Directional Breaking Kinematics Observations from 3D Stereo Reconstruction of Ocean Waves

Bernard Akaawase¹, Leonel Romero¹, and Alvise Benetazzo²

¹University of Connecticut
²CNR-ISMAR

April 22, 2024

Abstract

Short ocean surface waves are important for remote sensing, air-sea exchange, and underwater acoustics. The energy spectrum at scales much shorter than the dominant waves are azimuthally bimodal. However, widely used wave models fail to reproduce the bimodality of the short gravity waves. Recent studies have shown that an azimuthally narrow dissipation due to breaking can significantly improve model performance. Thus, highlighting the importance of the directional energy balance of wave models. We utilized stereo visible imagery to quantify the directional wave-breaking kinematics and compare them against the energy spectrum and different dissipation parameterizations and model solutions. The results show that wave-breaking is azimuthally unimodal and narrower than the bimodal energy spectrum, suggesting that wave-breaking dissipation combines with the nonlinear energy fluxes due to wave-wave interactions to yield enhanced bimodality. The findings are useful for constraining energy dissipation parameterizations for spectral wave models and improved understanding of air-sea fluxes.
Directional Breaking Kinematics Observations from 3D Stereo Reconstruction of Ocean Waves

Bernard Akaawase¹, Leonel Romero¹, Alvise Benetazzo²

¹Department of Marine Sciences, University of Connecticut, Groton, CT, USA
²Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), Venice, Italy

Key Points:

• The directionality of wave-breaking and wave energy spectrum is investigated via stereo visible imagery.
• The energy spectrum is bi-modal whereas the breakers are unimodal with more breaking occurring in the dominant waves/wind direction.
• The observed distribution of wave-breaking crest lengths is azimuthally much narrower than the wave spectrum.

Corresponding author: Bernard Akaawase, bernard.akaawase@uconn.edu
Abstract

Short ocean surface waves are important for remote sensing, air-sea exchange, and underwater acoustics. The energy spectrum at scales much shorter than the dominant waves are azimuthally bimodal. However, widely used wave models fail to reproduce the bimodality of the short gravity waves. Recent studies have shown that an azimuthally narrow dissipation due to breaking can significantly improve model performance. Thus, highlighting the importance of the directional energy balance of wave models. We utilized stereo visible imagery to quantify the directional wave-breaking kinematics and compare them against the energy spectrum and different dissipation parameterizations and model solutions. The results show that wave-breaking is azimuthally unimodal and narrower than the bimodal energy spectrum, suggesting that wave-breaking dissipation combines with the nonlinear energy fluxes due to wave-wave interactions to yield enhanced bimodality. The findings are useful for constraining energy dissipation parameterizations for spectral wave models and improved understanding of air-sea fluxes.

Plain Language Summary

Short gravity waves on the ocean surface play crucial roles in remote sensing, air-sea exchange, and underwater acoustics. Despite their significance, widely used wave models fail to accurately reproduce the directionality of short gravity waves. This study investigates the relationship between the directional distribution of wave breaking and the energy spectrum as recent studies have suggested that such knowledge is vital for improved wave model performance. Utilizing stereo visible imagery and three-dimensional reconstruction of the sea surface elevation, we show that the energy spectrum exhibits strong azimuthal bimodality away from the spectral peak, while the statistics of wave breaking is unimodal and much narrower. This supports recent modeling efforts that demonstrate that a directionally narrow breaking dissipation can significantly improve the performance of spectral wave models. The results presented are useful for optimization and constraining dissipation parameterizations due to breaking for spectral wave models, and improving understanding of air-sea exchange processes.

1 Introduction

Several processes within the oceanic and atmospheric boundary layers are modulated by surface wave breaking. These include the development of the wave field (Melville,
1996), momentum transfer from the surface waves to currents (Pizzo et al., 2016; Romero, 2019), and air-sea fluxes (Deike & Melville, 2018; Shin et al., 2022; Deike, 2022). Wave-breaking is also a source of the near-surface turbulent kinetic energy and underwater sound generation (Gemmrich et al., 2008). Despite the significant impact of wave-breaking, it is poorly understood. Much of the present knowledge about wave breaking has emerged from field observations, laboratory and numerical experiments (Monahan & Muircheartaigh, 1980; Duncan, 1981; Phillips, 1985; M. L. Banner et al., 2000, 2002; Drazen et al., 2008; Callaghan et al., 2008; Gemmrich et al., 2008; Kleiss & Melville, 2010; Romero et al., 2012; Derakhti et al., 2020; Sutherland & Melville, 2013; Wu et al., 2022; Thomson, 2012).

In this study, we investigate wave breaking using three-dimensional stereo reconstruction of the sea surface from visible imagery.

Phillips (1985) introduced a statistical approach for investigating wave-breaking, the $\Lambda(c)$ distribution, which is the expected length of breaking fronts advancing with speeds c to $c + dc$ per unit surface area. The moments of $\Lambda(c)$ correspond to various physical parameters. The first five moments (in order 1-5) are related to the fraction of the sea surface overturned by wave-breaking per unit time, the fractional area of the sea surface occupied by the actively breaking waves, the entrained air per unit area per time, the momentum transferred per unit area, and the energy dissipation per unit area (Phillips, 1985; Melville & Matusov, 2002; Kleiss & Melville, 2010; Deike et al., 2017; Romero, 2019).

Previous studies have quantified $\Lambda(c)$ using sea spikes from radar backscatter, bubble signatures in visible-imagery, and temperature structures in infrared-imagery (Melville & Matusov, 2002; Phillips et al., 2001; Jessup & Phadnis, 2005; Gemmrich et al., 2008; Kleiss & Melville, 2010; Zappa et al., 2012; Sutherland & Melville, 2013; Romero et al., 2017). Although numerous measurements of $\Lambda(c)$ exist, only few have considered the directionality of wave-breaking (Melville & Matusov, 2002; Gemmrich et al., 2008; Kleiss & Melville, 2011). To the best of our knowledge, no study has compared the directionality of wave-breaking to the energy spectrum. Such information is crucial as recent studies suggest that the directionality of the dissipation due to wave-breaking can have important implications for the dynamics that shape the wave spectrum (Romero & Lubana, 2022; Al-day & Ardhuin, 2023). Hence, the need for a more detailed examination of breaking directionality for different environmental conditions.
In deep water, the evolution of energy spectrum $F(k, \theta)$ can be described by radiative transfer equation

$$\frac{\partial F(k, \theta)}{\partial t} + \mathbf{c}_g \cdot \nabla F(k, \theta) = S_{in} + S_{nl} + S_{ds},$$

(1)

where the left-hand-side is the time derivative and advection at the group velocity, and the source terms on the right right-hand-side are the wind input S_{in} necessary for wave growth, the nonlinear interactions S_{nl}, and dissipation S_{ds}. To leading order, S_{nl} controls the spectral shape of short waves (M. S. Longuet-Higgins, 1976; M. Banner & Young, 1994; Toffoli et al., 2010). It is well established that $F(k, \theta)$ is unimodal at the spectral peak and becomes bimodal at lower and higher wavenumbers (I. Young et al., 1995; Ewans, 1998; Hwang et al., 2000; Romero & Melville, 2010a; Leckler et al., 2015; Peureux et al., 2018) with the lobe separation approaching $\pm 90^\circ$ at higher wavenumbers (Lenain & Melville, 2017). However, efforts to model the directional spectrum with the ‘exact’ computations of S_{nl} systematically yielded narrower spectra and weak bimodality at high wavenumbers compared to observations (Romero & Melville, 2010b; Liu et al., 2019; Romero & Lubana, 2022).

Following the work of Donelan (2001) on nonlinear breaking dissipation due to long wave-short wave modulation (M. Longuet-Higgins & Stewart, 1960; M. Longuet-Higgins, 1987; Guimarães, 2018; Peureux et al., 2018, 2021; Dulov et al., 2021), Romero (2019) developed a breaking parametrization much narrower than the energy spectrum, allowing numerical solutions with ‘exact’ computations of S_{nl} to yield enhanced bimodality consistent with observations. Here, we further assess the Romero (2019) wave-breaking model against field measurements of wave-breaking kinematics and energy spectrum. The paper is organized as follows. Section 2 describes the data set and explicitly documents how the visible images are processed to obtain the sea surface elevation and the statistics of wave-breaking kinematics. The results are presented in Section 3, followed by discussion and conclusions in Section 4.

2 Data and Methods

2.1 Data Description

We analyzed an existing dataset of stereo visible imagery, which was used to obtain 3D space-time sea surface elevation fields $\eta(x, y, t)$, where t denotes time, x and y are the world coordinates (see Figure S2). The data was collected in 2015 at the Acqua
Alta (AA) oceanographic research tower https://www.ismar.cnr.it/en/infrastructures/oceanographic-infrastructures/acqua-alta-tower (Benetazzo et al., 2012), located 15km offshore of Venice in the northern Adriatic Sea (Italy; 45.32°N, 12.51°E) where the water depth is 17m. The stereo setup consisted of two 5 MP (2048×2456) synchronized BM-500GE JAI cameras equipped with 5 mm low distortion lenses. The stereo system was mounted at 12.5 m above sea level with a baseline of 2.5 m, and a grazing angle of 25° from the horizontal. The data was acquired for 30 minutes at 12 Hz (corresponding to 21570 frames) in conditions of relatively steady winds from the East-North-East averaging 13ms⁻¹ at the standard 10m reference level (U_{10}), see wind time series in Figure S1. The significant wave height (H_s) was 1.99 m, the peak period (T_p) 6.5 s, and the corresponding wave age $c_p/U_{10} = 0.8$ as determined from the linear dispersion relationship. In addition, the peak wave direction was aligned with the wind. See Guimarães et al. (2020) for detailed description of the dataset (AA02).

2.2 Three Dimensional (3D) Reconstruction of the Ocean Waves

Ocean waves can be measured with instruments that solely provide the time series of the sea surface elevation (either in Eulerian or Lagrangian frame) $\eta(t)$, or in two-dimension (2D) with arrays of wave gauges to obtain limited space but robust time information. Alternatively, radar-based systems, scanning lidars, and computer vision or ‘stereography’ can be used to obtain 2D measurements with higher directional resolution (M. Banner et al., 1989; I. Young et al., 1995; Jasper et al., 2020; Hwang et al., 2000, 2000; Romero & Melville, 2010a; Lenain & Melville, 2017; Benetazzo, 2006). One of the first applications of stereography in oceanographic research involved computing the directional spectra of ocean waves from 3D elevation maps measured off San Diego from an offshore tower (M. Banner et al., 1989). Since then, this approach has been used to study surface wave processes. In this work, we utilized the Wave Acquisition Stereo System (WASS) pipeline https://sites.google.com/unive.it/wass/home/, an open-source package that efficiently reconstructs ocean surface waves in 3D (Benetazzo, 2006; Benetazzo et al., 2012; Bergamasco et al., 2017). The technique can provide measurements that allow for the calculation of wave-breaking kinematics and the computation of unambiguous directional wave energy spectrum coincidentally, making it suitable for investigating short waves which are broadly distributed in azimuth spanning over ±80°.
2.3 Wave Spectral Analysis

WASS can capture the wave crests within its field of view but cannot resolve the wave troughs that are far from the cameras due to shadowing from the crests. Moreover, the spatial resolution and the quantization errors become larger with increasing distance from the cameras (Benetazzo et al., 2018). This motivated us to use a multi-window approach comprised of a large trapezoidal-window that adaptively follows the shape of the WASS swath and a small square-window. The larger window resolves the low wavenumbers, while the smaller window does a better job resolving the shorter waves. The trapezoidal-shaped swath is typical for grazing angle deployment when the video reconstruction is presented in a local cartesian frame (see Figure S2a).

Before computing the spectra, the data in the small-window was spatially detrended, and both windows were Hann-tapered around the edges. The tapering of the larger-window was performed adaptively to follow the data swath (Romero & Melville, 2010a), as demonstrated in Figure S2. Each window was zero-padded to thrice its initial size. The 2D wavenumber spectrum $F(k_x, k_y)$ was computed unambiguously from the 3D space-time Fast Fourier Transform of the wave field $\eta(x, y, t)$ by integrating all the positive frequencies and multiplying the spectrum by a factor of two to take care of the energy loss due to the negative frequencies according to

$$F(k_x, k_y) = 2 \int_0^{\omega_{\text{max}}} F(k_x, k_y, \omega) d\omega,$$

where $F(k_x, k_y, \omega)$ is the 3D spectrum. The directional spectrum was converted from cartesian to polar coordinates of components

$$k_x = k \cos \theta$$

$$k_y = k \sin \theta$$

such that the variance of the sea surface elevation $\langle \eta^2 \rangle$ is preserved according to

$$\langle \eta^2 \rangle = \int \int F(k \cos \theta, k \sin \theta) k \, dk \, d\theta = \int \int F(k_x, k_y) \, dk_x \, dk_y,$$
where k is the value of the Jacobian determinant $J = \left| \begin{array}{cc} \frac{\partial k_x}{\partial k} & \frac{\partial k_x}{\partial \theta} \\ \frac{\partial k_y}{\partial k} & \frac{\partial k_y}{\partial \theta} \end{array} \right|$ as given by

$$J = \begin{vmatrix} \cos \theta & -k \sin \theta \\ \sin \theta & k \cos \theta \end{vmatrix} = k(\sin^2 \theta + \cos^2 \theta) = k. \quad (5)$$

Here we refer to $F(k \cos \theta, k \sin \theta)$ as $F(k, \theta)$ following the convention used in certain studies (M. L. Banner, 1990; Hwang et al., 2000; Romero et al., 2012; Romero, 2019; Romero & Lubana, 2022). But note that the ‘true’ polar spectrum is defined as $E(k, \theta) = F(k_x, k_y)J$ such that $\langle \eta^2 \rangle = \int \int E(k, \theta) \, dk \, d\theta$ (Tolman et al., 2009; Holthuijsen, 2010; Benetazzo et al., 2016; Peureux et al., 2018).

The spectrum from each of the windows was calibrated with its respective variances and the resulting spectra (small and large windows) were then blended through ramp functions

$$\Gamma_1 = 1 - \tanh \left(\frac{2k}{k_o} \right)^8 \quad (6)$$

and $\Gamma_2 = 1 - \Gamma_1$, where $k_o=0.9 \text{ radm}^{-1}$ is the transition wavenumber (Romero et al., 2019). After applying the ramp functions, the merged 2D spectrum is simply an element-wise sum of the two spectra. Following I. Young (1995), the peak wavenumber k_p and peak wave direction θ_p were computed through weighted integrals of the spectrum to the fourth power according to

$$k_p = \frac{\int \int F(k, \theta)^4 \, k^2 \, dk \, d\theta}{\int \int F(k, \theta)^4 \, dk \, d\theta}, \quad (7)$$

and

$$\theta_p = \arctan \left(\frac{\int \int F(k, \theta)^4 \, \sin \theta \, k \, dk \, d\theta}{\int \int F(k, \theta)^4 \, \cos \theta \, k \, dk \, d\theta} \right). \quad (8)$$

2.4 Wave Breaking Kinematics Computations

Previous field experiments have employed different techniques to determine $\Lambda(c)$. The existing techniques can be categorized into event-based, temporal, or elemental. The event-based approach assigns a single speed to an entire breaking event, and the crest length is obtained by summing all crest lengths measured during the evolution of that breaking event (Gemmrich et al., 2008). The temporal method extracts a single speed from each breaking front per snapshot, along with the total crest lengths (Jessup & Phadnis, 2005). While the elemental approach considers individual points along the actively breaking fronts to determine the speed and the crest length (Melville & Matusov, 2002;
Figure 1. (a) Example of the sea surface elevation reconstructed with the WASS pipeline and (b) snapshot of detected breaker also indicated with a green box in (a). The green box corresponds to the analysis region used to compute the breaking kinematics statistics. The red arrows show the estimated velocities along the wave-breaking fronts.
Kleiss & Melville, 2011). Here, we adopt the elemental approach to calculate the kinematics of air-entraining breakers following the techniques developed by Kleiss and Melville (2011) and Sutherland and Melville (2013), which involves detecting wave-breaking via a brightness threshold and tracking the actively breaking events between frames. Refer to the supporting information for a detailed description. The tracked fronts are then converted to physical units using the WASS information as described below.

During the course of this work, we identified occasional motion of the cameras based on visual inspection of the imagery over the portion of the AA-tower in the images (Figure 1a). We corrected for camera motion between consecutive stereo image pair using control points over the AA-tower and near the horizon. Therefore the entire analysis of the wave-breaking kinematics was carried through consecutive stereo image pairs. The extrinsic parameters obtained from the first stereo image pair was also used for consecutive pair during the 3D reconstruction. We further assessed camera motion errors through the difference of the mean sea level between consecutive frames, which gave a median deviation of 2cm. Consecutive frames that had mean elevation differences greater than 3 median deviations (± 6cm) were considered ‘shaky’ and excluded from the analysis, which were only about 5% of the data. Figure S4 compares time series of mean elevation differences between consecutive frames of the corrected and raw images showing significant improvement. We also limited our analysis to the image area closest to the camera, where troughs are not shadowed by crests.

The WASS information was used to convert the PIV pixel-vectors \((\Delta i, \Delta j)\) computed from a pair of images collected at time \(t\) and \(t+\Delta t\) into physical displacements \((\Delta x, \Delta y)\) according to

\[
\Delta x = x(t + \Delta t \mid i, j) - x(t \mid i - \Delta i, j - \Delta j),
\]

\[
\Delta y = y(t + \Delta t \mid i, j) - y(t \mid i - \Delta i, j - \Delta j).
\]

where \(x(t, i, j)\) and \(y(t, i, j)\) are the horizontal coordinates along the mean sea plane projected on to the image coordinates \(i, j\). And the corresponding velocities are given by

\[
c_x = \frac{\Delta x}{\Delta t},
\]

\[
c_y = \frac{\Delta y}{\Delta t}.
\]

We used consecutive images so that \(\Delta t = 1/f_s\), with \(f_s\) corresponding to the sampling frequency. The resulting velocities were interpolated along the contour of the detected breakers at time \(t+\Delta t\). We discarded all the velocities along the perimeter of the break-
ing fronts that pointed inward towards the interior of the local patch and retained the
outward velocities (Sutherland & Melville, 2013). A directional median filter was lever-
aged to minimize passive foam and outliers. We calculated the median direction of out-
ward velocities per frame, if the median direction is within $\pm 120^\circ$ of the dominant wave/wind,
velocities outside $\pm 120^\circ$ relative to the median direction are tag passive breakers and dis-
carded. If the median direction opposes the average wind/wave direction, we retain only
velocities within $\pm 120^\circ$ of the average wind/wave direction, similar to Sutherland and
Melville (2013). The individual breaking length dl associated with the calculated veloc-
ities is the perpendicular distance within the image pixel. The wave-breaking distribu-
tion is computed in cartesian space according to
\[
\Lambda(c_x, c_y) = \sum_i \left(dl_i | c_x - \frac{\Delta c_x}{2} \leq c_{x_i} \leq c_x + \frac{\Delta c_x}{2}, c_y - \frac{\Delta c_y}{2} \leq c_{y_i} \leq c_y + \frac{\Delta c_y}{2} \right) \frac{A_{tot} \Delta c_x \Delta c_y}{\Delta},
\]
where A_{tot} is the total analysis area over all frames, and the bin size $\Delta c_x = \Delta c_y = 0.2$ ms$^{-1}$.
The breaking distribution is converted to polar coordinates similar to equation (4)
\[
\int \int \Lambda(c_x, c_y) dc_x dc_y = \int \int \Lambda(c, \theta) c dc d\theta
\]
such that the omnidirectional distribution is given by
\[
\Lambda(c) = \int_{-\pi}^{\pi} \Lambda(c, \theta) c d\theta.
\]
Note that the $\Lambda(c)$ framework assumes that breaking fronts propagates with speed
c_{br} that is directly proportional to the phase speed of the waves according to $c_{br} = \alpha c$,
with $\alpha \approx 0.85$ (Stansell & MacFarlane, 2002; M. L. Banner & Peirson, 2007; Barthelemy
et al., 2018; M. Banner et al., 2014). However, for simplicity, α is taken as unity in this
analysis. Such that $c_{br} = c$. For comparison against the directional wavenumber spec-
trum, the velocities are converted to wavenumber via linear dispersion relationship given
by
\[
c = \sqrt{\frac{g \tanh(kh)}{k}},
\]
where h is the water depth, k is the wavenumber, and g is the acceleration due to grav-
ity. Figure 1b shows a subsampled example of observed wave-breaking fronts.

3 Results

The findings are presented in two subsections. The first subsection analyses the di-
rectionality of wave-breaking statistics in terms of $\Lambda(c, \theta)$ and the energy spectrum. In
Figure 2. (a) Directional wavenumber spectrum $F(k, \theta)$ and (c) $\Lambda(c, \theta)$ (c) with corresponding azimuth integrated 1-D distributions in (b) and (d), respectively. The k^{-3} line in (b) is the empirical saturation level reported by M. Banner et al. (1989); Romero and Melville (2010a); and Lenain and Melville (2017), and the reference power-law of c^{-6} in (d) corresponds to Phillips (1985) scaling.

the second subsection, the directional spreading of the measured $\Lambda(c, \theta)$ and $F(k, \theta)$ are compared against state-of-the-art spectral models.

3.1 Directional spectrum and breaking statistics

The observed directional spectrum in Figure 2a exhibits bimodality at $k > k_p$. Notice that k_p, marked with a white-hexagon, aligns approximately within 4° of the wind direction. The omnidirectional spectrum $\phi(k) = \int F(k, \theta) k d\theta$ is presented in Figure 2b. The tail of the spectrum approximately follows a k^{-3} power-law with a saturation
Figure 3. Directional distributions of the energy spectrum $D(k, \theta) = F(k, \theta)/F(k, \theta_{\text{max}})$ (a) and breaking statistics $\Lambda_D(k, \theta) = \Lambda(c, \theta)/\Lambda(c, \theta_{\text{max}})$ (b). The white stars in (a) represents the empirical parameterization of Peureux et al. (2018) which is given as, $82 \left(1 - 10^{-0.039 \left(\frac{k}{k_p} - 5\right)^2}\right)$.

The magenta arrows indicates the wavenumbers at which the cross sections are taken. The white triangle correspond to breaking velocity (and wavenumber) on the upper left corner of the breaker shown in Figure 1.

Level $B = \phi(k)k^{-3}$ approximately consistent with airborne lidar measurements (Romero & Melville, 2010a; Lenain & Melville, 2017). Nonetheless, The spectral tail exhibits some noise beyond 2 radm$^{-1}$, marked by dashed-line in Figures 3a,2b, likely due to camera vibrations noted in section 2.3. Nevertheless, the noise falls outside our analysis range.

Figure 2c shows $\Lambda(c, \theta)$ in polar coordinates for velocities up to 10 ms$^{-1}$, computed from a total of 20320 images. Among these, 13630 frames contained actively breaking events. There are significantly more slow-moving breakers compared to faster ones. The $\Lambda(c, \theta)$ is unimodal, and the azimuthal width increases towards the lower values of c corresponding to the short waves. In Figures 2d, we show the azimuthally integrated $\Lambda(c)$ (Figure 2c). For reference we show a power-law of c^{-6}. The omnidirectional $\Lambda(c)$ rolls off at $c < 3\text{ms}^{-1}$. The roll-off can be attributed to inadequate entrainment of bubbles by the slow (short) waves.

To better visualize the directional distributions of $F(k, \theta)$ and $\Lambda(c, \theta)$, we show them normalized by the scale dependent maxima (I. Young et al., 1995) in Figure 3. Figure 3a more clearly highlights the bimodal behavior of the energy spectrum compared to Fig-
Figure 4. Cross sections of the directional distributions of $\Lambda(c, \theta)$ and the energy spectrum for $k = 1.0 \text{ rad}^{-1}$ and 1.9 rad^{-1}.

Figure 2a, where it is not normalized. The bimodality approaches $\pm 74.9^\circ$ in the noise free segment and reaches $\pm 80^\circ$ for wavenumbers approaching 4 radm$^{-1}$. Our results are in good agreement with the empirical parameterization by Peureux et al. (2018) for the bimodal maxima as a function of scale shown with white-stars. Similarly, Figure 3b shows the normalized $\Lambda(c, \theta)$, with breakers centered unimodally around the wind/dominant waves across scales. We show direct comparisons of the normalized distributions of $\Lambda(c, \theta)$ and $F(k, \theta)$ in Figure 4 at the two selected scales. The specific wavenumbers are marked by vertical magenta arrows in Figure 3. Interestingly, the $\Lambda(c)$ distribution peaks at the center near the minima of the bimodal energy spectrum. But more importantly, the $\Lambda(c, \theta)$ is much narrower than the spectrum.

3.2 Directional Spreading

In this subsection, we used circular moments to define the directional spreading of the observed $F(k, \theta)$, $\Lambda(c, \theta)$ and the solutions of three spectral wave models implemented in the WAVEWATCH III framework (Tolman et al., 2009). The packages considered in-
Figure 5. Directional spreading of the energy spectrum (blue) and Λ/S_{ds} for the field measurements (a) and model solutions (b-d), corresponding to Romero (2019), ST4, and ST6, respectively.

In conclusion, ST4 (Ardhuin et al., 2010), ST6 (Rogers et al., 2012; Liu et al., 2019; Zieger et al., 2015), and Romero (2019). The solutions used are previously described by Romero and Lubana (2022) and corresponds to idealized time-limited conditions with constant winds of 13 ms$^{-1}$ speed. All solutions were forced with the “exact” computations of the non-linear resonant four-wave interactions (Tracy & Resio, 1982; van Vledder, 2006). Here we focused on the solutions when the peak period approximately matches that of the field measurements (i.e when the wave age $c_p/U_{10} = 0.8$). The wave breaking parameterization of Romero (2019) is based on Phillips’ Λ framework such that the spectral energy dissipation S_{ds} is given by

$$\rho_\infty g S_{ds}(c) dc = \frac{\rho_\infty}{g} b \Lambda(c) c^5 dc,$$

(15)
where \(g \) is the acceleration due to gravity, \(\rho \omega \) is the density of water and \(b \) is the strength of breaking parameterized according to Romero et al. (2012). A further simplification of equation (15) gives,

\[
S_{ds}(c) = \frac{b}{g^2} \Lambda(c) c^5
\]

(16)

or alternatively, \(S_{ds}(k) = \frac{b}{g^2} \Lambda(k) c^5 \) (Romero, 2019). Due to the unavailability of \(\Lambda(k) \) for ST4 and ST6, we used \(S_{ds} \) in place of \(\Lambda(k) \) in Figure 5c and Figure 5d.

The directional spreading was calculated from the directional moments, which are commonly reported from buoy wave measurements (Kuik et al., 1988), according to

\[
\sigma_1(k) = \sqrt{2(1 - \sqrt{a_1^2 + b_1^2})},
\]

(17)

where \(a_1(k) \) and \(b_1(k) \) are the lowest Fourier coefficients given by

\[
a_1(k) = \int_{-\pi}^{\pi} \cos(\theta) M(k, \theta) kd\theta,
\]

(18)

and

\[
b_1(k) = \int_{-\pi}^{\pi} \sin(\theta) M(k, \theta) kd\theta,
\]

(19)

where \(M(k, \theta) \) is the directional distribution

\[
M(k, \theta) = \frac{\Upsilon(k, \theta)}{\int_{-\pi}^{\pi} \Upsilon(k, \theta) kd\theta}
\]

(20)

with \(\Upsilon \) serving as a placeholder for the directional spectrum, \(\Lambda \) or \(S_{ds} \).

The directional spreading of the measured spectrum and \(\Lambda(c) \) are shown in Figure 5a. The spreading of the energy spectrum is very broad and well reproduced by the wave breaking parameterization of Romero (2019) as shown in Figure 5b. This is because the dissipation function implemented by Romero (2019) is much narrower than that of the energy spectrum. In contrast, the breaking dissipation of ST4 and ST6 have directional spreadings that are nearly the same (or the same) as the energy spectrum, which results in much narrower energy spectra. In other words, the relatively narrow dissipation of Romero (2019) allows for the nonlinear energy fluxes to broaden the spectrum.

4 Discussion and Conclusions

We presented measurements of wave breaking from visible stereo images. The statistical distribution of wave breaking crest lengths within the Phillips (1985) framework of \(\Lambda(c, \theta) \) is unimodal, closely centered around the dominant wave/wind direction and
azimuthally much narrower than the bimodal wave energy spectrum. This is qualitative consistent with the anisotropic Romero (2019) breaking parameterization and solutions. In contrast, the widely used breaking parameterizations with isotropic directional distributions consistently give narrower spectra. For this dataset, the mean angular difference of the directional spreading of the energy spectra produced by the models, shown in Figure 5b,c,d relative to the observed spectrum (Figure 5a) are 2°, 26°, 24° respectively.

The works of Melville et al. (2002), M. Banner et al. (1989), and I. R. Young and Babanin (2006) suggests that shorter (slower) waves are suppressed or ‘wiped out’ during the passage of actively breaking front(s) leading to smoothening of the sea surface afterwards, this effect, although not yet fully theorized, has been parameterized (Ardhuin et al., 2010), and implemented in several operational wave forecasting models (e.g UK met office, Environment Canada, ECMWF, Meteo France, NCEP). Figures 3 and 4 could be interpreted to further support the aforementioned hypothesis, and such character could possibly be a significant contributor to the bimodal behavior observed in the energy spectrum as the minima of the wave energy bimodality (center region of the spectrum) aligns well with the maxima of the wave breaking distribution. Detailed research will be conducted elsewhere to better understand this relationship. At this stage, one can only speculate that both nonlinear wave-wave interactions and the narrow dissipation due to wave breaking combines together to produce broad bimodal spectrum. The idea is that, wave breaking dissipation through sweeping of shorter waves by big breakers, or long - short wave modulations arising from radiative stress, orbital induced contraction of longer waves which leads to the steeping and eventual breaking of the shorter riding waves could remove energy from the centre region of the directional spectrum while allowing the nonlinearly redistributed energy reaching wider angles to accumulate and grow over time.

The average azimuthal half-width of the measured wave breaking distribution averaged over the entire range of speeds is 25°. This is slightly narrower compared to Kleiss and Melville (2010) and Gemmrich et al. (2008) who reported a mean spread of 30° for \(\Lambda(c) \). Although the \(\Lambda(c) \) distribution is consistently narrow, we did see a few cases when waves break at wide angles. For example, the uppermost portion of the actively breaking front presented in Figure 1 corresponds to the white triangle plotted in Figure 3. Notably, such wide-angle breaking aligns with one of the bimodal lobes of the energy spectrum. While most measurements of \(\Lambda(c) \) reported in the literature (including the one
presented here) are azimuthally unimodal, Kleiss and Melville (2010) reported one case with azimuthally bimodal structure at low values of c at short fetches (< 40 km). It is unclear whether the observed bimodality of $\Lambda(c)$ is an artifact due to ensemble averaging over different days or a common feature at low wave ages.

Another important point worth discussing is that our processing of the wave breaking kinematics included both active and passive breakers. Passive breakers can be eliminated by tracking the breakers over time using different criterion, for example the area covered by a breaker should increase with time (Kleiss & Melville, 2011). This was not feasible in our analysis as some intermediate frames were dropped during the camera stabilization exercise. However, we do know that most of the passive breakers are advected back and forth by the orbital velocities at slow speeds. Also our analysis is limited to waves that produce bubbles (Sutherland & Melville, 2013). Future work will target broadband field measurements under a wide range of conditions including misaligned winds and dominant waves to better understand the directionality of wave breaking and the directional energy balance across scales.

5 Availability Statement

The code for detecting and calculating wave-breaking kinematics from visible imagery is available at https://github.com/akaawase-bernard/WaveBreakingKinematics.git.

Acknowledgments

The authors are grateful to National Science Foundation for supporting this research (OCE-2319116). L.R. is also supported by NSF grant 2218781. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. BA is thankful to the Graduate School, University of Connecticut for the conference travel award, and also express appreciation to Paban Bhuyan and Mackenzie Blanusa for their time and comments during the pre-WISE and Ocean Sciences Meeting presentation sessions. AB is supported by the project PROMETEO (PROtotype of Marine natural Hazard Early-warning sysTem based on Ensemble fOrecasting) funded by the Italian Piano Nazionale di Ripresa e Resilienza (PNRR), CUP B53D23033780001.
References

1269–1283.

Dir. Distribution

- $\Lambda(c): 1.0\text{ radm}^{-1}$
- $\Lambda(c): 1.9\text{ radm}^{-1}$
- $F(k): 1.0\text{ radm}^{-1}$
- $F(k): 1.9\text{ radm}^{-1}$

$\theta [\text{rad}]$
Figure 2.
Figure 1.
Supporting Information for "Directional Breaking Kinematics Observations from 3D Stereo Reconstruction of Ocean Waves"

Bernard Akaawase¹, Leonel Romero¹, Alvise Benetazzo²

¹Department of Marine Science, University of Connecticut, Groton, CT, USA
²Institute of Marine Science, Italian National Research Council (ISMAR-CNR), Italy

1. Introduction

In this material, we have provided more information about the Wave Acquisition Stereo System (WASS) processing, wave-breaking detection, and Particle Image Velocimetry (PIV). Additionally, 3 salient points presented in the manuscript are further expatiated on: 1) We show a one-day time series of wind conditions preceding this experiment, 2) we demonstrate the adaptive tapering procedure engaged during spectral analysis on the trapezoidal-shaped wave measurement area. The trapezoidal shape is a result of projecting from the image coordinate system to the local cartesian frame. 3) Show the impact of camera motion correction on the mean sea level displacement between consecutive images.
2. Wave Acquisition Stereo System (WASS)

The WASS pipeline is comprised of four C++ executables namely, WASS-prepare, feature-match, auto-calibrate, and WASS-stereo. The WASS-prepare fetches the corresponding image pairs from the stereo-storage alongside the intrinsic parameters and the configuration information into sequential folders for processing. It also removes the radial and tangential distortion effect based on the provided intrinsic parameters from the images. WASS-match and auto-calibrate are used to determine the camera pose (extrinsic parameters) and the matrix relating to the corresponding points detected in the stereo images. Auto-calibrate is only engaged if the user does not provide the extrinsic parameters. The camera pose is described by both the translation and rotation matrices which are recovered through correspondence based on epipole constraints.

The final step of WASS processing is the WASS-stereo. During this step, the algorithm uses the intrinsic and extrinsic parameters to align the two-camera coordinate system to an ideal stereo plane, such that the lines of epipole in corresponding images become parallel and the complex 3D search-problem is reduced to 2D. Such that the corresponding points within the image pairs lie within the same scan lines. Next, the disparity map is calculated between the two perspectives, and the triangulation of matched pixels is executed to obtain the 3D point clouds. The sea plane coefficients are estimated by combining Random Sample Consensus (RANSAC) and least square fitting. The sea surface anomalies are obtained by removing the mean sea plane from the 3D reconstructed points. Following Bergamasco et al. (2017), the reconstructed surface elevation in the world reference frame $\eta(x, y)$ was mapped to the camera sensor coordinates $\eta(i, j)$. Where i and j are the
horizontal and vertical image pixels indices, respectively. Figure 1a shows 3D point clouds of the stereo triangulation superimposed to the left camera image of the stereo imaging system.

As with every stereographic processing, uncertainties are expected. These include calibration errors which is related to the inaccuracy of getting the exact internal and external calibration matrices. Also, features matching error which originates from the difficulty of matching the corresponding pixel. Several checks have been incorporated into WASS to minimize these errors. The most concerning is the resolution or quantization error, which is the error associated with recovering the 3D coordinates of the reconstructed cloud points due to the increasing area within the footprint of a pixel or sub-pixel. The expected error increases with distance from the cameras along the \((y)\) axis. For our setup, the maximum expected error is ±3cm. The errors are much smaller for locations near the cameras and tend to increase away from the camera.

3. Breakers Detection in Visible Imagery

3.1. Image background removal

The 30-minute stereo dataset analyzed in this study was acquired under a relatively steady temporal illumination. However, there was a slight spatial gradient across frames. The spatial non-uniformity in the images is corrected with equation (1) using the pixel-wise division approach presented in Kleiss (2009) for mean background intensity \(S(x,y)\) removal.

\[
I'(x,y) = \frac{I(x,y)S}{S(x,y)}, \quad (1)
\]
where $I'(x, y)$ is the corrected image, \overline{S} is a scalar corresponding to the mean spatial intensity of the image, and $I(x, y)$ is the undistorted image. The background of each image was obtained from a morphological opening operation utilizing a diamond-shaped kernel of 300×300 pixels, this is different from Kleiss 2009, who did temporal averaging. The image correction helps prevent false identification of whitecaps by enhancing the contrast of the dim sections of the image. It is worth mentioning that we excluded the sky and the Acqua Alta structure from the spatial mean intensity calculation.

3.2. Brightness Thresholding

To compute kinematics, we first identify wave-breaking candidates via brightness thresholding in images and track them across frames. The brightness threshold was determined analogous to Kleiss and Melville (2011), see Figure S3. The brightness probability distribution function $p(I)$ was computed from all corrected images, mapping relative intensity I from 0.0 (darkest) to 1.0 (brightest). The portions of images above a threshold intensity (I_t) are determined using the complementary cumulative distribution function $W(I_t)$ given by

$$W(I_t) = 1 - \int_0^{I_t} p(I) \, dI.$$ \hspace{1cm} (2)

$p(I)$ was discretized with a resolution $\Delta I = 0.01$. The natural logarithm of equation (2), here defined as $L(I_t) = \ln[W(I_t)]$ was differentiated twice to obtain a curvature

$$L''(I_t) = \frac{d^2 L}{dI^2}.$$ \hspace{1cm} (3)

The resulting curvature $L''(I_t)$ was used to estimate the brightness threshold ($I_t = 0.55$) as the end of the positive curvature, which is defined as the point that first falls below 20%
of the curvature peak value (see Figure S3). Note, that the 20% is not arbitrary. Similar
to Kleiss and Melville (2011) using the curvature’s peak value included false breakers.
The potential breakers are obtained by using the determined brightness threshold to
contour the corrected images (lens distortion and background lighting removal) of the left
camera. The brightness threshold is used to contour the corrected images of the stereo
left camera. Before contouring, areas brighter than the threshold (I_t) are smoothed using
a Gaussian blur filter with a 3×3 kernel, similar to Sutherland and Melville (2013).

4. PIV Processing

We calculated the wave-breaking kinematics between consecutive image pairs via a
MATLAB Particle Image Velocimetry (PIV) toolbox (Thielicke and Sonntag, 2021) which
track visible foam or bubbles in combination with the 3D topography information. The
tracking of features is performed through normalized cross-correlation. In this work, we
configured PIVlab to run four (4) passes of window sizes 256, 128, 64 and 32 pixels with
an overlap of 50% for each window. This window selection is capable of resolving speeds
up to 30ms^{-1}.
Figure S1. A one-day time series of wind measurement U_{10} obtained at the Acqua Alta oceanographic research platform showing the before and during data acquisition wind information. The data acquisition started at 10:35:00 UTC and lasted for 30 minutes. The direction is based on atmospheric convention, i.e 0 radian corresponds to true North with angles increasing due East. This is converted to standard cartesian angles where 0 radian is due East with angles increasing due North, one may convert using $\theta_{cart} = \frac{\pi}{2} - \theta_{atm}$.

April 17, 2024, 2:09pm
Figure S2. The adaptive tapering procedure. a) An example snapshot of visible stereo reconstructed sea surface elevation. The magenta box corresponds to the 19 m × 19 m region used to resolve high frequencies during the wave spectrum computation. b) The mask derived from the wave elevation map presented in panel (a). c) An instantaneous output of space-time tapering of the mask. d) Tapered mask of panel (c) applied on the wave data shown in panel (a).
Figure S3. Brightness thresholding from probability density functions. a) Inverse cumulative distribution W as a function of I_t. b) The second derivative of the natural Log of $W(i_t)$. We smoothed before each differentiation with a triangular kernel of size 10 to reduce the noise. c) A randomly selected frame containing both active and passive foam. d) Contours drawn on the chosen frame with orange color corresponding to the peak curvature and yellow contours for the end of positive curvature. Yellow corresponds to $I_t = 0.55$, which is the threshold value used in our study.
Figure S4. Correction for the camera vibratory-motion using mean elevation. The relatively stable frames are the near zero centered red open-circles comprising of about 95\% of the entire dataset. Whereas the open-blue circles correspond to the mean difference in elevation computed from the raw data of the Wave Acquisition Stereo System (WASS) prior to camera motion correction.