High-precision measurement of 36 SF 5 + signal using the MAT 253 Ultra isotope-ratio mass spectrometer

Xiang Sun1, Fengtai Tong1, Yongbo Peng1, and Huiming Bao1

1Nanjing University

April 08, 2024

Abstract

Rationale: The Δ 36S standard deviation (SD) measured in a conventional isotope-ratio mass spectrometer (IRMS) such as MAT 253 is at c.a. 0.1 difficult to resolve the origin of non-mass-dependent sulfur (NMD-S) isotope fractionation in the tropospheric sulfate aerosol and in Martian meteorites or small deviations from the canonical mass-dependent fractionation laws. Interfering ions (originated from fluorination and/or mass spectrometer ion source itself) with m/z at 131 of 36SF 5 + by the community as the cause of the poor precision, but the exact ion species has not been identified or confirmed. Methods: Here we examined the potential interfering ions by using the Thermo Scientific MAT 253 Ultra, a high-resolution (mass resolving powers up to 40,000) stable isotope-ratio mass spectrometer, to measure the SF 6 working gas and SF 6 gases converted from IAEA-S1 Ag 2S reference materials via a fluorination system. Results: We found that there is a resolvable peak to the right of the 36SF 5 + peak for both the SF 6 working gas and SF 6 gases generated by the fluorination system. The peak is identified as the 12C 3F 5 + ion, generated inside the instrument during the ionization process. By minimizing the presence of carbon-bearing compounds (e.g., organic matter in sample or helium gas, glue or o-ring in sample tubes, or carbon-bearing gases inside the mass spectrometer), we were able to achieve a Δ 36S SD of 0.046SF 6 zero-enrichment and 0.069 measurement start from sliver sulfide IAEA-S1. Conclusions: Minimizing the presence of carbon-bearing compounds and avoiding the interfering signals from 36SF 5 + via MAT 253 Ultra high-resolution isotope-ratio mass spectrometer, we can improve Δ 36S measurement precision by 2 to 5 folds, which helps to open new territories for research using quadruple sulfur isotope composition.

Hosted file