, some previously documented “puzzles,” in which observed circulation trends were documented to diverge from those of models, have been reconciled after accounting for internal variability, such as the large poleward expansion of the Hadley cell edge documented in the late 2000s (Grise et al., 2019) or cold winters over subpolar Eurasia from 1998 to 2012 (Garfinkel et al. 2017; Outten et al. 2022). However, given the relatively large magnitude of internal variability at regional scales (particularly in the extratropics) and potential model errors, acknowledging a range of plausible future circulation trends (“storylines”) is necessary for impacts planning, as these storylines incorporate both the forced circulation response and different random pathways of internal variability as well as account for model uncertainty (Zappa & Shepherd, 2017; Mindlin et al., 2020; Schmidt & Grise, 2021; Williams et al., 2024).

While large ensembles can help disentangle the signal from the noise, recent work has highlighted a signal-to-noise issue in coupled models suggesting that models may not be properly representing the magnitude of forced signals relative to internal variability. This “signal-to-noise paradox” manifests most clearly when the ensemble-mean signal correlates better with observations of the real world than with individual members of the initialised model forecast ensemble. It implies that the predictability of the real world exceeds the predictability within the model world (Scaife & Smith, 2018; Weisheimer et al., 2024). While the signal-to-noise paradox was initially identified for the winter season in the North Atlantic, similar though weaker findings have been suggested for parts of the Pacific and for predictions of the Southern Annular Mode. New studies have shown evidence that it also occurs for summer precipitation over Northern Europe, the NAO, and the Tibetan Plateau (Dunstone et al., 2018; Yeager et al., 2018; Hu & Zhou, 2021; Dunstone et al. 2023), and in the autumn season East Atlantic pattern (Thornton et al., 2023).

Formally, such a paradox can arise due to excessive noise, a deficit in the signal, or a combination of both. Much recent work has indicated that the predominant issue is overly weak signals. Namely, (i) teleconnections between the tropics and the extratropics due to e.g., ENSO or the MJO are too weak (Garfinkel et al., 2022; Hardiman et al., 2022; Di Capua et al., 2023;
Molteni & Brookshaw, 2023; Roberts et al., 2023; Williams et al., 2023; Lim et al., 2016); (ii) surface impacts from the QBO are too weak (Garfinkel et al., 2018; O’Reilly et al., 2019; Rao et al., 2020); (iii) transient eddy feedback of large-scale climate anomalies in the mid-latitudes (e.g. Lorenz & Hartmann, 2001) is too weak over the North Atlantic (Smith et al., 2022; Hardiman et al., 2022); and (iv) ocean-atmosphere coupling in ocean-eddy rich regions (such as the Gulf Stream) is mis-represented at resolutions commonly used for climate simulations (Osso et al., 2020; Zhang et al., 2021; Yeager et al., 2023). This paradox implies that model projections of changes in circulation patterns in some regions may be underestimated (Scaife & Smith, 2018).

Some improvements in these signal-to-noise characteristics have recently been identified in higher-resolution coupled modelling systems (Zhang et al., 2021; Yeager et al., 2023).

4.3 Role of mean state biases/spread for future change

In some cases, models exhibit a large spread in their climatologies. The large spread in thermodynamics has been used to constrain thermodynamic signals, e.g. snow-ice albedo feedback (Hall and Qu 2006), through emergent constraints. Emergent constraints are statistical relationships between a model’s representation of a particular physical process in the current climate and its future projection in a related field. The assumption is that, if a model accurately represents the physical process in the present-day climate, then the model will also accurately simulate future climate changes related to that process. Emergent constraints are most robust when the relationship persists across multiple generations of models and is supported by a plausible physical mechanism.

Several emergent constraints have been proposed for circulation signals (Simpson et al., 2021): for example, the eddy-driven jet position in the Southern Hemisphere (Kidston & Gerber, 2010), and the regional stationary wave response during Northern Hemisphere wintertime over the Pacific (Simpson et al., 2016). In each case a physical mechanism was proposed to explain the emergent constraint: fluctuation dissipation theorem for jet position, and stationary wave dynamics. Unfortunately, these two emergent constraints are not robust across CMIP versions (Wu et al., 2019; Curtis et al., 2020; Karpechko et al. submitted). Furthermore, the Southern Hemisphere jet position constraint, which only occurs in wintertime (Simpson & Polvani, 2016), appears to be an artifact of the zonal mean (Breul et al., 2023). It is puzzling that robust emergent constraints on the circulation have proven difficult to find and to date are few and far between. It may therefore prove insightful to study why the climate system's response to increased CO2
level is often very different from that expected by internal climate fluctuations following the fluctuation dissipation theorem.

Mean state biases can have important implications for the forced response. For example, even if a model accurately simulates the observed circulation response to climate change (e.g., a poleward shift of the jet stream), if the circulation feature does not have the correct location or magnitude in the present-day climate, then the model’s projected future climate change may be misplaced/incorrect (Maraun et al., 2017; Grise, 2022). It is challenging to systematically address this issue globally and requires detailed understanding of the circulation features relevant for a particular region. For example, for reducing model uncertainty in future projections of regional hydroclimate, assessing models’ representation of present-day precipitation in a particular region may not be sufficient, as the model may get the correct present-day precipitation for the wrong reason if the relevant circulation features in the region are improperly represented.

5 Opportunities for progress

Understanding the circulation signals that are beginning to emerge and unraveling the puzzles they present make it clear that there are exciting opportunities for making progress in understanding the dynamical response to climate change. At the same time, new tools are available and these should be leveraged along with existing tools. Here we highlight some opportunities for future research.

5.1 Investigate signals across the seasonal cycle

Almost all of the dynamical signals in Table 1 are for the winter and summer seasons. Investigating signals in other seasons such as autumn and spring as well as seasonal transitions is important. During these seasons some signals may be stronger (Watt-Meyer et al., 2019) because there potentially exist fewer competing thermodynamic signals. It is also unclear how climate change affects the seasonal cycle of dynamical features beyond the Monsoons, which exhibit a well-documented delay in response to climate change (e.g., Seth et al., 2013) and the stratospheric polar vortex, which is expected to form earlier and decay later in the future (Ayarzagüena et al., 2020). Quantifying and understanding the seasonality of dynamical changes has important implications for impacts such as severe weather, ecosystems, forest fires, agriculture, etc.
5.2 Move beyond the longitudinal and time mean

Almost all of the dynamical signals in Table 1 reflect the zonal- or time-mean. Circulation extremes have received very little attention beyond blocking yet recent work suggests the signal of climate change may be larger in the tails of the circulation distribution consistent with multiplicative behavior of the Clausius-Clapeyron relation (Shaw & Miyawaki, 2024). This implies that the “thermodynamic” (depends on global-mean temperature that leads to a moisture increase) and “dynamic” (independent of global-mean temperature) terminology is misleading (Neelin et al. 2022). Indeed dynamical responses occur as a result of the need to satisfy thermodynamical balances and perhaps “moisture” (changes in global mean temperature, Clausius-Clapeyron relation, geostrophic) and “convergence” (changes in vertical motion, ageostrophic) terminology would be more appropriate. It is also important to understand how circulation trends affect trends in other variables such as heat waves (Vautard et al., 2023), which have been reported to exhibit discrepancies between observations and climate models.

Along similar lines, there is much work to be done to understand how the dynamical response to climate change varies longitudinally across different regions. For example, insights have been gained into recent trends by defining the Hadley Cell for different regional sectors (Nguyen et al., 2018; Staten et al., 2019; Hoskins et al., 2020; Gillett et al., 2021). The well-known model-observation discrepancy in tropical SST trends represents an opportunity for understanding how tropical climate change affects regional circulation trends and this should be investigated further. Furthermore, the impact of regional and time evolving anthropogenic forcings such as aerosols on regional circulation trends are also not well understood. Ultimately we need to better understand changes in teleconnections, e.g. differences between ocean basins, circulation over land vs ocean. Many theoretical frameworks focus on the zonal mean, which is of course an important starting point. Exciting new regional frameworks have emerged, e.g. local finite amplitude wave activity (Huang & Nakamura, 2016), and should be leveraged and expanded to better understand the regional signals. The use of models in which dynamics and composition change/chemistry are interactively simulated allows for a better representation of these forced longitudinal changes (e.g. Morgenstern, 2021; Revell et al., 2022).

5.3 Use signals to test mechanisms and model fidelity

Now that we have entered into a time where circulation signals have emerged we can begin to unravel the dynamical mechanisms underlying the circulation trends and compare them to
theoretical expectations and model predictions. Thus, we can move beyond just detecting the
signal and move toward understanding it. Applying the numerous theoretical frameworks that
have been proposed to explain dynamical responses to climate change (Shaw, 2019) offers great
potential for progress. Of course, it should be expected that such analyses will reveal puzzles and
showcase examples where models lack fidelity.

Large ensembles can also be leveraged to investigate whether internal variability involves
dynamical mechanisms that are distinct from the forced response to anthropogenic climate
change.

5.4 Leverage the power of existing and emerging tools
Recent progress in understanding the dynamical responses to anthropogenic climate change
discussed above has been achieved through a combination of theoretical advances, conducting
experiments across the climate model hierarchy (across processes, resolution, timescale etc.) and
performing observational data analysis. This approach should be leveraged further to understand
model-observation discrepancies in dynamical signals. It is important to balance the scales
between computing and thinking (Emanuel, 2020), i.e. to carefully design analysis or numerical
experiments so they serve to confirm/deny hypotheses or expectations. More specifically,
idealized models (Schemm & Röthlisberger, 2024), mechanism denial experiments targeted
toward understanding circulation signals and nudging are all powerful tools for understanding
mechanisms and unraveling the relationship between circulation signals and other trends, or to
understand the role of mean-state biases in the atmospheric circulation (e.g. Friesen et al., 2022).
Imposing local CO2 forcing or locking mechanisms and using single forcing simulations can be
useful to unravel the role of different forcings in different regions. Finally, the impacts of known
thermodynamic biases, e.g. SST trend biases, can be understood and quantified through targeted
model experiments, e.g. using pacemaker simulations with coupled models (Kang et al. 2024).
Several new tools have emerged in the last decade that can be leveraged for making
progress on dynamical understanding. Seasonal to subseasonal forecasting has emerged as a
more widespread tool, with large ensembles of S2S forecasts that could be leveraged for
understanding dynamical mechanisms and model-observation discrepancies. By pooling
different ensemble members and different initializations for a given target forecast, and by
assuming that atmospheric initial conditions are lost after the first month, tens of thousands of
potential realizations of climate can be created (e.g. Kelder et al., 2020; Kolstad et al., 2022).
This method has been used to better estimate return periods of extreme events (e.g. van den Brink et al., 2004; Thompson et al., 2019), but could also be exploited to improve mechanistic understanding of data-limited dynamical processes such as teleconnections. S2S ensemble forecasts can additionally be used to diagnose common model biases that also exist on climate timescales (L’Heureux et al., 2022; Beverley et al., 2023; Randall & Emanuel, 2024).

AI/ML methods have exploded in the last few years. It will be very fruitful to leverage this new tool. Physics-informed and explainable AI have the potential to advance our understanding of the circulation signals. In particular, these methods have potential in terms of being able to “learn” the source of discrepancies between models and observations, and structural uncertainties across different models.

Finally, high resolution models going down to km scale resolution are on the horizon. These models present an exciting opportunity for understanding as they break away from the large-scale hydrostatically balanced dynamics with parameterized diabatic processes. There is much to be learned about how large- and meso-scales dynamics interact. A better understanding will require theoretical investigations that move beyond the small Rossby number limit (geostrophy). High resolution simulations will likely lead to surprises (or food for thought) as we resolve (and not parameterize) diabatic heating and treat it as fully coupled to the flow. This may include new mechanisms or new versions of older mechanisms. However, high resolution simulations will most likely not provide final/definitive answers to outstanding (dynamics/circulation) questions. For the latter, carefully designed mechanistic model experiments across the model hierarchy are still crucial, which should be informed by results from new high-resolution (or large ensemble) model experiments. High resolution models also have the potential to reveal where model-observation discrepancies are the result of not properly representing mesoscale dynamics in both the atmosphere and ocean. However, even high-resolution models inevitably involve a length-scale truncation and thus cannot be considered to fully resolve the dynamical spectrum of the circulation phenomenon at hand.

We have moved into a new era of climate change research where the signal has emerged, some attribution is becoming possible and puzzles and discrepancies are accumulating. As a community we have the opportunity to embrace these signals and the puzzles they present, including cases where there is a lack of consensus, and use it as an opportunity to further
advance our understanding of the climate system and improve predictions of regional climate change.

Acknowledgments

The authors acknowledge the participants of the WCRP APARC DynVar/SNAP Workshop that took place 9-13 October 2023 in Munich, Germany. TAS acknowledges support from NSF (AGS-2300037) and NOAA (NA23OAR4310597). CIG acknowledges the support of the Israel Science Foundation (grant agreement 1727/21). KMG acknowledges support from NSF (AGS-2330009). JMA acknowledges support from the ARC Centre of Excellence for the Weather of the 21st Century (CE230100012) and partial support from the Regional and Global Model Analysis component of the Earth and Environmental System Modelling Program of the U.S. Department of Energy's Office of Biological and Environmental Research via National Science Foundation IA 1947282. AYK acknowledges support from the European Union's 773 Horizon 2020 research and innovation framework programme under Grant agreement 774101003590 (PolarRES).

Open Research

No data was generated.

References

by circumpolar upwelling and equatorward transport. *Nature Geoscience, 9*(7), 549–554.

https://doi.org/10.1038/ngeo2731

https://doi.org/10.1038/s41586-020-2120-4

https://doi.org/10.1007/s00382-019-04746-9

Garfinkel, C. I., Son, S. W., Song, K., Aquila, V. and Oman, L. D. (2017) Stratospheric variability contributed to and sustained the recent hiatus in Eurasian winter warming. Geophysical research letters 44, no. 1: 374-

https://doi.org/10.1029/2019GL086425

Table 1. Detected circulation signals

<table>
<thead>
<tr>
<th>Signal</th>
<th>Region</th>
<th>Season</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased wind shear</td>
<td>North Atlantic</td>
<td>Annual</td>
<td>Lee et al. (2019)</td>
</tr>
<tr>
<td>Upper-troposphere jet strength</td>
<td>Zonal-mean</td>
<td>DJF</td>
<td>Woollings et al. (2023), Franzke & Harnik (2023)</td>
</tr>
<tr>
<td>Mid-troposphere jet weakening</td>
<td>Zonal-mean</td>
<td>JJA</td>
<td>Coumou et al. (2015)</td>
</tr>
<tr>
<td>Upper-troposphere jet weakening</td>
<td>Eurasia</td>
<td>JJA</td>
<td>Dong et al. (2022)</td>
</tr>
<tr>
<td>Lower-troposphere jet strength*</td>
<td>North Atlantic</td>
<td>DJF</td>
<td>Blackport & Fyfe (2022)</td>
</tr>
<tr>
<td>Lower-troposphere jet position</td>
<td>Zonal-mean</td>
<td>DJF</td>
<td>Lee & Feldstein (2013), Woollings et al. (2023)</td>
</tr>
<tr>
<td>Storm track strengthening*</td>
<td>S. Hemisphere Zonal-mean</td>
<td>JJA</td>
<td>Chemke et al. (2022)</td>
</tr>
<tr>
<td>Storm track weakening</td>
<td>N. Hemisphere Zonal-mean</td>
<td>JJA</td>
<td>Coumou et al. (2015), Chang et al. (2016), Gertler & O’Gorman (2019), Kang et al. (2023), Cox et al. (2024)</td>
</tr>
<tr>
<td>Increased blocking*</td>
<td>N. Hemisphere</td>
<td>JJA</td>
<td>Hanna et al. (2018)</td>
</tr>
<tr>
<td>Hadley cell expansion</td>
<td>Both Hemispheres</td>
<td>Annual mean</td>
<td>Grise et al. (2019)</td>
</tr>
<tr>
<td>Phenomenon</td>
<td>Region</td>
<td>Time</td>
<td>Reference</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>Hadley cell intensity</td>
<td>Both Hemispheres</td>
<td>Annual mean</td>
<td>Zaplotnik et al. (2022), Chemke & Yuval (2023)</td>
</tr>
<tr>
<td>Walker circulation strengthening*</td>
<td>Both Hemispheres</td>
<td>Annual mean</td>
<td>Chung et al. (2019), Zhao and Allen (2019)</td>
</tr>
<tr>
<td>Weakening of upward vertical motion in the tropics</td>
<td>Both Hemispheres</td>
<td>Annual mean</td>
<td>Shrestha & Soden (2023)</td>
</tr>
<tr>
<td>Increasing stationary wave amplitude</td>
<td>Mediterranean</td>
<td>DJF</td>
<td>Tuel & Eltahir (2020)</td>
</tr>
<tr>
<td></td>
<td>N. Hemisphere</td>
<td>JJA</td>
<td>Teng et al. (2022), Sun et al. (2022)</td>
</tr>
<tr>
<td>Strengthening summer Monsoon</td>
<td>N. Hemisphere</td>
<td>JJA</td>
<td>Eyring et al. (2021)</td>
</tr>
</tbody>
</table>