High-Resolution UV Absorption Cross-section Measurements of 32S, 33S, 34S, and 36S Sulfur Dioxide for the B \(^1\) B\(_{1}\)-X \(^1\) A\(_{1}\) Absorption Band

Yuanzhe Li\(^1\), Sebastian Oscar Danielache\(^1\), Yoshiaki Endo\(^2\), shinkoh Nanbu\(^1\), and Yuichiro Ueno\(^2\)

\(^1\)Sophia University
\(^2\)Tokyo Institute of Technology

March 25, 2024

Abstract

High-resolution and high-precision spectrum data presents a challenging measurement. We report newly measured ultraviolet absorption cross-sections of 32SO\(_2\), 33SO\(_2\), 34SO\(_2\), and 36SO\(_2\) for the - band over the wavelength range 240 to 320 nm at a resolution of 0.4 cm\(^{-1}\). The resolution is improved by 20 times compared to a previous study (Danielache et al., 2012). A least absolute deviation linear regression method was applied to calculate the cross-sections and spectral errors from a set of measurements recorded at a wide range of pressure to ensure optimal signal-to-noise ratio at all wavelengths. Based on this analysis, error bars on the measured cross-sections ranged between 3 and 10\%. The overall features of measured cross-sections, such as peak positions of isotopologues, are consistent with previous studies. We provide improved spectral data for studying sulfur mass-independent fraction (S-MIF) signatures in SO\(_2\) photoexcitation. Our spectral measurements predict that SO\(_2\) photoexcitation produces 33\(E = -0.8 \pm 0.2\) and 36\(E = -4.0 \pm 0.4\) (Danielache et al. (2012)).
This Report

Danielache et al., (2012)

Danielache et al., (2008)
SO_2 Pressure (italics, in mbar)
Calculated (This Report)
Residual SO$_2$ (Whitehill and Ono 2012)
Produced 34S (Whitehill and Ono 2012)
Produced SO$_2$ (Whitehill and Ono 2012)
Self-shielding at 20 km
Self-shielding at 10 km
Unshielded
Volcanic data (see caption for details)

Unshielded
Volcanic Data
Self-shielding at 10 km
Self-shielding at 20 km
Hattori et al., (2013) no shielding
Hattori et al., (2013) shielding 2.69×10^{18} molecules cm$^{-2}$

Hosted file

2023_SO2 Measurement_Supporting Infomation-v2.docx available at https://authorea.com/users/600989/articles/732208-high-resolution-uv-absorption-cross-section-measurements-of-32s-33s-34s-and-36s-sulfur-dioxide-for-the-b-%CC%B5%CC%83-1-b_1-x-%CC%B5%CC%83-1-a_1-absorption-band
High-Resolution UV Absorption Cross-section Measurements of 32S, 33S, 34S, and 36S Sulfur Dioxide for the $\tilde{B}^1 B_1 - \tilde{X}^1 A_1$ Absorption Band

Y. Li1, S. O. Danielache1, Y. Endo2, S. Nanbu1, Y. Ueno2,3,4

1Department of Materials and Life Science, Faculty of Science and Technology, Sophia University, Japan
2Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan
3Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
4Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan

Corresponding author: Yuanzhe Li (liyuanzhe@eagle.sophia.ac.jp)

Key Points:
- We report measured cross-sections of 32SO$_2$, 33SO$_2$, 34SO$_2$, 36SO$_2$ for the $\tilde{B}^1 B_1 - \tilde{X}^1 A_1$ absorption band over the wavelength range 240 to 320 nm at a resolution of 0.4 cm$^{-1}$.
- A least absolute deviation linear regression method was applied to calculate the cross-sections, and the error bars on the measured cross-sections ranged between 3 and 10%.
- Reported absorption cross-sections predict relatively small mass-independent fractionation ($^{33}E = -0.8 \pm 0.2$‰ and $^{36}E = -4.0 \pm 0.4$‰) during SO$_2$ photoexcitation for top of the atmosphere solar spectra.
Abstract

High-resolution and high-precision spectrum data presents a challenging measurement. We report newly measured ultraviolet absorption cross-sections of 32SO$_2$, 33SO$_2$, 34SO$_2$, and 36SO$_2$ for the $^3B_1-^3X^1_1A_1$ band over the wavelength range 240 to 320 nm at a resolution of 0.4 cm$^{-1}$. The resolution is improved by 20 times compared to a previous study (Danielache et al., 2012). A least absolute deviation linear regression method was applied to calculate the cross-sections and spectral errors from a set of measurements recorded at a wide range of pressure to ensure optimal signal-to-noise ratio at all wavelengths. Based on this analysis, error bars on the measured cross-sections ranged between 3 and 10%. The overall features of measured cross-sections, such as peak positions of isotopologues, are consistent with previous studies. We provide improved spectral data for studying sulfur mass-independent fraction (S-MIF) signatures in SO$_2$ photoexcitation. Our spectral measurements predict that SO$_2$ photoexcitation produces $^{33}E = -0.8\pm0.2\%$, and $^{36}E = -4.0\pm0.4\%$, whose magnitudes are smaller than those reported by Danielache et al. (2012).

1 Introduction

Sulfur dioxide (SO$_2$) is the most common reduced sulfur compound present in many planetary atmospheres. This molecule has been known to exist in Earth, Venus, and Io for many years (Yung and DeMore, 1999). It has also been reported the presence of SO$_2$ in the atmosphere of WASP-39b (Tsai et al., 2023). Understanding the photochemical properties of this molecule is essential for geochemical studies of planetary atmospheres. Its interactions with UV light trigger a cascade of chemical reactions that produce a variety of compounds, such as sulfuric acid (H$_2$SO$_4$) or S$_8$, depending on the atmospheric redox state.

Stable isotopes are a powerful tool for studying and understanding a variety of geochemical processes. Such applications involve singly substituted isotopes, a combination of the same isotope with different masses which creates mass-dependent and mass-independent relations, and more than one isotope within the same molecule known as clumped isotopes (e.g., Eiler et al., 2014). The sulfur mass-independent fractionation (S-MIF) signatures (non-zero Δ^{33}S and Δ^{36}S values) in the geological record have been shown to be non-zero before \sim2.3 Ga coinciding with the rise of oxygen levels in the atmosphere (Farquhar et al., 2000; Ono, 2017). Studies by Farquhar and co-workers (Farquhar et al., 2001; Masterson et al., 2011) and subsequent chemical chamber experiments (Endo et al., 2019; Endo et al., 2016) have shown that SO$_2$ photodissociation and photoexcitation reactions under conditions free of oxygen produce large S-MIF signatures, although the previous experiments have not fully reproduced the Archean record such as relationships between Δ^{33}S and Δ^{36}S and between δ^{34}S and Δ^{33}S (e.g., Ono, 2017; Endo et al., 2022b). An atmospheric photochemical model study by Pavlov and Kasting (2002) showed that SO radical produced during photolysis rapidly oxidized back to SO$_2$ with 10^{-3} of present atmospheric levels of O$_2$ and therefore setting a maximum level of atmospheric oxygen abundance in which the S-MIF can be preserved, yet no model study has succeded into reproducing the geological record. The work done to constrain the mechanisms and the atmospheric conditions that explain the S-MIF in the geological record is extensive and
a full summary is beyond the scope of this report (e.g., Ono, 2017; Thiemens and Lin, 2019) but current understanding points to a combination of mechanisms including the photoexcitation of the \tilde{X}^1A_1 band of the SO$_2$ molecule (Endo et al., 2016).

In the present earth, sulfur aerosols produced in the lower stratosphere from material uplifted by plumes during Plinian eruptions and collected from Antarctic and Greenland ice cores show an S-MIF signature distinct from Archean sulfides and sulfates (Baroni et al., 2007). Hattori et al. (2013), based on the data reported by Daniache et al. (2012), reported that SO$_2$ photoexcitation in the lower stratosphere produce signals compatible with the ice core record. A subsequent study presented by Whitehill et al. (2013) showed that the fate of the photoexcited fragment is not only direct oxidation by O$_2$, as assumed in the Hattori et al. (2013) study, but follows a branching mechanism due to quenching in which a fraction of the molecules in the $\tilde{A}^1A_2/\tilde{B}^1B_1$ state are converted to the \tilde{a}^3B_1 state. They further show an isotope selective spin-orbit interaction between the singlet ($\tilde{A}^1A_2/\tilde{B}^1B_1$) and triplet ($\tilde{a}^3B_1$) manifolds. Despite the extensive work done so far, further quantification of the isotopic effect during the $\tilde{B}^3B_1-\tilde{X}^1A_1$ and $\tilde{A}^1A_2-\tilde{X}^1A_1$ excitation is needed.

The highly structured SO$_2$ UV absorption spectrum directly results from electronic transitions and a complex and nuanced set of vibrational and rotational energy levels (Herzberg, 1945). The single report on the 32SO$_2$, 33SO$_2$, 34SO$_2$, and 36SO$_2$ (hereafter 32,33,34,36SO$_2$) $\tilde{B}^1B_1-\tilde{X}^1A_1$ absorption spectrum from Daniache et al. (2012) has a spectral resolution of 8 cm$^{-1}$ which is still far from fully resolved (Stark et al., 1999). Although from the $\tilde{C}^1B_2-\tilde{X}^1A_1$ absorption band, spectral measurements by Endo et al. (2015), SO$_2$ column density dependence on cross-sections were observed (especially, this apparent column density and cross-sections relation was stronger at absorption peaks; see Endo et al., 2015 Figure 1). Further analysis suggested that insufficient spectral resolution relative to absorption line width explains this phenomenon (Endo et al., 2015). The lack of resolution directly affects the peak separation and further interferes with the accuracy of S-MIF calculations, which would significantly impact the study of light-induced isotopic effects (See Endo et al., 2015 Figure S1). High-resolution spectrum is therefore necessary for better understanding spectroscopic properties and accurately the absorption spectra (Wu et al., 2000). Fully resolved spectra (Koplow et al., 1998) with a low level of noise would be the authoritative yet near unachievable measurement for an entire absorption band.

Recent studies by Lyons et al. (2018) have reported pressure room temperature broadening coefficients of 0.30 ± 0.03 cm$^{-1}$ atm$^{-1}$ and 0.40 ± 0.04 cm$^{-1}$ atm$^{-1}$ for N$_2$ and CO$_2$ respectively for the \tilde{C}^1-X^1 absorption band and Leonard (1989) reported broadening coefficients of 0.237 ± 0.0011 cm$^{-1}$ atm$^{-1}$ and 0.325 ± 0.0015 cm$^{-1}$ atm$^{-1}$ for N$_2$ and CO$_2$ respectively for the \tilde{B}^1-X^1 absorption band. There are studies suggesting a largely congested line profile for the SO$_2$ electronic spectra. The basis for such an assertion are from theoretical calculations of the bound-type exited electronic states coupled to rotational-vibrational transitions (Kumar et al., 2015). Models reported by Lyons et al. (2018) used a line spacing of 0.25 cm$^{-1}$ for the \tilde{C}^1-X^1 band which is not the absorption band concerned in this report, but it might show a similar behavior. A quantitative assessment of natural widths and line congestion at different spectral regions is yet to be reported. The computational requirement for a theoretical calculation of a high J electronic spectrum is a challenge to be reckoned with. Reports on J and K values (J and
K stand for rotational and vibrational wavefunction, not to be confused with the integrated photo-dissociation rate constant J such as the reported by Kumar et al. (2015) for total angular momentum $J = 0–10$ are illustrative of the amount of computations needed for a full spectrum calculated at high J. Pressure broadening coefficients put together with the above suggested line density of these systems will cause line profile overlap and thus creating a pseudo-broadened spectra or sections of the most congested parts of the rovibrational progression and thus reducing the minimal requirement of spectral resolution for meaningful photo-induced isotopic effects. In summary, a combination of spectral resolution, pressure broadening, and profile overlap suggests that the data in this report might be suitable for the study of isotopic effects happening in a planetary atmosphere with a total atmospheric pressure close to 1 atm.

An additional known issue is that even if a fully resolved spectrum is achieved, it is difficult to obtain high precision with high-resolution measurements because the noise increases at high-resolution measurements (see comparison in Table 1). The issue would lead to large errors of calculated photodissociation rate constants and associated isotopic effects. In order to address this issue we have implemented a linear regression method that has been widely used in Fourier transform spectroscopy to reduce noise and increase spectral precision (Barra et al., 2021; Dreissig et al., 2009; Meyer-Jacob et al., 2014; Santos et al., 2021).

In this study, an experimental setup of a Fourier transform spectrometer (VERTEX 80v, Bruker, Japan) was optimized to adapt measurements in the UV band. We used the least absolute deviation (LAD) linear regression for data calibration and measured the 32SO$_2$, 33SO$_2$, 34SO$_2$, and 36SO$_2$, $\tilde{B}^1B_1-\tilde{X}^1A_1$ absorption spectrum ranges from 240 to 320 nm with a resolution of 0.4 cm$^{-1}$ and 3–10% of error.

2 Experimental

2.1 SO$_2$ isotopologues samples

The isotopically enriched 32,33,34,36SO$_2$ gas samples were prepared from elemental 32S, 33S, 34S, and 36S powder (Isoflex USA) sealed with CuO in quartz tubes under vacuum, heated at 950°C for 15 min. Separation of SO$_2$ samples and unreacted O$_2$ was done by freeze-pump-thaw cycling. The components of the gas phase labeled samples were confirmed and purified using a GC-MS, and the products purity was checked by quantitative IR spectroscopy (Danielache et al., 2012). Details of sample preservation are described in Endo et al. (2022a).

2.2 Instrument setups

The gas cell and inlet gas system follows Endo et al. (2022a). The UV absorption cross-sections were determined using a Fourier transform spectrometer (VERTEX 80v, Bruker, Japan) with an external deuterium lamp (L6301-50, Hamamatsu, Japan) equipped at the inlet port on the right spectrometer side. Two capacitance manometers (CMR362 and CMR364, Pfeiffer, Germany) calibrated the pressure using a full-range gauge (PGE500, INFICON, Germany) and local weather reports. An oil pump was added to the gas line system for pre-vacuuming to extend the lifetime of the turbopump system (Pfeiffer, Germany).

Signal drifting from the light source was observed, where the signal intensity decreases over time. Following a commonly used method (Danielache et al., 2008; Danielache et al., 2012;
where the background signal intensity at the time of the sample signal measurement was derived by alternating the background and sample signal measurements and calculating the average of the two background signal before and after each sample signal measurement.

Numerous measurement parameters were adjusted to balance high-resolution and relatively low noise levels while limiting the measurement time to avoid excessive errors brought by signal drift. The interferogram from a single measurement was derived from an average of 150 scans at a resolution of 0.4 cm\(^{-1}\) using single-sided and bi-directional acquisition mode and was converted to signal intensity spectrum by Fourier transform using boxcar apodization function and Mertz phase correction mode to preserve the most original data possible. A frequency window from 0 to 60,000 cm\(^{-1}\) and a zero-filling number of 2 produced a spectrum ranging from 41666 to 29400 cm\(^{-1}\) with a data point spacing of ca. 0.12055 cm\(^{-1}\). No prominent peaks spread due to the grazing-incidence light in the UV region measurement was observed, and an 8 mm aperture size was selected. The VERTEX 80v instrument used in our measurements is capable of a maximum spectral resolution of 0.1 cm\(^{-1}\). However, the optimal trade-off between spectral resolution and spectral noise was found to be 0.4 cm\(^{-1}\) which is between 5 to 10 times lower in resolving power than the suggested optimal spectral resolution (Rufus et al., 2003).

2.3 Measurements

The Beer-Lambert law,

\[
A = \ln \frac{I_0}{I} = \ln \frac{1}{\text{Trans}} = \sigma l \rho
\]

(1)

Shows that absorbance \(A\) is proportional to attenuating number density of the gas sample \(\rho\) (in this report approximated as gas pressure, assuming a constant temperature). The radiant power intensity is reduced from \(I_0\) to \(I\), \(\text{Trans}\) is the transmittance, \(\sigma\) is the absorption cross-sections, and \(l\) is the optical path length. Both logarithm and natural logarithm definition formats of absorbance are widely used. Which format is used does not affect the \(A \propto C\) relationship, we used the natural logarithm format for a more convenient calculation of cross-sections. In this report, SO\(_2\) absorption cross-section (\(\sigma\)) at each wavelength (\(\lambda\)) was calculated through the application of the Beer-Lambert law,

\[
\sigma(\lambda) = -\frac{RT}{PN_A} \ln \frac{2I(\lambda)}{I_{0a}(\lambda) + I_{0b}(\lambda)} = -\frac{1}{\rho z} \ln \frac{I(\lambda)}{I_{0ave}(\lambda)} = -\frac{1}{\rho z} \ln \text{Trans}(\lambda)
\]

(2)

Where \(R\) is the gas constant, \(T\) is the room temperature in the laboratory, \(P\) is the sample pressure during measurement, \(N_A\) is the Avogadro number, \(z\) is the sample cell length (10.0 cm) through which the light passes, \(I\) is the measured sample signal intensity, \(I_{0a}\) and \(I_{0b}\) are the measured background signal intensity before and after a single sample measurement as mentioned above, and \(I_{0ave}\) is the mean signal intensity of \(I_{0a}\) and \(I_{0b}\). Substituting (1) into (2) yields the following,
\[\sigma(\lambda) = -\frac{RT}{P N_A Z} \ln T(\lambda) = k_1 \cdot \frac{A(\lambda)}{P} \]

(3)

Where \(k_1 = \frac{RT}{N_A Z} \), and

\[\sigma(\lambda) = -\frac{RT}{P N_A Z} \ln T(\lambda) = k_2 \cdot T A(\lambda) \]

(4)

Where \(k_2 = \frac{R}{P N_A Z} \).

Equations (3) and (4) indicate that when \(\sigma \) is either pressure or temperature dependent, the linear relationship between \(A \) and \(P \) is not valid. In this study, the temperature is assumed to be constant since variability was within a range of a few digits. The measured data showed no pressure-dependent cross-sections. Figure 1 shows the relation between sample pressure in the gas cell and measured absorption-cross sections. Previous absorption cross-section measurements of various gas and liquid species have acknowledged deviations from the Beer-Lambert law, that is an apparent cross-section pressure dependency (e.g., Kostkowski and Bass, 1956; Anderson and Griffiths, 1975; Mellqvist and Rosén, 1996; Endo et al., 2015; Li et al., 2022). In both reports the origin of such non-linear behavior is attributed to low spectral resolution of the instrument. The data presented in this report, which was recorded at spectral resolution of 0.4 cm\(^{-1}\), shows no apparent pressure-dependent cross-section variability (Figure 1). Thus, it is not required to correct the apparent cross-section pressure dependency.
Figure 1: Individual cross-section data of each peak and valley at different pressures from 280–300 nm for \(^{34}\text{SO}_2 \). The \(^{34}\text{SO}_2 \) pressure ranges from 200–2200 Pa. No apparent pressure-dependent cross-section phenomenon was observed.

In actual measurements, many sources of uncertainty can affect the linear relationship between \(A \) and \(P \). In the case of a high-precision Fourier transform spectrometer, the dark current and amplifier noise from regions where source intensity and detector sensitivity are low, the photon detector shot noise, the cell positioning uncertainties, etc., making different orders of impact on the relative signal intensity uncertainty (Skoog et al., 2017). These random noises are almost impossible to distinguish from each other thoroughly. Common solutions include averaging multiple sets of measurements (Blackie et al., 2011; Rufus et al., 2003; Stark et al., 1999; Vandaele et al., 2009), adding weights to the parameters that characterize the data (Danielache et al., 2008; Danielache et al., 2012), and calibration of \(\text{SO}_2 \) column density dependence on measured cross-sections with a least squares method (Endo et al., 2015). Nonetheless, conventional methods still do not resolve the bias that noise from different sources introduce to the actual absorptivity.

In this study, we implemented a linear regression technique to rule out the effect of random noise. The LAD method was deployed to clarify the linear relationship between \(A \) and \(P \), following the purpose of minimizing the sum of the absolute values of the residuals \(S \) between raw data \(y_i \) to the fitted data \(f(x_i) \).

\[
\text{argmin } S = \sum_{i=1}^{n} |y_i - f(x_i)|
\]

(5)

A universal algorithm from the Scikit-Learn machine learning library (Pedregosa et al., 2011) for the Python programming language was used for computational efficiency considerations. Based on the degree of data dispersion, scenarios that linear regression needs to target can be categorized into three. Case 1: Little effect of random noise on the data, where \(A \) and \(P \) have good linear fit, and there is little difference compared to the commonly used least squares (LS) linear regression. Case 2: The effect of random noise on individual data creates outliers, and the LAD method excludes the impact from outliers much better than the LS method. Case 3: Highly discrete data in high noise regions, the linear relationship between \(A \) and \(P \) is almost indistinguishable, and all current methods do not guarantee noise removal.

The number of valid measurements at a given wavelength used in the LAD linear regression ranged between 10 and 70 depending on signal-to-noise and the amount of available sample (Figure S2). The increased number of measurements are a necessary condition for reducing the errors associated with signal-to-noise issues. Previous measurements on isotopic effects of ultraviolet absorption cross sections reported by the authors (Danielache et al., 2008, 2012; Hattori et al., 2011; Endo et al., 2015, 2022a) have been aware of this issue but limitations on sample and instrument accessibility have limited the number of measurements. In this report the number of measurements were increased to a number where an analysis of the limit of noise reduction by number pf measurements was conducted. At least 10 measurements are required
to reduce the LAD algorithm error. 15–25 sets of measurements are recommended, and the improvement in error is no longer apparent after more than 30 sets.

With the above reference parameters, the final cross-sections are calculated as follows. Firstly, the collected raw data were prefiltered to retain the data with transmittance from 0.1 to 0.95, which not only excluded the data with too low signal intensity but also the transmittance range was chosen to consider the effect of instrument noise on the measurement precision (Skoog et al., 2017). Next, data with signal-to-noise ratio (SNR) less than 20 were excluded to further improve data quality. The filtered data are involved in the following data correction of the linear relationship between A and P by the LAD method. Finally, the corrected A allows the calculation of the cross-sections at the corresponding wavelength.

2.4 Error budgets

The errors in this study came mainly from four main sources. (1) The temperature variation of the experimental environment was within 2.5 K, introducing an error of 0.85% to the final cross-sections. (2) The mechanical error of the pressure gauge, according to the manufacturer’s instructions, has a validity of about 0.2%. (3) Each measurement took about 20 min, and the pressure change due to SO$_2$ adsorption to the sample cell and stainless tube wall introduced an error of about 0.2%. (4) The errors from instrumental random noises are mostly reflected in the dispersion of the linear relationship between A and P, following,

$$S_{y/x} = \sqrt{\frac{\sum(y_i - f(x_i))^2}{n - 2}}$$

3 Results and discussions

3.1 Comparisons with previous studies

The measured 32SO$_2$ absorption spectrum in the present study is compared to four previous studies on SO$_2$ in the $\tilde{B}1B_1$-$\tilde{X}1A_1$ absorption band (Figure 2) and spectral summary listed in Table 1. There are two previous studies about the SO$_2$ isotopologues with spectral resolution of 25 cm$^{-1}$ (Danielache et al., 2008) and 8 cm$^{-1}$ (Danielache et al., 2012) and errors of 1.2–2.5% and 1.2–8.2% respectively. For comparison, two naturally abundant SO$_2$ studies with high resolution are presented. The study from Vandaele et al. (2009) with spectral resolution of 2 cm$^{-1}$ and 4–6% error. A high-resolution natural abundance measurement from Rufus et al. (2003) with spectral resolution of 0.04–0.13 cm$^{-1}$ resolution and 5% error. This study improves the spectral resolution of the existing isotopic spectrum by a factor of 20, while the error in the 260–300 nm band is comparable to spectra of natural abundance at about ten times higher resolution.
Figure 2: Comparison of measured 32SO$_2$ absorption spectrum in this study with spectra reported by Rufus et al. (2003), Vandaele et al. (2009), Danielache et al. (2008) (32SO$_2$, 25 cm$^{-1}$), and Danielache et al. (2012) at the 293.5–295.5 nm spectral range. All the reported spectra were measured at room temperature (293–298 K) therefore spectral differences are not expected to be produced by temperature differences. Spectra reported by Rufus et al. (2003), Vandaele et al. (2009) are for natural abundance SO$_2$ samples. 32SO$_2$ spectrum data in Danielache et al. (2008) used natural abundance samples and calibrated with measured 33SO$_2$ and 34SO$_2$ spectra. Spectra in this report and Danielache et al., (2008) are from isotopically enriched 32SO$_2$ samples.

Table 1: Summary and comparison of studies on SO$_2$ absorption b-band.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Isotope</th>
<th>Resolution (cm$^{-1}$)</th>
<th>Average Error (%)</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present study</td>
<td>32,33,34,36S</td>
<td>0.4</td>
<td>$\sim 5.1(32\text{SO}_2)$</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\sim 4.0(33\text{SO}_2)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\sim 4.5(34\text{SO}_2)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\sim 4.1(36\text{SO}_2)$</td>
<td></td>
</tr>
</tbody>
</table>
Rufus et al. (2003)
Natural abundance
0.04-0.13 ~5

Vandaele et al. (2009)
Natural abundance
2 ~4-6

Danielache et al. (2012)
32,33,34,36S
~2.2(~32SO2) ~1.8(~33SO2) ~1.2(~34SO2) ~2.5(~36SO2)

Danielache et al. (2008)
Nat.,33,34S
~1.2(Nat.) ~3.8(~33SO2) ~8.2(~34SO2)

Note. Comparison of peaks at different resolutions show that the spectrum in this study exhibits significantly better peak separation than the low-resolution studies (Danielache et al., 2008; Danielache et al., 2012; Vandaele et al., 2009). Even the spectrum from Vandaele et al. (2009), which has only a five-times difference in resolution, can observe much more resolved peaks. This study also shows excellent control of baseline noise, which is about the same as the lower resolution spectrums compared to the ten times higher resolution spectrum from Rufus et al. (2003). The peak position in this study fits the result from Danielache et al. (2012), while the spectrum from Danielache et al. (2008) is unsuitable for comparison due to band shape distortion by low resolution. The peak position in the spectrum from Vandaele et al. (2009) shows a slightly blue shift compared to the spectrum from Rufus et al. (2003), which is also of natural abundance.

The cross-sections calculated using the LAD method are also compared to those calculated using the averaging method as illustrated in Figure 3. The new LAD method perfectly reproduces the peak positions and peak intensities derived from the averaging method over the entire measurement band. From Figure 3 (b), it can be concluded that the subtle differences between the two methods are mainly reflected in the position of the spectral peaks, and the magnitude of the difference increases with the intensity of the peaks. Figure 3 (c) shows that the difference is about 10^{-2} of the intensity of the cross-sections, and there is a relatively high difference of about 2-3% at the low SNR positions at both ends of the measurement band, and about 1% at the high SNR positions in the middle of the measurement band. The comparison of errors between two methods are shown in Figure 4, where the spectral data of 32SO$_2$ measured in this study are used. The error calculation of averaging method follows Stark et al. (1999) that includes uncertainty in the absorbing column density N of SO$_2$, uncertainties in the values of $I(\lambda)$ and $I_{ave}(\lambda)$ associated with the measurement SNR for $I_{ave}(\lambda)$, and the systematic errors associated with inadequate spectral resolution, following:

$$\frac{\Delta \sigma}{\sigma} = \left[\left(\frac{\Delta N}{N} \right)^2 + \left(\frac{1}{(SNR)N\sigma} \right)^2 \left\{ 1 + e^{2N\sigma} \right\} \right]^{0.5}$$ (7)

The averaging method shows higher error than the LAD method, with 20-40% error in low SNR regions at both ends of the measurement band range and 10% in high SNR regions. The mean error for the averaging method is 15.1% in the 240-320 nm band range, compared with the 5.1% error using the LAD method, indicating the new algorithm reduces the error by a factor of about three. Since the LAD method does not require separating multiple sources of
noise and calculating the errors brought by each type of noise individually, it treats them as a whole and discriminates the errors by the dispersion of the linear relationship between absorbance and gas pressure, as well as introducing a sufficiently large number of measurement groups to improve the reliability of the data.

\[\text{Figure 3: Comparison of spectra obtained the LAD and averaging methods (panel a), and difference between both methods grey color line for the 240–320 nm spectral range. Panel (b) shows an enlarged comparison for the 290–300 nm spectral range. Panel (c) shows the relative of difference between the two methods respect to the spectrum obtained by the LAD method. From the panel c can be seen that both methods yield spectra with a maximum difference of c.a. \pm 4\%.} \]
Figure 4: Error comparison between the LAD method and the averaging method for the spectral data of 32SO$_2$ measured in this study. The error calculation of the averaging method follows Stark et al. (1999) that includes the uncertainty in the column density, the uncertainties in the value of $I(\lambda)$ and $I_{\text{ave}}(\lambda)$ associated with the measurement SNR for $I_{\text{ave}}(\lambda)$, and the systematic errors associated with inadequate spectral resolution.

3.2 Isotopic Fractionation in SO$_2$ Photoexcitation

The measured absorption cross-sections are shown in Figure 5, where values of σ for 32,33,34SO$_2$ at 240–320 nm were successfully measured. However, due to insufficient samples as illustrated in Figure S3, 36SO$_2$ in the 240–245 nm band could not be measured. The errors in the measured cross-sections are in the range of 3–10% shown in Figure 6, with relatively high errors in the 240–260 nm and 310–320 nm bands.
Figure 5: Measured absorption cross-sections of $^{32}\text{SO}_2$, $^{33}\text{SO}_2$, $^{34}\text{SO}_2$, and $^{36}\text{SO}_2$, absorption cross-sections and estimated errors. For clarity panels a,b,c and d divide the spectrum in four spectral ranges 240–260 nm, 260–280 nm, 280–300 nm and 300–320 nm respectively. Subsets in panels a and d show an expanded fraction of the spectra to make more readable the associated error bars to each wavelength. As the mass of the 13sotopologues increases a significant redshift in the position of the peak of the absorption spectrum can be observed starting at the spectral band origin near 317 nm.
Figure 6: Relative error of $^{32}\text{SO}_2$, $^{33}\text{SO}_2$, $^{34}\text{SO}_2$, and $^{36}\text{SO}_2$ respect to measured absorption cross-sections. Lack of precision due to insufficient signal-to-noise ratio is more pronounced at edges of the measurement spectral band.

The redshift of the SO$_2$ rare isotopologues relative to $^{32}\text{SO}_2$ at each peak position is more pronounced for heavier isotopes. The wavelength-dependent isotopic fractionation constant $^{3x}\varepsilon(\lambda)$ was calculated to describe the isotopic effect (Ueno et al., 2009), following,

$$^{3x}\varepsilon(\lambda) = 1000 \times \ln \left[\frac{\sigma^{3x}\text{SO}_2(\lambda)}{\sigma^{32}\text{SO}_2(\lambda)} \right] \%$$

where $\sigma^{3x}(\lambda)$ is the absorption cross-section for a given 14isotopologues (3xS, namely 32S, 33S, 34S, or 36S) at wavelength λ. The result is shown in Figure 7, this study extends the existing value of fractionation constant by 10 nm at shorter wavelengths compared to the previous study (Danielache et al., 2012). The peak positions in the highly structured absorption cross-sections are consistent with Danielache et al. (2012), but the values at both ends of the measurement band are slightly smaller.
Figure 7: Fractionation constant of $^{33,34,36}\varepsilon$ as a function of wavelength from measured absorption cross-sections ($^{34}\varepsilon(\lambda)$) compared to the previous study (Danielache et al., 2012). Newly reported spectra show a large wavelength specific isotopic effect which are similar to previously reported spectra. Significant differences can be seen at edges of the measured spectra in the ~250 nm and ~315 nm region.

The magnitudes of S-MIF for the four stable sulfur isotopologues are given by the linear expressions as follows,

$$^{33}E_{\lambda} = 33\varepsilon_{\lambda} - 0.515 \times 34\varepsilon_{\lambda}$$ \hspace{0.5cm} (9)

$$^{36}E_{\lambda} = 33\varepsilon_{\lambda} - 1.9 \times 34\varepsilon_{\lambda}$$ \hspace{0.5cm} (10)

where the values 0.515 and 1.9 are the high-temperature limit values for the equilibrium partition function ratio for isotope exchange reactions (Hulston and Thode, 1965). As shown in Figure 8, the S-MIF constant of ^{33}E and ^{36}E largely agree to the previous study (Danielache et al., 2012), with the values at both ends of the measurement band are slightly deviated.
Figure 8: The Mass-independent fractionation constant ^{33}E and ^{36}E calculated from standard S-MIF values of 0.515 and 1.9 as a function of wavelength compared to Danielache et al. (2012). Newly reported spectra show a large wavelength specific isotopic effect which are similar to previously reported spectra. Significant differences can be seen at edges of the measured spectra in the ~250 nm and ~315 nm region.

Generally, $^{33,34,36}\varepsilon$ and $^{33,36}E$ mostly reproduced the results from the previous study (Danielache et al., 2012) regardless of the higher resolution of this report. The deviation at both ends of the measurement band could come from many factors, the largest of which is likely to be the low SNR brought about by insufficient background signal intensity.

The sulfur isotopic fractionation for SO$_2$ photodissociation in \tilde{C}^1B_2--\tilde{X}^1A_1 absorption band and photoexcitation in \tilde{B}^1B_1--\tilde{X}^1A_1 absorption band were also calculated. The photochemistry reaction rates for each sulfur isotopologue in the atmosphere follows,

$$3x J = \int_{\lambda_0}^{\lambda_1} \Phi(\lambda) \cdot I(\lambda) \cdot 3x \sigma(\lambda) \, d\lambda$$

(11)

Where Φ is the quantum yield (assumed as 1) and I is the actinic solar flux derived from Gueymard (2004). The S-MIF signatures $^{33,36}E$ of sulfur isotopes by SO$_2$ photochemical reactions are then calculated from $3x J$ follow,

$$3x \varepsilon = 1000 \ln \frac{3x J}{32 J} \, [\%]$$

(12)
\[
\begin{align*}
33E &= 33\varepsilon - 0.515 \times 34\varepsilon \\
36E &= 36\varepsilon - 1.9 \times 34\varepsilon
\end{align*}
\] (13) (14)

The errors derived from the LAD method produce a simple standard deviation which in this report is represented as \(\sigma(3^xJ, \sigma3^x\varepsilon, \sigma3^xE)\). For a detailed description on the error propagation procedure see the corresponding section in the additional information. Calculated \(3^xJ\) values from cross-sections obtained by the LAD and averaging methods are presented and compared in Figure 9 and Table 2. As presented in Figure 2a, cross-sections obtained by both methods are almost identical and therefore the calculated \(3^xJ\) values are numerically similar. The propagated errors are significantly different where the robustness of the LAD method is reflected in the propagated \(\sigma3^xJ\) values which are roughly 2 orders of magnitude smaller to those obtained by the averaging method. The reduction of the calculated \(\sigma3^xJ\) values represent a breakthrough since they do not overlap with each other (Figure 9 red and blue data sets) while the averaging method show significant overlap making the derived \(\sigma3^x\varepsilon\) and \(\sigma3^xE\) unreliable for geochemical predictions. The source in propagated error values can be traced to random errors produced by noise in the measured signal intensity (\(l\) or \(l_0\) in Equation 1). Noise in the measured signal intensity \(l\) or \(l_0\) for single measurements falls into the category of random errors. However, repeated measurements (See Figure S3 for the number reliable measurements at each wavelength and 17 isotopologues) provide the necessary data required by the LAD method to systematically dismiss outlier data points produced by noisy conditions. The implementation of the LAD method reduces the random character of noise in the measured intensities to partially convert it into a systematic error. Calculated \(3^xJ\) values were compared to calculations under the same solar spectra for cross-sections reported by Danielache et al. (2008, 2012) measured at 25 cm\(^{-1}\) and 8 cm\(^{-1}\) numbers respectively. Figure 10 compares these three data sets. One clear and counter intuitive trend is that the higher the spectral resolution the smaller the differences among \(3^xJ\) values. This trend has also been observed by Endo et al. (2015) for the \(\tilde{C} - \tilde{X}\) absorption band. The comparison is a clear reminder that when considering light induced isotopic effects predictions from single or a narrow band of wavelengths. Error bars for values measured at 8 cm\(^{-1}\) spectral resolution for \(3^3J\) and \(3^4J\) clearly overlap casting shadows on the reliability of the derived isotopic enrichment factors. The \(J\) values presented in this report present error bars which are far smaller than the \(J\) values themselves. Calculated \(3^x\varepsilon\) and \(3^xE\) are, as expected, similar in both methods while \(\sigma3^x\varepsilon\) and \(\sigma3^xE\) values obtained from the cross-sections calculated with the LAD are 1 order of magnitude smaller than those obtained by the averaging method (Tables 3 and 4).

Table 2. Calculated photoexcitation rate constants (\(3^xJ\)) and propagated standard deviations (\(\sigma3^xJ\)). All values are in molecules cm\(^{-3}\) s\(^{-1}\) units.

<table>
<thead>
<tr>
<th>(3^xJ)</th>
<th>(3^3J)</th>
<th>(3^4J)</th>
<th>(3^5J)</th>
<th>(\sigma3^xJ)</th>
<th>(\sigma3^3J)</th>
<th>(\sigma3^4J)</th>
<th>(\sigma3^5J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAD Method</td>
<td>3.0913x10(^{-3})</td>
<td>3.0982x10(^{-3})</td>
<td>3.1097x10(^{-3})</td>
<td>3.1137x10(^{-3})</td>
<td>7.03x10(^{-7})</td>
<td>4.41x10(^{-7})</td>
<td>4.42x10(^{-7})</td>
</tr>
<tr>
<td>Averaging Method</td>
<td>3.090x10(^{-3})</td>
<td>3.097x10(^{-3})</td>
<td>3.108x10(^{-3})</td>
<td>3.113x10(^{-3})</td>
<td>1.42x10(^{-9})</td>
<td>1.42x10(^{-9})</td>
<td>1.44x10(^{-9})</td>
</tr>
</tbody>
</table>
Table 3. Calculated isotopic enrichment factors ($^{3}\varepsilon$) during photoexcitation and propagated standard deviations ($\sigma^{3}\varepsilon$). All values are in permil (‰) units.

<table>
<thead>
<tr>
<th></th>
<th>$^{33}\varepsilon$</th>
<th>$^{34}\varepsilon$</th>
<th>$^{36}\varepsilon$</th>
<th>$\sigma^{33}\varepsilon$</th>
<th>$\sigma^{34}\varepsilon$</th>
<th>$\sigma^{36}\varepsilon$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAD Method</td>
<td>5.91</td>
<td>2.22</td>
<td>7.22</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>Averaging Method</td>
<td>5.84</td>
<td>2.13</td>
<td>7.29</td>
<td>6.51</td>
<td>6.49</td>
<td>6.52</td>
</tr>
</tbody>
</table>

Table 4. Calculated mass independent isotopic enrichment factors (^{3}E) during photoexcitation and propagated standard deviations ($\sigma^{3}E$). All values are in permil (‰) units.

<table>
<thead>
<tr>
<th></th>
<th>^{33}E</th>
<th>^{36}E</th>
<th>$\sigma^{33}E$</th>
<th>$\sigma^{36}E$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAD Method</td>
<td>-0.83</td>
<td>-4.02</td>
<td>0.19</td>
<td>0.36</td>
</tr>
<tr>
<td>Averaging Method</td>
<td>-0.88</td>
<td>-3.81</td>
<td>5.64</td>
<td>10.76</td>
</tr>
</tbody>
</table>

The introduction of the LAD method has made possible the reduction of propagated error bars to a point where reliable geochemical predictions are possible. Spectral resolution has also been a topic of concern. Previous measurements by Danielache et al. (2008, 2012) carried out at a spectral resolution of 25 cm$^{-1}$ and 8 cm$^{-1}$ respectively, the relation between spectral resolution and predicted isotopic effect has been so far acknowledged but not properly addressed. A definite study on the quantitative relation between isotopic effect and spectral resolution is yet to be done. Rufus et al. (2003) reported absorption cross for this band at a spectral resolution between 0.04 cm$^{-1}$ and 0.13 cm$^{-1}$, which is according with their assessment sufficient to resolve all natural line widths. For the measurements in this report the optimal trade-off between spectral resolution and spectral noise was set to 0.4 cm$^{-1}$. Based on recent reports on pressure broadening (Lyons et al., 2018) and line profile density (Kumar et al., 2015) suggest that a spectral resolution 0.4 cm$^{-1}$ could be sufficient for the study of photochemical induced isotopic effects at about 1 atm of pressure.

The calculated $^{34,33,36}\varepsilon$ and $^{33,36}E$ (Figure 11) enrichment factors derived from this and previous measurements are compared respect to spectral resolution at each measurement. All ^{3}J values were calculated for a top of the atmosphere with a solar flux reported by Gueymard (2004) and adjusted to the spectral resolution of this report. Danielache et al. (2008) first presented spectrum of 32,33,34SO$_2$ but used natural abundance SO$_2$ as 32S 18sotopologues, and a spectral resolution \sim25 cm$^{-1}$. These first measurements were conducted at the very early stages of this decade long enquiry, they were designed for the \tilde{C} - \tilde{X} absorption band and issues of spectral resolution were not properly taken into account. Danielache et al. (2012) later improved the sample preparation and conducted the measurements at a higher resolution data (\sim8 cm$^{-1}$), and higher S/N ratios achieving propagated small error bars. This study introduced a new algorithm to further reduce the errors associated with increased resolution and the number of measurements at each pressure were extended the statistical maximum. The comparison in Figure 11 suggest, yet do not quantitively prove, that the higher the spectral resolution, the smaller the isotopic effect for all $^{34,33,36}\varepsilon$ and $^{33,36}E$ values.
Figure 9: Photoexcitation rate constants calculated for a present Earth top of the atmosphere (TOA) conditions with actinic flux reported by (Gueymard, 2004)) for measured $^{32}\text{SO}_2$, $^{33}\text{SO}_2$, $^{34}\text{SO}_2$, and $^{36}\text{SO}_2$ isotopologues. The red and blue data sets represent cross-sections derived the LAD and averaging methods respectively. Both methods yield nearly the same J values. Propagated errors by the averaging method (red) produce error bars that overlap J values rendering them unreliable to geochemical predictions. The implemented LAD method (blue data sets) solves this problem.
Figure 10: Photoexcitation rate constants calculated for a present Earth top of the atmosphere (TOA) conditions with actinic flux reported by (Gueymard, 2004)) for measured 32,33,34SO$_2$ isotopologues and compared to previously reported by Danielache et al. (2008, 2012). The newly reported data sets (black) have propagated error bars that are smaller than the differences between calculated J values therefore making them reliable for geochemical predictions.
Figure 1: Relationship between isotopic fractionation $^{34,33,36}_{\epsilon}$ and $^{33,36}_{E}$ vs. spectral resolution calculated from data in this report and compared to previously reported data by Danielache et al. (2008, 2012). The comparison of the data sets shows a clear trend where isotopic effects tend to be smaller with increased spectral resolution.

3.2 Comparison with isotope fractionation observed in SO$_2$ photochemical experiments

Sulfur isotope fractionation during SO$_2$ photoexcitation at wavelengths in the $\tilde{B} - \tilde{X}$ band was investigated by UV irradiating SO$_2$ with natural isotope ratios and examining the sulfur isotope ratios of the products (referred to as SO$_2$ photochemical experiments below) (Endo et al., 2016; Whitehill and Ono, 2012; Whitehill et al., 2013). Quadruple sulfur isotope analysis of the products show large S-MIF, with Δ^{33}S up to 78‰ (Whitehill et al., 2013) and up to 142‰ (Endo et al., 2016) with positive Δ^{36}S/Δ^{35}S ratios. In this section, we compare isotope fractionation factors predicted from our absorption cross-section measurements with those previously observed in SO$_2$ photochemical experiments. Then, we discuss the origin of S-MIF, which occurs in SO$_2$ photoexcitation or related to the reaction.

Whitehill et al. (2013)) irradiated SO$_2$ with UV light under N$_2$ bath gas and measured quadruple sulfur isotopes of produced organics. They used a Xe arc lamp as a broadband UV source and controlled UV spectra with UV filters to prevent SO$_2$ photolysis and examine the wavelength dependence of the isotope fractionations. Acetylene was added as an electron donor in the
experiments. Although reactions are not fully understood, some organic sulfur matter was produced and collected after UV irradiation. The expected relevant chemical pathways during this experiment are reactions 1 to 4 (R1-R4) (e.g., Heicklen et al., 1980)

\[
\text{SO}_2(^1A_1) + h\nu (240–320 \text{ nm}) \rightarrow \text{SO}_2(^1A_2 \nu=n) + \text{SO}_2(^1B_1 \nu=n) \text{ (R1)}
\]

\[
\text{SO}_2(^1A_2 \nu=n) + M \rightarrow \text{SO}_2(^1A_2 \nu=0) + M \text{ (R2)}
\]

\[
\text{SO}_2(^1A_2 \nu=0) \rightarrow \text{SO}_2(^3B_1) \text{ (R3)}
\]

\[
\text{SO}_2(^3B_1) + \text{C}_2\text{H}_2 \rightarrow \text{products (R4)}
\]

The notation used in reactions 1 to 4 (R1 to R4) describe specific electronic and vibrational states and are not frequent in chemical notation. Starting with R1 \(\text{SO}_2(^1A_1)\) is the electronic ground state with a given and unspecified rovibrational state. \(\text{SO}_2(^1A_2 \nu=n)\) and \(\text{SO}_2(^1B_1 \nu=n)\) are the photoexcited electronic \(^1A_2^\prime B_1\) manifold (mixing of two electronic states) at a given \(n\) vibrational state (this fragment is also commonly known as \(\text{SO}_2^\prime\)). In R2 M is a third body collider (e.g., \(\text{N}_2\)) which triggers a quenching reaction to produce the electronic \(^1A_2\) state at its ground rovibrational state \((\nu=0)\). R3 shows the intersystem crossing (ISC) from the singlet \(^1A_2\) \((\nu=0)\) state to the triplet \(^3B_1\). Because \(\text{SO}_2(^3B_1)\) is more reactive than \(\text{SO}_2(^1A_2^\prime B_1)\) (Kroll et al., 2018) \(\text{SO}_2(^3B_1)\) reacts (R3) selectively with acetylene. The details of the reaction R4 have yet to be understood, but they are unlikely to significantly contribute to S-MIF.

Isotopic fractionation factor in reaction R1 is predicted with absorption cross-sections of \(\text{SO}_2\) isotopologues measured by this study and Danielache et al. (2012). Reactions other than reaction R1 also may contribute to the isotopic fractionation observed in photochemical experiments. Whitehill et al. (2013) suggested that reaction R2 mainly originated the observed S-MIF in their experiments, mainly because (1) their theoretical study suggests that isotope selective intersystem crossing might potentially contribute to the observed S-MIF and (2) their results significantly differ from the S-MIF in reaction R1 predicted with \(\text{SO}_2\) absorption cross-sections measured by Danielache et al. (2012) (Fig. 13).

Furthermore, the observed MIF signature is considerably different from those predicted by isotopologue-specific absorption cross-sections. They also show that excitation wavelength range produces isotopic effects in the order of 20-60% for \(\delta^{34}\text{S}\) and 10-40% for \(\Delta^{33}\text{S}\). The wavelength range-isotopic effect is significant yet not as large as the pressure dependency observed when the full spectral region of the \(\tilde{A}^1A_2/\tilde{B}^1B_1\) manifold was photoexcited (Whitehill et al., 2013, Fig. 2).

To compare our results with those of Whitehill et al. (2013), we calculate fractionation factors using \(\text{SO}_2\) absorption cross-sections of this study and Danielache et al. (2012) from Eqs. (11) to (14), assuming a 150 W Xenon arc lamp spectrum and absorption spectra with UV filters. The comparisons are shown in Figures 12 and 13 where the isotopic effect produced during the photoexcitation process (R1) is compared to the results from chamber experiments.

Figure 12 compares \(\Delta^{33}\text{S}\), \(33E\) values to \(\delta^{34}\text{S}\), \(34e\). The values reported by Whitehill et al. (2013), regardless of excitation wavelength region or \(P_{\text{SO}_2}\) do not match the ones calculated from the
spectra reported by Danielache et al. (2008) neither the ones calculated from the spectra in this report. Large discrepancies are also observed on Figure 13 where small and negative values of ^{33}E and ^{36}E from spectra in this report show no correlation with large and positive $\Delta^{36}S$ and $\Delta^{33}S$ isotopic ratios from the chamber experiments. Self-shielding calculations reported by Whitehill et al. (2013) and photoexcitation induced enrichment factors calculated from data reported by Danielache et al. (2008) and photoexcitation effects from the same spectra at different spectral ranges independently calculated in this report, show large negative ^{36}E and large positive ^{33}E values which don’t match chamber experiments either.

From the comparisons in Figures 12 and 13 the data presented in this report tend to support the conclusions reported by Whitehill et al. (2013) that the MIF isotopic ratios measured in collected organosulfur are likely produced by the ISC process in R3. Furthermore, the data in this report in which values of $^{34}e, ^{33}E$ and ^{36}E being small and quite unsensitive to the excitation wavelength band could contribute to the final organosulfur product MIF. This hypothesis does not provide any explanation to the large $\Delta^{33}S, \Delta^{36}S$ values to $\delta^{34}S$ values reported from chamber experiments under different band-pass filters, partial SO$_2$ and total N$_2$ pressures.
Figure 12: Calculated $^{34}\varepsilon$ vs. ^{33}E isotopic effects from spectra reported by Danielache et al. (2012) and from spectra reported in this study using a 150W Xenon arc lamp spectrum and compared to experiments by Whitehill et al. (2013) ($\delta^{34}\text{S}$ and $\Delta^{33}\text{S}$). The units of the spectral range are in nm, while P_{tot} (total gas pressures) and P_{SO_2} (partial pressures of SO_2) are in mbar.
Figure 13: Calculated ^{33}E vs. ^{36}E isotopic effects from spectra reported by Danielache et al. (2012) and from spectra reported in this study using a 150W Xenon arc lamp spectrum and compared to experiments by Whitehill et al. (2013) ($\Delta^{33}S$ and $\Delta^{36}S$). P_{tot} (total gas pressures) and P_{SO_2} (partial pressures of SO_2) are expressed in mbar units.

In order to assess the difference between the isotopic imprint between R1 and R3, next photoexcitation rate constants from isotopic-specific spectra in the 250–320 nm region were calculated and compared to chamber experiments reported by Whitehill and Ono (2012).
Figure 14: Calculated $^{34}\varepsilon$ vs. ^{33}E isotopic effects from spectra reported in this study using a 150W Xenon arc lamp spectrum and compared to experiments by Whitehill et al., 2013 ($^{34}\delta$S and $^{33}\Delta$S).

Experiments conducted by Whitehill and Ono (2012) where they focused on isotopic mixing ratios ($^{34}\delta$S vs. 33S and $^{33}\Delta$S vs. 36S) of oxidation products of photoexcited ($^1B_1 ^1A_2$)SO$_2$ and residual ground state SO$_2$. For additional insight a simple self-shielded photoexcited enrichment factors ($^{34}\varepsilon$ vs. ^{33}E and ^{33}E vs. ^{36}E) at pressures ranging from 4.48 to 25.7 mbar using a 150W Xenon arc lamp spectrum was added to the analysis. The results are presented in Figures 14 and 15. Figure 14 shows that calculated enrichment factors $^{34}\varepsilon$ and ^{33}E present clearly different values to isotopic mixing ratios $^{34}\delta$S vs. 33S for produced 0S (Whitehill and Ono, 2012). Residual SO$_2$ show negative values of $^{34}\delta$S and $^{33}\Delta$S, for experiments conducted at 25.7 mbar of partial pressure of SO$_2$, are quite similar to those calculated in this report. Most significantly, the calculated $^{34}\varepsilon$ and ^{33}E values are not only very close to those reported by Whitehill and Ono (2012) for produced SO$_3$, but they also have a very similar slope (inset a). The comparisons in Figure 15 are even more revealing since ^{33}E vs. ^{36}E slope calculated from spectra in this report almost perfectly match the ^{33}E vs. ^{36}E slope reported by Whitehill and Ono (2012) for produced SO$_3$, and residual SO$_2$. Furthermore, in both cases the $^{36}E/^{33}E$ and $^{36}\Delta$S/33S slopes are particularly identical (Figure 15 inset a for clarity). From the above discussion it can be suggested that the ($^1B_1 ^1A_2$)SO$_2$ photoexcitation band is likely to have a
small isotopic effect that is transported to the SO$_3$ products. A quantitative mass balance analysis of the reaction products and residuals is necessary for obtaining further insight into the processes taking place at the chamber experiments reported by Whitehill and Ono (2012) and Whitehill et al. (2013).

Figure 15: Calculated ^{33}E vs. ^{36}E isotopic effects from spectra reported in this study using a 150W Xenon arc lamp spectrum and compared to experiments by Whitehill et al. (2013) ($\Delta^{33}S$ and $\Delta^{36}S$).

3.4 Geochemical implications

The origin of S-MIF found in stratospheric sulfate aerosols (SSA) is still debated. Savarino et al. (2003) attributed the S-MIF to SO$_2$ photoexcitation, because the SSA array of $\Delta^{36}S/\Delta^{33}S \approx -4.3$ matched early photoexcitation experimental results where KrF excimer laser (248 nm of narrow band) was used ($\Delta^{36}S$ vs $\Delta^{33}S$ slope ≈ -4.2; Farquhar et al., 2001). It is suspected that experiments using narrow-band UV spectra, which are significantly different from the sunlight spectrum, do not simulate isotope fractionation in the atmosphere (e.g., Claire et al., 2014). Subsequently, Danielache et al. (2012) reported 32,33,34,36SO$_2$ absorption cross-section
measurements for the $\tilde{B}^1 B_1 - \tilde{X}^1 A_1$ band, allowing predictions of sulfur isotopic compositions in sulfate aerosols under various atmospheric conditions. Then, Hattori et al. (2013) modeled chemical reaction networks with a one-box model and calculated the isotope ratio of sulfate, assuming that SO$_2$ photoexcitation causes MIF with the 32,33,34,36SO$_2$ absorption cross-section measurements. The results of $\Delta^{33}S$ magnitudes and $\Delta^{36}S/\Delta^{33}S$ ratios in sulfates reproduce those within the SSA array. Thus, it is suggested that SO$_2$ photoexcitation (reaction R1) is the origin of the S-MIF in SSA. However, this result strongly depends on the results of the absorption cross-section measurements by Danielache et al. (2012). In this section we compare photoexcitation induced enrichment factors calculated from reported cross-sections to ice core data reported by Gautier et al. (2018), Shaheen et al. (2013) and Baroni et al. (2008). Gautier et al. (2018) have updated $\Delta^{36}S/\Delta^{33}S$ ratio to -1.56 ± 0.25 for records of the past 2,600 years, further modeling is required to explain the discrepancies between models based on spectra and observations. However, the $\Delta^{36}S/\Delta^{33}S$’s difference of the updated data by Gautier et al. (2018) may not be significant to determine the origin of S-MIF. The $\Delta^{36}S/\Delta^{33}S$ slope can be changed by mixing processes between mass-independent and mass-dependent sulfur species, that is, when non-zero $\Delta^{33}S$ signature is “diluted.” This process happens because of the non-linearity character of the $\Delta^{33}S$ and $\Delta^{36}S$ definitions (Endo et al. under review).

Atmospheric shielding of UV light below 300 nm renders all possible photoexcitations unlikely below 10 km. At an altitude of 30 km, the band of available UV radiation expands to 290 nm, and at an altitude of 40 km, UV light with wavelength longer than 280 nm can participate in the reaction. At 50 km of altitude, the atmospheric shielding effect significantly weakens, and the entire SO$_2$ UV absorption $\tilde{B}^1 B_1 - \tilde{X}^1 A_1$ band contributes to the photoexcitation process (See Figure 1). Solar flux at different altitudes generates different S-MIF signatures on the SO$_2$ photoexcitation reaction. Solar flux at different altitudes used in the calculation of altitude dependent photoexcitation rate constants were obtained from modelled current atmosphere (Danielache et al., 2023) using actinic solar flux (Gueymard, 2004) at the top of atmosphere. The results of isotopic fractionation of self-shielding free SO$_2$ photoexcitation reaction (250–320 nm) are shown in Figure 1 (brown circles).

The same calculation at different altitudes combined with self-shielding under an SO$_2$ column density ranging from 1.21x1014 to 1.21x1016 molecules cm$^{-2}$ are shown in Figure 1 (violet and yellow tringles), and for SO$_2$ column densities up to 1.21x1017 molecules cm$^{-2}$ which are closer to those reported during the Pinatubo eruption are presented in Figure 17. For a further comparison, comparisons isotopic effects calculated by Hattori et al. (2013) are added to Figure 17. Figure 16 also shows volcanic data from Gautier et al. (2018) (red stars), Shaheen et al., (2014) (black stars) and Baroni et al., (2008) (violet stars). Self-shielding free photoexcitation effect is almost 0 in ^{33}E and stays unchanged with altitude, ^{36}E range from -10% at 10 km to 4% at 30 km. Altitude variability do not produce any significant $^{36}E/^{33}E$ slope but it they show an interesting overlap with volcanic data suggesting that the ^{36}E variability is produced by altitude. Self-shielding calculations show a more revealing result in which increased column density (up to 1.21x1016 molecules cm$^{-2}$) creates a $^{36}E/^{33}E$ slope compatible with the reported volcanic data. The data presented in Figure 16 includes the data in Figure 17 but it has expanded both ^{33}E and ^{36}E axis. By expanding the ^{33}E and ^{36}E axis, self-shielding calculations more realistic to a stratospheric eruption (1.21 x1017 molecules cm$^{-2}$) shows that the slope does not change but also is compatible and of reverse signs to the altitude and self-shielding
calculations of Hattori et al. (2013) and also $^{36}E/^{33}E$ slope compatible with volcanic reported data.

Figure 16: The isotopic fractionation from SO$_2$ photoexcitation using modern atmospheric solar flux at different altitudes and comparison with Hattori et al. (2013). (a) ^{34}e and ^{33}E. (b) ^{33}E and ^{36}E. The volcanic data is from Gautier et al. (2018) (red stars), Shaheen et al. (2013) (black stars) and Baroni et al. (2008) (violet stars).
Figure 17: Photoexcitation enrichment factors calculated from this report compared to those reported by Hattori et al. (2013). Self-shielding calculation with column densities of 10^{19} molecules cm$^{-2}$ (530 DU) as suggested by Guo et al. (2004) produced values of $^{36}E = 1.314\%$ and $^{33}E = 1.163\%$ which fall well outside of the range in the plot.

4 Conclusions

This study presents the cross-sections of 32SO$_2$, 33SO$_2$, 34SO$_2$, and 36SO$_2$ for the $\tilde{B}^1B_1-\tilde{X}^1A_1$ absorption band at 293.15 K measured at a resolution of 0.4 cm$^{-1}$ with an error of 3–10%. In this report we implemented an algorithm using the LAD linear regression which was applied to finely calibrate the linear relationship between absorbance and pressure and then achieve the cross-section data at each wavelength. The overall features of measured cross-sections, that is, the peak positions of isotopologues, are consistent with previous studies (Danielache et al., 2008; Danielache et al., 2012). We obtained both more detail in the absorption peaks and a significant improvement in errors derived from noise during the measurement. For S-MIF related to SO$_2$ photochemistry, S-MIF predicted from our new spectral measurements do not reproduce results of S-MIF observed in SO$_2$ photochemical experiments performed by Whitehill et al. (2013). The discrepancy supports Whitehill’s argument that large S-MIF originates in the intersystem crossing rather than photoexcitation alone.
Acknowledgements

This study does not have real or perceived financial conflict of interest for any author. We would like to thank Shohei Hattori and Naohiro Yoshida for sample preparation and Matthew S. Johnson for technical advice. We also wish to thank Yi Ding for his consultation and advice on machine learning and algorithms. This research was funded by JSPS KAKENHI (grant numbers 22H05150 and 20H01975).

Data Availability Statement

The spectral data presented in this manuscript was recorded at the Tokyo Institute of Technologies with experimental devices described in the experimental section. Reported data set in this study are available at Harvard Dataverse repository of research data via https://doi.org/10.7910/DVN/AP8ISE with CC0 1.0 license/Data use agreement. Figures were made with Origin Ver. 2022 (Origin Lab). The code used in this manuscript for the calculation of absorption cross-sections is licensed under MIT and Published on GitHub https://github.com/PatrickYLi/LAD-Regression/tree/multi-core and Zenodo (doi/10.5281/zenodo.10836723)

References

Anderson, R. J., and P. R. Griffiths (1975), Errors in absorbance measurements in infrared Fourier transform spectrometry because of limited instrument resolution, Analytical Chemistry, 47(14), 2339-2347, doi:10.1021/ac60364a030.

Barra, I., L. Khiazi, S. M. Haefele, R. Sakrabani, and F. Kebede (2021), Optimizing setup of scan number in FTIR spectroscopy using the moment distance index and PLS regression: application to soil spectroscopy, Scientific reports, 11(1), 1-9, doi:10.1038/s41598-021-92858-w.

Herzberg, G. (1945), *Molecular spectra and molecular structure*, D. van Nostrand.

Figure 1.
Wavelength (nm)

- Rufus et al., 2003 (0.04 cm⁻¹)
- Vandaele et al., 2009 (2 cm⁻¹)
- Danielache et al., 2008 (25 cm⁻¹)
- Danielache et al., 2012 (8 cm⁻¹)
- This study (0.4 cm⁻¹)
Figure 3.
Figure 4.
Figure 5.
This study

Danielache et al., 2012
This study

Danielache et al., 2012

 wavelength (nm)

This study

Danielache et al., 2012
Figure 9.
Figure 10.
This Report
Danielache et al., (2012)
Danielache et al., (2008)
This Report

Danielache et al., (2012)

Danielache et al., (2008)
Danielache et al., (2012)
This Report

SO₂ Pressure (italics, in mbar)

^{33}S, ^{33}E (%) vs ^{34}S, $^{34}\varepsilon$ (%)
Figure 13.
Experimental data reported by Whitehill et al., (2013)
Calculations by Whitehill et al., (2013)
Calculations from Danielache et al., (2012) spectra
Figure 14.
Calculated (This Report)

Residual SO$_2$ (Whitehill and Ono 2012)

Produced 35S (Whitehill and Ono 2012)

Produced SO$_3$ (Whitehill and Ono 2012)
Figure 15.
Calculated (This Report)
Residual SO\(_2\) (Whitehill and Ono 2012)
Produced \(^0\)S (Whitehill and Ono 2012)
Produced SO\(_3\) (Whitehill and Ono 2012)
Self-shielding units in *italics* (molecules cm\(^{-2}\))

- Self-shielding at 20 km
- Self-shielding at 10 km
- Unshielded
- Volcanic data (see caption for details)

\[\Delta_{\text{S}} \Delta^{36}_E \]

\[\Delta_{\text{S}} \Delta^{36}_E \]
Figure 17.
Self-shielding units in *italics* (molecules cm$^{-2}$)

- **Unshielded**
- **Volcanic Data**
- **Self-shielding at 10 km**
- **Self-shielding at 20 km**
- **Hattori et al., (2013) no shielding**
- **Hattori et al., (2013) shielding 2.69 \times 10^{18} \text{ molecules cm}^{-2}**

$33S$, $33E$ (‰)

- 1.21 \times 10^{17}
- 1.21 \times 10^{16}
- >1.21 \times 10^{15}

- 60 km
- 30 km
- 10 km
High-Resolution UV Absorption Cross-section Measurements of ^{32}S, ^{33}S, ^{34}S, and ^{36}S Sulfur Dioxide for the $\tilde{B}^1B_1-\tilde{X}^1A_1$ Absorption Band

Y. Li1, S. O. Danielache1, Y. Endo2, S. Nanbu1, Y. Ueno2,3,4

1Department of Materials and Life Science, Faculty of Science and Technology, Sophia University, Japan
2Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan
3Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
4Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan

Corresponding author: Yuanzhe Li (liyuanzhe@eagle.sophia.ac.jp)

Key Points:

- We report measured cross-sections of $^{32}\text{SO}_2$, $^{33}\text{SO}_2$, $^{34}\text{SO}_2$, $^{36}\text{SO}_2$ for the $\tilde{B}^1B_1-\tilde{X}^1A_1$ absorption band over the wavelength range 240 to 320 nm at a resolution of 0.4 cm$^{-1}$.
- A least absolute deviation linear regression method was applied to calculate the cross-sections, and the error bars on the measured cross-sections ranged between 3 and 10%.
- Reported absorption cross-sections predict relatively small mass-independent fractionation ($^{33}E = -0.8 \pm 0.2\%$ and $^{36}E = -4.0 \pm 0.4\%$) during SO_2 photoexcitation for top of the atmosphere solar spectra.
Abstract

High-resolution and high-precision spectrum data presents a challenging measurement. We report newly measured ultraviolet absorption cross-sections of $^{32}\text{SO}_2$, $^{33}\text{SO}_2$, $^{34}\text{SO}_2$, and $^{36}\text{SO}_2$ for the $\tilde{B}^1 B_1 - \tilde{X}^1 A_1$ band over the wavelength range 240 to 320 nm at a resolution of 0.4 cm$^{-1}$. The resolution is improved by 20 times compared to a previous study (Danielache et al., 2012). A least absolute deviation linear regression method was applied to calculate the cross-sections and spectral errors from a set of measurements recorded at a wide range of pressure to ensure optimal signal-to-noise ratio at all wavelengths. Based on this analysis, error bars on the measured cross-sections ranged between 3 and 10%. The overall features of measured cross-sections, such as peak positions of isotopologues, are consistent with previous studies. We provide improved spectral data for studying sulfur mass-independent fraction (S-MIF) signatures in SO_2 photoexcitation. Our spectral measurements predict that SO_2 photoexcitation produces $^{33}E = -0.8\pm0.2\%o$ and $^{36}E = -4.0\pm0.4\%o$, whose magnitudes are smaller than those reported by Danielache et al. (2012).

1 Introduction

Sulfur dioxide (SO_2) is the most common reduced sulfur compound present in many planetary atmospheres. This molecule has been known to exist in Earth, Venus, and Io for many years (Yung and DeMore, 1999). It has also been reported the presence of SO_2 in the atmosphere of WASP-39b (Tsai et al., 2023). Understanding the photochemical properties of this molecule is essential for geochemical studies of planetary atmospheres. Its interactions with UV light trigger a cascade of chemical reactions that produce a variety of compounds, such as sulfuric acid (H_2SO_4) or S_8, depending on the atmospheric redox state.

Stable isotopes are a powerful tool for studying and understanding a variety of geochemical processes. Such applications involve singly substituted isotopes, a combination of the same isotope with different masses which creates mass-dependent and mass-independent relations, and more than one isotope within the same molecule known as clumped isotopes (e.g., Eiler et al., 2014). The sulfur mass-independent fractionation (S-MIF) signatures (non-zero $\Delta^{33}\text{S}$ and $\Delta^{36}\text{S}$ values) in the geological record have been shown to be non-zero before ~2.3 Ga coinciding with the rise of oxygen levels in the atmosphere (Farquhar et al., 2000; Ono, 2017). Studies by Farquhar and co-workers (Farquhar et al., 2001; Masterson et al., 2011) and subsequent chemical chamber experiments (Endo et al., 2019; Endo et al., 2016) have shown that SO_2 photodissociation and photoexcitation reactions under conditions free of oxygen produce large S-MIF signatures, although the previous experiments have not fully reproduced the Archean record such as relationships between $\Delta^{33}\text{S}$ and $\Delta^{36}\text{S}$ and between $\delta^{34}\text{S}$ and $\Delta^{33}\text{S}$ (e.g., Ono, 2017; Endo et al., 2022b). An atmospheric photochemical model study by Pavlov and Kasting (2002) showed that SO radical produced during photolysis rapidly oxidized back to SO_2 with 10^{-3} of present atmospheric levels of O_2 and therefore setting a maximum level of atmospheric oxygen abundance in which the S-MIF can be preserved, yet no model study has succeeded into reproducing the geological record. The work done to constrain the mechanisms and the atmospheric conditions that explain the S-MIF in the geological record is extensive and
a full summary is beyond the scope of this report (e.g., Ono, 2017; Thiemens and Lin, 2019) but current understanding points to a combination of mechanisms including the photoexcitation of the B^3B_1-X1A_1 band of the SO$_2$ molecule (Endo et al., 2016).

In the present earth, sulfur aerosols produced in the lower stratosphere from material uplifted by plumes during Plinian eruptions and collected from Antarctic and Greenland ice cores show an S-MIF signature distinct from Archean sulfides and sulfates (Baroni et al., 2007). Hattori et al. (2013), based on the data reported by Danielache et al. (2012), reported that SO$_2$ photoexcitation in the lower stratosphere produce signals compatible with the ice core record. A subsequent study presented by Whitehill et al. (2013) showed that the fate of the photoexcited fragment is not only direct oxidation by O$_2$, as assumed in the Hattori et al. (2013) study, but follows a branching mechanism due to quenching in which a fraction of the molecules in the A^1A_2/B^1B_1 state are converted to the a^3B_1 state. They further show an isotope selective spin-orbit interaction between the singlet (A^1A_2/B^1B_1) and triplet (a^3B_1) manifolds. Despite the extensive work done so far, further quantification of the isotopic effect during the B^3B_1-X1A_1 and A^1A_2-X1A_1 excitation is needed.

The highly structured SO$_2$ UV absorption spectrum directly results from electronic transitions and a complex and nuanced set of vibrational and rotational energy levels (Herzberg, 1945). The single report on the 32SO$_2$, 33SO$_2$, 34SO$_2$, and 36SO$_2$ (hereafter 32,33,34,36SO$_2$) B^3B_1-X1A_1 absorption spectrum from Danielache et al. (2012) has a spectral resolution of 8 cm$^{-1}$ which is still far from fully resolved (Stark et al., 1999). Although from the C^1B_2-X1A_1 absorption band, spectral measurements by Endo et al. (2015), SO$_2$ column density dependence on cross-sections were observed (especially, this apparent column density and cross-sections relation was stronger at absorption peaks; see Endo et al., 2015 Figure 1). Further analysis suggested that insufficient spectral resolution relative to absorption line width explains this phenomenon (Endo et al., 2015). The lack of resolution directly affects the peak separation and further interferes with the accuracy of S-MIF calculations, which would significantly impact the study of light-induced isotopic effects (See Endo et al., 2015 Figure S1). High-resolution spectrum is therefore necessary for better understanding spectroscopic properties and accurately the absorption spectra (Wu et al., 2000). Fully resolved spectra (Koplow et al., 1998) with a low level of noise would be the authoritative yet near unachievable measurement for an entire absorption band.

Recent studies by Lyons et al. (2018) have reported pressure room temperature broadening coefficients of 0.30 ± 0.03 cm$^{-1}$ atm$^{-1}$ and 0.40 ± 0.04 cm$^{-1}$ atm$^{-1}$ for N$_2$ and CO$_2$ respectively for the C^1-X absorption band and Leonard (1989) reported broadening coefficients of 0.237 ± 0.0011 cm$^{-1}$ atm$^{-1}$ and 0.325 ± 0.0015 cm$^{-1}$ atm$^{-1}$ for N$_2$ and CO$_2$ respectively for the B^1-X absorption band. There are studies suggesting a largely congested line profile for the SO$_2$ electronic spectra. The basis for such an assertion are from theoretical calculations of the bound-type exited electronic states coupled to rotational-vibrational transitions (Kumar et al., 2015). Models reported by Lyons et al. (2018) used a line spacing of 0.25 cm$^{-1}$ for the C^1-X band which is not the absorption band concerned in this report, but it might show a similar behavior. A quantitative assessment of natural widths and line congestion at different spectral regions is yet to be reported. The computational requirement for a theoretical calculation of a high J electronic spectrum is a challenge to be reckoned with. Reports on J and K values (J and
 reacted O\textsubscript{2}.

K stand for rotational and vibrational wavefunction, not to be confused with the integrated photo-dissociation rate constant J such as the reported by Kumar et al. (2015) for total angular momentum J = 0–10 are illustrative of the amount of computations needed for a full spectrum calculated at high J. Pressure broadening coefficients put together with the above suggested line density of these systems will cause line profile overlap and thus creating a pseudo-broadened spectra or sections of the most congested parts of the rovibrational progression and thus reducing the minimal requirement of spectral resolution for meaningful photo-induced isotopic effects. In summary, a combination of spectral resolution, pressure broadening, and profile overlap suggests that the data in this report might be suitable for the study of isotopic effects happening in a planetary atmosphere with a total atmospheric pressure close to 1 atm. An additional known issue is that even if a fully resolved spectrum is achieved, it is difficult to obtain high precision with high-resolution measurements because the noise increases at high-resolution measurements (see comparison in Table 1). The issue would lead to large errors of calculated photodissociation rate constants and associated isotopic effects. In order to address this issue we have implemented a linear regression method that has been widely used in Fourier transform spectroscopy to reduce noise and increase spectral precision (Barra et al., 2021; Dreissig et al., 2009; Meyer-Jacob et al., 2014; Santos et al., 2021).

In this study, an experimental setup of a Fourier transform spectrometer (VERTEX 80v, Bruker, Japan) was optimized to adapt measurements in the UV band. We used the least absolute deviation (LAD) linear regression for data calibration and measured the \(^{32}\text{SO}_2, ^{33}\text{SO}_2, ^{34}\text{SO}_2, \) and \(^{36}\text{SO}_2, \overline{B}^1B_1-X^1A_1 \) absorption spectrum ranges from 240 to 320 nm with a resolution of 0.4 cm\(^{-1} \) and 3–10% of error.

2 Experimental

2.1 SO\textsubscript{2} isotopologues samples

The isotopically enriched \(^{32,33,34,36}\text{SO}_2 \) gas samples were prepared from elemental \(^{32}\text{S}, ^{33}\text{S}, ^{34}\text{S}, \) and \(^{36}\text{S} \) powder (Isoflex USA) sealed with CuO in quartz tubes under vacuum, heated at 950°C for 15 min. Separation of SO\textsubscript{2} samples and unreacted O\textsubscript{2} was done by freeze-pump-thaw cycling. The components of the gas phase labeled samples were confirmed and purified using a GC-MS, and the products purity was checked by quantitative IR spectroscopy (Danielache et al., 2012). Details of sample preservation are described in Endo et al. (2022a).

2.2 Instrument setups

The gas cell and inlet gas system follows Endo et al. (2022a). The UV absorption cross-sections were determined using a Fourier transform spectrometer (VERTEX 80v, Bruker, Japan) with an external deuterium lamp (L6301-50, Hamamatsu, Japan) equipped at the inlet port on the right spectrometer side. Two capacitance manometers (CMR362 and CMR364, Pfeiffer, Germany) calibrated the pressure using a full-range gauge (PGE500, INFICON, Germany) and local weather reports. An oil pump was added to the gas line system for pre-vacuuming to extend the lifetime of the turbopump system (Pfeiffer, Germany).

Signal drifting from the light source was observed, where the signal intensity decreases over time. Following a commonly used method (Danielache et al., 2008; Danielache et al., 2012;
Endo et al., 2022a; Vandaele et al., 2009), where the background signal intensity at the time of
the sample signal measurement was derived by alternating the background and sample signal
measurements and calculating the average of the two background signal before and after each
sample signal measurement.

Numerous measurement parameters were adjusted to balance high-resolution and relatively
low noise levels while limiting the measurement time to avoid excessive errors brought by
signal drift. The interferogram from a single measurement was derived from an average of 150
scans at a resolution of 0.4 cm\(^{-1}\) using single-sided and bi-directional acquisition mode and
was converted to signal intensity spectrum by Fourier transform using boxcar apodization
function and Mertz phase correction mode to preserve the most original data possible. A
frequency window from 0 to 60,000 cm\(^{-1}\) and a zero-filling number of 2 produced a spectrum
ranging from 41666 to 29400 cm\(^{-1}\) with a data point spacing of ca. 0.12055 cm\(^{-1}\). No prominent
peaks spread due to the grazing-incidence light in the UV region measurement was observed,
and an 8 mm aperture size was selected. The VERTEX 80v instrument used in our
measurements is capable of a maximum spectral resolution of 0.1 cm\(^{-1}\). However, the optimal
trade-off between spectral resolution and spectral noise was found to be 0.4 cm\(^{-1}\) which is
between 5 to 10 times lower in resolving power than the suggested optimal spectral resolution
(Rufus et al., 2003).

2.3 Measurements

The Beer-Lambert law,

\[A = \ln \frac{I_0}{I} = \ln \frac{1}{\text{Trans}} = \sigma l \rho \]

(1)

Shows that absorbance \(A \) is proportional to attenuating number density of the gas sample \(\rho \) (in
this report approximated as gas pressure, assuming a constant temperature). The radiant power
intensity is reduced from \(I_0 \) to \(I \), Trans is the transmittance, \(\sigma \) is the absorption cross-sections,
and \(l \) is the optical path length. Both logarithm and natural logarithm definition formats of
absorbance are widely used. Which format is used does not affect the \(A \propto C \) relationship, we
used the natural logarithm format for a more convenient calculation of cross-sections. In this
report, SO\(_2\) absorption cross-section \((\sigma) \) at each wavelength \((\lambda) \) was calculated through the
application of the Beer-Lambert law,

\[\sigma(\lambda) = -\frac{RT}{PN_Az} \ln \frac{2I(\lambda)}{I_{0a}(\lambda) + I_{0b}(\lambda)} = -\frac{1}{\rho z} \ln \frac{I(\lambda)}{I_{0ave}(\lambda)} = -\frac{1}{\rho z} \ln \text{Trans}(\lambda) \]

(2)

Where \(R \) is the gas constant, \(T \) is the room temperature in the laboratory, \(P \) is the sample
pressure during measurement, \(N_A \) is the Avogadro number, \(z \) is the sample cell length (10.0
cm) through which the light passes, \(I \) is the measured sample signal intensity, \(I_{0a} \) and \(I_{0b} \) are
the measured background signal intensity before and after a single sample measurement as
mentioned above, and \(I_{0ave} \) is the mean signal intensity of \(I_{0a} \) and \(I_{0b} \). Substituting (1) into
(2) yields the following,
\[
\sigma(\lambda) = -\frac{RT}{PN_Az} \ln T(\lambda) = k_1 \cdot \frac{A(\lambda)}{P}
\] (3)

Where \(k_1 = \frac{RT}{PN_Az} \), and

\[
\sigma(\lambda) = -\frac{RT}{PN_Az} \ln T(\lambda) = k_2 \cdot TA(\lambda)
\] (4)

Where \(k_2 = \frac{R}{PN_Az} \).

Equations (3) and (4) indicate that when \(\sigma \) is either pressure or temperature dependent, the linear relationship between \(A \) and \(P \) is not valid. In this study, the temperature is assumed to be constant since variability was within a range of a few digress. The measured data showed no pressure-dependent cross-sections. Figure 1 shows the relation between sample pressure in the gas cell and measured absorption-cross sections. Previous absorption cross-section measurements of various gas and liquid species have acknowledged deviations from the Beer-Lambert law, that is an apparent cross-section pressure dependency (e.g., Kostkowski and Bass, 1956; Anderson and Griffiths, 1975; Mellqvist and Rosén, 1996; Endo et al., 2015; Li et al., 2022). In both reports the origin of such non-linear behavior is attributed to low spectral resolution of the instrument. The data presented in this report, which was recorded at spectral resolution of 0.4 \(\text{cm}^{-1} \), shows no apparent pressure-dependent cross-section variability (Figure 1). Thus, it is not required to correct the apparent cross-section pressure dependency.
Figure 1: Individual cross-section data of each peak and valley at different pressures from 280–300 nm for 34SO$_2$. The 34SO$_2$ pressure ranges from 200–2200 Pa. No apparent pressure-dependent cross-section phenomenon was observed.

In actual measurements, many sources of uncertainty can affect the linear relationship between A and P. In the case of a high-precision Fourier transform spectrometer, the dark current and amplifier noise from regions where source intensity and detector sensitivity are low, the photon detector shot noise, the cell positioning uncertainties, etc., making different orders of impact on the relative signal intensity uncertainty (Skoog et al., 2017). These random noises are almost impossible to distinguish from each other thoroughly. Common solutions include averaging multiple sets of measurements (Blackie et al., 2011; Rufus et al., 2003; Stark et al., 1999; Vandaele et al., 2009), adding weights to the parameters that characterize the data (Danielache et al., 2008; Danielache et al., 2012), and calibration of SO$_2$ column density dependence on measured cross-sections with a least squares method (Endo et al., 2015). Nonetheless, conventional methods still do not resolve the bias that noise from different sources introduce to the actual absorptivity.

In this study, we implemented a linear regression technique to rule out the effect of random noise. The LAD method was deployed to clarify the linear relationship between A and P, following the purpose of minimizing the sum of the absolute values of the residuals S between raw data y_i to the fitted data $f(x_i)$.

$$ \text{argmin } S = \sum_{i=1}^{n} |y_i - f(x_i)| $$ \hspace{1cm} (5)

A universal algorithm from the Scikit-Learn machine learning library (Pedregosa et al., 2011) for the Python programming language was used for computational efficiency considerations. Based on the degree of data dispersion, scenarios that linear regression needs to target can be categorized into three. Case 1: Little effect of random noise on the data, where A and P have good linear fit, and there is little difference compared to the commonly used least squares (LS) linear regression. Case 2: The effect of random noise on individual data creates outliers, and the LAD method excludes the impact from outliers much better than the LS method. Case 3: Highly discrete data in high noise regions, the linear relationship between A and P is almost indistinguishable, and all current methods do not guarantee noise removal.

The number of valid measurements at a given wavelength used in the LAD linear regression ranged between 10 and 70 depending on signal-to-noise and the amount of available sample (Figure S2). The increased number of measurements is a necessary condition for reducing the errors associated with signal-to-noise issues. Previous measurements on isotopic effects of ultraviolet absorption cross sections reported by the authors (Danielache et al., 2008, 2012; Hattori et al., 2011; Endo et al., 2015, 2022a) have been aware of this issue but limitations on sample and instrument accessibility have limited the number of measurements. In this report the number of measurements were increased to a number where an analysis of the limit of noise reduction by number of measurements was conducted. At least 10 measurements are required...
to reduce the LAD algorithm error. 15–25 sets of measurements are recommended, and the improvement in error is no longer apparent after more than 30 sets.

With the above reference parameters, the final cross-sections are calculated as follows. Firstly, the collected raw data were prefiltered to retain the data with transmittance from 0.1 to 0.95, which not only excluded the data with too low signal intensity but also the transmittance range was chosen to consider the effect of instrument noise on the measurement precision (Skoog et al., 2017). Next, data with signal-to-noise ratio (SNR) less than 20 were excluded to further improve data quality. The filtered data are involved in the following data correction of the linear relationship between A and P by the LAD method. Finally, the corrected A allows the calculation of the cross-sections at the corresponding wavelength.

2.4 Error budgets

The errors in this study came mainly from four main sources. (1) The temperature variation of the experimental environment was within 2.5 K, introducing an error of 0.85% to the final cross-sections. (2) The mechanical error of the pressure gauge, according to the manufacturer’s instructions, has a validity of about 0.2%. (3) Each measurement took about 20 min, and the pressure change due to SO$_2$ adsorption to the sample cell and stainless tube wall introduced an error of about 0.2%. (4) The errors from instrumental random noises are mostly reflected in the dispersion of the linear relationship between A and P, following,

$$S_{y/x} = \sqrt{\frac{\sum(y_i - f(x_i))^2}{n - 2}}$$

3 Results and discussions

3.1 Comparisons with previous studies

The measured 32SO$_2$ absorption spectrum in the present study is compared to four previous studies on SO$_2$ in the $\tilde{B}^1 B_1$-$\tilde{X}^1 A_1$ absorption band (Figure 2) and spectral summary listed in Table 1. There are two previous studies about the SO$_2$ isotopologues with spectral resolution of 25 cm$^{-1}$ (Danielache et al., 2008) and 8 cm$^{-1}$ (Danielache et al., 2012) and errors of 1.2–2.5% and 1.2–8.2% respectively. For comparison, two naturally abundant SO$_2$ studies with high resolution are presented. The study from Vandaele et al. (2009) with spectral resolution of 2 cm$^{-1}$ and 4–6% error. A high-resolution natural abundance measurement from Rufus et al. (2003) with spectral resolution of 0.04–0.13 cm$^{-1}$ resolution and 5% error. This study improves the spectral resolution of the existing isotopic spectrum by a factor of 20, while the error in the 260–300 nm band is comparable to spectra of natural abundance at about ten times higher resolution.
Figure 2: Comparison of measured 32SO$_2$ absorption spectrum in this study with spectra reported by Rufus et al. (2003), Vandaele et al. (2009), Danielache et al. (2008) (32SO$_2$, 25 cm$^{-1}$), and Danielache et al. (2012) at the 293.5–295.5 nm spectral range. All the reported spectra were measured at room temperature (293–298 K) therefore spectral differences are not expected to be produced by temperature differences. Spectra reported by Rufus et al. (2003), Vandaele et al. (2009) are for natural abundance SO$_2$ samples. 32SO$_2$ spectrum data in Danielache et al. (2008) used natural abundance samples and calibrated with measured 33SO$_2$ and 34SO$_2$ spectra. Spectra in this report and Danielache et al., (2008) are from isotopically enriched 32SO$_2$ samples.

Table 1: Summary and comparison of studies on SO$_2$ absorption b-band.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Isotope</th>
<th>Resolution (cm$^{-1}$)</th>
<th>Average Error (%)</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present study</td>
<td>32,33,34,36S</td>
<td>0.4</td>
<td>~5.1(32SO$_2$)</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>~4.0(33SO$_2$)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>~4.5(34SO$_2$)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>~4.1(36SO$_2$)</td>
<td></td>
</tr>
</tbody>
</table>
Rufus et al. (2003)
Natural abundance
0.04-0.13
-5
295

Vandaele et al. (2009)
Natural abundance
2
-4.56
298

Danielache et al. (2012)
32,33,34,36S
8
-2.2(32SO2)
-1.8(33SO2)
-1.2(34SO2)
-2.5(36SO2)
293

Danielache et al. (2008)
Nat.,33,34S
25
1.2(Nat.)
3.8(33SO2)
8.2(34SO2)
293

Note. Comparison of peaks at different resolutions show that the spectrum in this study exhibits significantly better peak separation than the low-resolution studies (Danielache et al., 2008; Danielache et al., 2012; Vandaele et al., 2009). Even the spectrum from Vandaele et al. (2009), which has only a five-times difference in resolution, can observe much more resolved peaks. This study also shows excellent control of baseline noise, which is about the same as the lower resolution spectrums compared to the ten times higher resolution spectrum from Rufus et al. (2003). The peak position in this study fits the result from Danielache et al. (2012), while the spectrum from Danielache et al. (2008) is unsuitable for comparison due to band shape distortion by low resolution. The peak position in the spectrum from Vandaele et al. (2009) shows a slightly blue shift compared to the spectrum from Rufus et al. (2003), which is also of natural abundance.

The cross-sections calculated using the LAD method are also compared to those calculated using the averaging method as illustrated in Figure 3. The new LAD method perfectly reproduces the peak positions and peak intensities derived from the averaging method over the entire measurement band. From Figure 3 (b), it can be concluded that the subtle differences between the two methods are mainly reflected in the position of the spectral peaks, and the magnitude of the difference increases with the intensity of the peaks. Figure 3 (c) shows that the difference is about 10^-2 of the intensity of the cross-sections, and there is a relatively high difference of about 2-3% at the low SNR positions at both ends of the measurement band, and about 1% at the high SNR positions in the middle of the measurement band. The comparison of errors between two methods are shown in Figure 4, where the spectral data of 32SO2 measured in this study are used. The error calculation of averaging method follows Stark et al. (1999) that includes uncertainty in the absorbing column density N of SO2, uncertainties in the values of I(λ) and Iave(λ) associated with the measurement SNR for Iave(λ), and the systematic errors associated with inadequate spectral resolution, following,

\[\frac{\Delta \sigma}{\sigma} = \left[\left(\frac{\Delta N}{N} \right)^2 + \left(\frac{1}{(SNR)N\sigma} \right)^2 \{1 + e^{2N\sigma} \} \right]^{0.5} \]

The averaging method shows higher error than the LAD method, with 20-40% error in low SNR regions at both ends of the measurement band range and 10% in high SNR regions. The mean error for the averaging method is 15.1% in the 240-320 nm band range, compared with the 5.1% error using the LAD method, indicating the new algorithm reduces the error by a factor of about three. Since the LAD method does not require separating multiple sources of
noise and calculating the errors brought by each type of noise individually, it treats them as a whole and discriminates the errors by the dispersion of the linear relationship between absorbance and gas pressure, as well as introducing a sufficiently large number of measurement groups to improve the reliability of the data.

Figure 3: Comparison of spectra obtained the LAD and averaging methods (panel a), and difference between both methods grey color line for the 240–320 nm spectral range. Panel (b) shows an enlarged comparison for the 290–300 nm spectral range. Panel (c) shows the relative of difference between the two methods respect to the spectrum obtained by the LAD method. From the panel c can be seen that both methods yield spectra with a maximum difference of c.a. ±4%.
Figure 4: Error comparison between the LAD method and the averaging method for the spectral data of $^{32}\text{SO}_2$ measured in this study. The error calculation of the averaging method follows Stark et al. (1999) that includes the uncertainty in the column density, the uncertainties in the value of $I(\lambda)$ and $I_{\text{ave}}(\lambda)$ associated with the measurement SNR for $I_{\text{ave}}(\lambda)$, and the systematic errors associated with inadequate spectral resolution.

3.2 Isotopic Fractionation in SO$_2$ Photoexcitation

The measured absorption cross-sections are shown in Figure 5, where values of σ for $^{32,33,34}\text{SO}_2$ at 240–320 nm were successfully measured. However, due to insufficient samples as illustrated in Figure S3, $^{36}\text{SO}_2$ in the 240–245 nm band could not be measured. The errors in the measured cross-sections are in the range of 3–10% shown in Figure 6, with relatively high errors in the 240–260 nm and 310–320 nm bands.
Figure 5: Measured absorption cross-sections of 32SO$_2$, 33SO$_2$, 34SO$_2$, and 36SO$_2$, absorption cross-sections and estimated errors. For clarity panels a,b,c and d divide the spectrum in four spectral ranges 240–260 nm, 260–280 nm, 280–300 nm and 300–320 nm respectively. Subsets in panels a and d show an expanded fraction of the spectra to make more readable the associated error bars to each wavelength. As the mass of the 13sotopologues increases a significant redshift in the position of the peak of the absorption spectrum can be observed starting at the spectral band origin near 317 nm.
Figure 6: Relative error of $^{32}\text{SO}_2$, $^{33}\text{SO}_2$, $^{34}\text{SO}_2$, and $^{36}\text{SO}_2$ respect to measured absorption cross-sections. Lack of precision due to insufficient signal-to-noise ratio is more pronounced at edges of the measurement spectral band.

The redshift of the SO$_2$ rare isotopologues relative to $^{32}\text{SO}_2$ at each peak position is more pronounced for heavier isotopes. The wavelength-dependent isotopic fractionation constant $^{3x}\varepsilon(\lambda)$ was calculated to describe the isotopic effect (Ueno et al., 2009), following,

$$^{3x}\varepsilon(\lambda) = 1000 \times \ln \left[\frac{\sigma^{3x}\text{SO}_2(\lambda)}{\sigma^{32}\text{SO}_2(\lambda)} \right] \%$$

where $\sigma^{3x}(\lambda)$ is the absorption cross-section for a given 14sotopologues (^{3x}S, namely ^{32}S, ^{33}S, ^{34}S, or ^{36}S) at wavelength λ. The result is shown in Figure 7, this study extends the existing value of fractionation constant by 10 nm at shorter wavelengths compared to the previous study (Danielache et al., 2012). The peak positions in the highly structured absorption cross-sections are consistent with Danielache et al. (2012), but the values at both ends of the measurement band are slightly smaller.
Figure 7: Fractionation constant of $^{33,34,36}\varepsilon$ as a function of wavelength from measured absorption cross-sections ($^{3\chi}\varepsilon(\lambda)$) compared to the previous study (Danielache et al., 2012). Newly reported spectra show a large wavelength specific isotopic effect which are similar to previously reported spectra. Significant differences can be seen at edges of the measured spectra in the ~250 nm and ~315 nm region.

The magnitudes of S-MIF for the four stable sulfur isotopologues are given by the linear expressions as follows,

$$^{33}E_{\lambda} = ^{33}\varepsilon_{\lambda} - 0.515 \times ^{34}\varepsilon_{\lambda}$$ (9)
$$^{36}E_{\lambda} = ^{33}\varepsilon_{\lambda} - 1.9 \times ^{34}\varepsilon_{\lambda}$$ (10)

where the values 0.515 and 1.9 are the high-temperature limit values for the equilibrium partition function ratio for isotope exchange reactions (Hulston and Thode, 1965). As shown in Figure 8, the S-MIF constant of $^{33}\varepsilon$ and $^{36}\varepsilon$ largely agree to the previous study (Danielache et al., 2012), with the values at both ends of the measurement band are slightly deviated.
Figure 8: The Mass-independent fractionation constant ^{33}E and ^{36}E calculated from standard S-MIF values of 0.515 and 1.9 as a function of wavelength compared to Danielache et al. (2012). Newly reported spectra show a large wavelength specific isotopic effect which are similar to previously reported spectra. Significant differences can be seen at edges of the measured spectra in the ~250 nm and ~315 nm region.

Generally, $^{33,34,36}\varepsilon$ and $^{33,36}E$ mostly reproduced the results from the previous study (Danielache et al., 2012) regardless of the higher resolution of this report. The deviation at both ends of the measurement band could come from many factors, the largest of which is likely to be the low SNR brought about by insufficient background signal intensity.

The sulfur isotopic fractionation for SO$_2$ photodissociation in $\tilde{C}^1B_2 - \tilde{X}^1A_1$ absorption band and photoexcitation in $\tilde{B}^1B_1 - \tilde{X}^1A_1$ absorption band were also calculated. The photochemistry reaction rates for each sulfur 16sotopologues in the atmosphere follows,

$$3xJ = \int_{\lambda_0}^{\lambda_1} \Phi(\lambda) \cdot I(\lambda) \cdot 3x \sigma(\lambda) \, d\lambda$$

(11)

Where Φ is the quantum yield (assumed as 1) and I is the actinic solar flux derived from Gueymard (2004). The S-MIF signatures $^{33,36}E$ of sulfur isotopes by SO$_2$ photochemical reactions are then calculated from $3xJ$ follow,

$$3x \varepsilon = 1000 \ln \frac{3xJ}{33J} [\%]$$

(12)
\[36E = 36\varepsilon - 1.9 \times 34\varepsilon \] (14)

The errors derived from the LAD method produce a simple standard deviation which in this report is represented as \(\sigma (3xJ, \sigma^{3}\varepsilon \) and \(\sigma^{3}E \)). For a detailed description on the error propagation procedure see the corresponding section in the additional information. Calculated \(3xJ \) values from cross-sections obtained by the LAD and averaging methods are presented and compared in Figure 9 and Table 2. As presented in Figure 2a, cross-sections obtained by both methods are almost identical and therefore the calculated \(3xJ \) values are numerically similar.

The propagated errors are significantly different where the robustness of the LAD method is reflected in the propagated \(\sigma^{3}\varepsilon \) values which are roughly 2 orders of magnitude smaller to those obtained by the averaging method. The reduction of the calculated \(3xJ \) values represent a breakthrough since they do not overlap with each other (Figure 9 red and blue data sets) while the averaging method show significant overlap making the derived \(\sigma^{3}\varepsilon \) and \(3xE \) unreliable for geochemical predictions. The source in propagated error values can be traced to random errors produced by noise in the measured signal intensity (\(I \) or \(I_{0} \) in Equation 1). Noise in the measured signal intensity \(I \) or \(I_{0} \) for single measurements falls into the category of random errors. However, repeated measurements (See Figure S3 for the number reliable measurements at each wavelength and 17 isotopologues) provide the necessary data required by the LAD method to systematically dismiss outlier data points produced by noisy conditions. The implementation of the LAD method reduces the random character of noise in the measured intensities to partially convert it into a systematic error. Calculated \(3xJ \) values were compared to calculations under the same solar spectra for cross-sections reported by Danielache et al. (2008, 2012) measured at 25 cm\(^{-1} \) and 8 cm\(^{-1} \) numbers respectively. Figure 10 compares these three data sets. One clear and counter intuitive trend is that the higher the spectral resolution the smaller the differences among \(3xJ \) values. This trend has also been observed by Endo et al. (2015) for the \(\bar{C} \) - \(\bar{X} \) absorption band. The comparison is a clear reminder that when considering light induced isotopic effects predictions from single or a narrow band of wavelengths. Error bars for values measured at 8 cm\(^{-1} \) spectral resolution for \(33J \) and \(34J \) clearly overlap casting shadows on the reliability of the derived isotopic enrichment factors. The \(J \) values presented in this report present error bars which are far smaller than the \(J \) values themselves. Calculated \(3x\varepsilon \) and \(3xE \) are, as expected, similar in both methods while \(\sigma^{3}\varepsilon \) and \(\sigma^{3}E \) values obtained from the cross-sections calculated with the LAD are 1 order of magnitude smaller than those obtained by the averaging method (Tables 3 and 4).

Table 2. Calculated photoexcitation rate constants (\(3xJ \)) and propagated standard deviations (\(\sigma^{3}J \)). All values are in molecules cm\(^{-3} \) s\(^{-1} \) units.

<table>
<thead>
<tr>
<th>(3xJ)</th>
<th>(33J)</th>
<th>(34J)</th>
<th>(33J)</th>
<th>(34J)</th>
<th>(\sigma^{3}J)</th>
<th>(\sigma^{3}J)</th>
<th>(\sigma^{3}J)</th>
<th>(\sigma^{3}J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAD Method</td>
<td>3.0913x10^3</td>
<td>3.0928x10^3</td>
<td>3.1097x10^3</td>
<td>3.1137x10^3</td>
<td>7.03x10^7</td>
<td>4.41x10^7</td>
<td>4.42x10^7</td>
<td>3.96x10^7</td>
</tr>
<tr>
<td>Averaging Method</td>
<td>3.090x10^3</td>
<td>3.097x10^3</td>
<td>3.108x10^3</td>
<td>3.113x10^3</td>
<td>1.42x10^6</td>
<td>1.42x10^5</td>
<td>1.44x10^5</td>
<td>1.44x10^5</td>
</tr>
</tbody>
</table>
Table 3. Calculated isotopic enrichment factors ($^3\varepsilon$) during photoexcitation and propagated standard deviations ($\sigma^3\varepsilon$). All values are in permil ($‰$) units.

<table>
<thead>
<tr>
<th>Method</th>
<th>$^3\varepsilon$</th>
<th>$^4\varepsilon$</th>
<th>$^6\varepsilon$</th>
<th>$\sigma^3\varepsilon$</th>
<th>$\sigma^4\varepsilon$</th>
<th>$\sigma^6\varepsilon$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAD</td>
<td>5.91</td>
<td>2.22</td>
<td>7.22</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>Averaging</td>
<td>5.84</td>
<td>2.13</td>
<td>7.29</td>
<td>6.51</td>
<td>6.49</td>
<td>6.52</td>
</tr>
</tbody>
</table>

Table 4. Calculated mass independent isotopic enrichment factors (3E) during photoexcitation and propagated standard deviations (σ^3E). All values are in permil ($‰$) units.

<table>
<thead>
<tr>
<th>Method</th>
<th>^{33}E</th>
<th>^{36}E</th>
<th>$\sigma^{33}E$</th>
<th>$\sigma^{36}E$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAD</td>
<td>-0.83</td>
<td>-4.02</td>
<td>0.19</td>
<td>0.36</td>
</tr>
<tr>
<td>Averaging</td>
<td>-0.88</td>
<td>-3.81</td>
<td>5.64</td>
<td>10.76</td>
</tr>
</tbody>
</table>

The introduction of the LAD method has made possible the reduction of propagated error bars to a point where reliable geochemical predictions are possible. Spectral resolution has also been a topic of concern. Previous measurements by Danielache et al. (2008, 2012) carried out at a spectral resolution of 25 cm$^{-1}$ and 8 cm$^{-1}$ respectively, the relation between spectral resolution and predicted isotopic effect has been so far acknowledged but not properly addressed. A definite study on the quantitative relation between isotopic effect and spectral resolution is yet to be done. Rufus et al. (2003) reported absorption cross for this band at a spectral resolution between 0.04 cm$^{-1}$ and 0.13 cm$^{-1}$, which is according with their assessment sufficient to resolve all natural line widths. For the measurements in this report the optimal trade-off between spectral resolution and spectral noise was set to 0.4 cm$^{-1}$. Based on recent reports on pressure broadening (Lyons et al., 2018) and line profile density (Kumar et al., 2015) suggest that a spectral resolution 0.4 cm$^{-1}$ could be sufficient for the study of photochemical induced isotopic effects at about 1 atm of pressure.

The calculated $^{34,33,36}\varepsilon$ and $^{33,36}E$ (Figure 11) enrichment factors derived from this and previous measurements are compared respect to spectral resolution at each measurement. All $^{3}\varepsilon$ values were calculated for a top of the atmosphere with a solar flux reported by Gueymard (2004) and adjusted to the spectral resolution of this report. Danielache et al. (2008) first presented spectrum of $^{32,33,34}SO_2$ but used natural abundance SO$_2$ as ^{32}S 18sotopologues, and a spectral resolution \sim25 cm$^{-1}$. These first measurements were conducted at the very early stages of this decade long enquiry, they were designed for the \tilde{C} -.\tilde{X} absorption band and issues of spectral resolution were not properly taken into account. Danielache et al. (2012) later improved the sample preparation and conducted the measurements at a higher resolution data (\sim8 cm$^{-1}$), and higher S/N ratios achieving propagated small error bars. This study introduced a new algorithm to further reduce the errors associated with increased resolution and the number of measurements at each pressure were extended the statistical maximum. The comparison in Figure 11 suggest, yet do not quantitively prove, that the higher the spectral resolution, the smaller the isotopic effect for all $^{34,33,36}\varepsilon$ and $^{33,36}E$ values.
Figure 9: Photoexcitation rate constants calculated for a present Earth top of the atmosphere (TOA) conditions with actinic flux reported by (Gueymard, 2004)) for measured 32SO$_2$, 33SO$_2$, 34SO$_2$, and 36SO$_2$ isotopologues. The red and blue data sets represent cross-sections derived the LAD and averaging methods respectively. Both methods yield nearly the same J values. Propagated errors by the averaging method (red) produce error bars that overlap J values rendering them unreliable to geochemical predictions. The implemented LAD method (blue data sets) solves this problem.
Figure 10: Photoexcitation rate constants calculated for a present Earth top of the atmosphere (TOA) conditions with actinic flux reported by (Gueymard, 2004)) for measured 32,33,34SO$_2$ isotopologues and compared to previously reported by Danielache et al. (2008, 2012). The newly reported data sets (black) have propagated error bars that are smaller than the differences between calculated J values therefore making them reliable for geochemical predictions.
479

Figure 11: Relationship between isotopic fractionation $^{34,33,36}\varepsilon$ and $^{33,36}E$ vs. spectral resolution calculated from data in this report and compared to previously reported data by Danielache et al. (2008, 2012). The comparison of the data sets shows a clear trend where isotopic effects tend to be smaller with increased spectral resolution.

3.2 **Comparison with isotope fractionation observed in SO$_2$ photochemical experiments**

Sulfur isotope fractionation during SO$_2$ photoexcitation at wavelengths in the $\tilde{B} - \tilde{X}$ band was investigated by UV irradiating SO$_2$ with natural isotope ratios and examining the sulfur isotope ratios of the products (referred to as SO$_2$ photochemical experiments below) (Endo et al., 2016; Whitehill and Ono, 2012; Whitehill et al., 2013)). Quadruple sulfur isotope analysis of the products show large S-MIF, with $\Delta^{33}S$ up to 78‰ (Whitehill et al., 2013) and up to 142‰ (Endo et al., 2016) with positive $\Delta^{36}S/\Delta^{35}S$ ratios. In this section, we compare isotope fractionation factors predicted from our absorption cross-section measurements with those previously observed in SO$_2$ photochemical experiments. Then, we discuss the origin of S-MIF, which occurs in SO$_2$ photoexcitation or related to the reaction.

Whitehill et al. (2013) irradiated SO$_2$ with UV light under N$_2$ bath gas and measured quadruple sulfur isotopes of produced organics. They used a Xe arc lamp as a broadband UV source and controlled UV spectra with UV filters to prevent SO$_2$ photolysis and examine the wavelength dependence of the isotope fractionations. Acetylene was added as an electron donor in the
experiments. Although reactions are not fully understood, some organic sulfur matter was produced and collected after UV irradiation. The expected relevant chemical pathways during this experiment are reactions 1 to 4 (R1-R4) (e.g., Heicklen et al., 1980)

\[
\text{SO}_2(^1A_1) + h\nu (240–320 \text{ nm}) \rightarrow \text{SO}_2(^1A_2 \nu=n) + \text{SO}_2(^1B_1 \nu=n) \quad (R1)
\]

\[
\text{SO}_2(^1A_2 \nu=n) + M \rightarrow \text{SO}_2(^1A_2 \nu=0) + M \quad (R2)
\]

\[
\text{SO}_2(^1A_2 \nu=0) \rightarrow \text{SO}_2(^3B_1) \quad (R3)
\]

\[
\text{SO}_2(^3B_1) + C_2H_2 \rightarrow \text{products} \quad (R4)
\]

The notation used in reactions 1 to 4 (R1 to R4) describe specific electronic and vibrational states and are not frequent in chemical notation. Starting with R1 \(\text{SO}_2(^1A_1)\) is the electronic ground state with a given and unspecified rovibrational state. \(\text{SO}_2(^1A_2 \nu=n)\) and \(\text{SO}_2(^1B_1 \nu=n)\) are the photoexcited electronic \(^1A_2^3B_1\) manifold (mixing of two electronic states) at a given \(n\) vibrational state (this fragment is also commonly known as \(\text{SO}_2^*\)). In R2 \(M\) is a third body collider (e.g., \(N_2\)) which triggers a quenching reaction to produce the electronic \(^1A_2\) state at its ground rovibrational state (\(\nu=0\)). R3 shows the intersystem crossing (ISC) from the singlet \(^1A_2\) \((\nu=0)\) state to the triplet \(^3B_1\). Because \(\text{SO}_2(^3B_1)\) is more reactive than \(\text{SO}_2(^1A_2^3B_1)\) (Kroll et al., 2018), \(\text{SO}_2(^3B_1)\) reacts (R3) selectively with acetylene. The details of the reaction R4 have yet to be understood, but they are unlikely to significantly contribute to S-MIF.

Isotopic fractionation factor in reaction R1 is predicted with absorption cross-sections of \(\text{SO}_2\) isotopologues measured by this study and Danielache et al. (2012). Reactions other than reaction R1 also may contribute to the isotopic fractionation observed in photochemical experiments. Whitehill et al. (2013) suggested that reaction R2 mainly originated the observed S-MIF in their experiments, mainly because (1) their theoretical study suggests that isotope selective intersystem crossing might potentially contribute to the observed S-MIF and (2) their results significantly differ from the S-MIF in reaction R1 predicted with \(\text{SO}_2\) absorption cross-sections measured by Danielache et al. (2012) (Fig. 13).

Furthermore, the observed MIF signature is considerably different from those predicted by isotopologue-specific absorption cross-sections. They also show that excitation wavelength range produces isotopic effects in the order of 20-60% for \(\Delta^{33}\text{S}\) and 10-40% for \(\Delta^{34}\text{S}\). The wavelength range-isotopic effect is significant yet not as large as the pressure dependency observed when the full spectral region of the \(\tilde{A}^1A_2/\tilde{B}^1B_1\) manifold was photoexcited (Whitehill et al., 2013, Fig. 2).

To compare our results with those of Whitehill et al. (2013), we calculate fractionation factors using \(\text{SO}_2\) absorption cross-sections of this study and Danielache et al. (2012) from Eqs. (11) to (14), assuming a 150 W Xenon arc lamp spectrum and absorption spectra with UV filters. The comparisons are shown in Figures 12 and 13 where the isotopic effect produced during the photoexcitation process (R1) is compared to the results from chamber experiments.

Figure 12 compares \(\Delta^{33}\text{S}, ^{33}\text{E}\) values to \(\delta^{34}\text{S}, ^{34}\text{e}\). The values reported by Whitehill et al. (2013), regardless of excitation wavelength region or \(P_{\text{SO}_2}\) do not match the ones calculated from the
spectra reported by Danielache et al. (2008) neither the ones calculated from the spectra in this report. Large discrepancies are also observed on Figure 13 where small and negative values of ^{33}E and ^{36}E from spectra in this report show no correlation with large and positive $\Delta^{36}S$ and $\Delta^{33}S$ isotopic ratios from the chamber experiments. Self-shielding calculations reported by Whitehill et al. (2013) and photoexcitation induced enrichment factors calculated from data reported by Danielache et al. (2008) and photoexcitation effects from the same spectra at different spectral ranges independently calculated in this report, show large negative ^{36}E and large positive ^{33}E values which don’t match chamber experiments either.

From the comparisons in Figures 12 and 13 the data presented in this report tend to support the conclusions reported by Whitehill et al. (2013) that the MIF isotopic ratios measured in collected organosulfur are likely produced by the ISC process in R3. Furthermore, the data in this report in which values of $^{34}\varepsilon$, ^{33}E and ^{36}E being small and quite unsensitive to the excitation wavelength band could contribute to the final organosulfur product MIF. This hypothesis does not provide any explanation to the large $\Delta^{33}S$, $\Delta^{36}S$ values to $\delta^{34}S$ values reported from chamber experiments under different band-pass filters, partial SO$_2$ and total N$_2$ pressures.
Figure 12: Calculated $^{34}\epsilon$ vs. ^{33}E isotopic effects from spectra reported by Danielache et al. (2012) and from spectra reported in this study using a 150W Xenon arc lamp spectrum and compared to experiments by Whitehill et al. (2013) ($^3\Delta^{34}S$ and $^\Delta^{33}S$). The units of the spectral range are in nm, while P_{tot} (total gas pressures) and P_{SO_2} (partial pressures of SO_2) are in mbar.
Figure 1: Calculated ^{33}E vs. ^{36}E isotopic effects from spectra reported by Danielache et al. (2012) and from spectra reported in this study using a 150W Xenon arc lamp spectrum and compared to experiments by Whitehill et al. (2013) ($\Delta^{33}S$ and $\Delta^{36}S$). P_{tot} (total gas pressures) and P_{SO_2} (partial pressures of SO$_2$) are expressed in mbar units.

In order to assess the difference between the isotopic imprint between R1 and R3, next photoexcitation rate constants from isotopic-specific spectra in the 250–320 nm region were calculated and compared to chamber experiments reported by Whitehill and Ono (2012).
Figure 14: Calculated $^{34}\varepsilon$ vs. ^{33}E isotopic effects from spectra reported in this study using a 150W Xenon arc lamp spectrum and compared to experiments by Whitehill et al., 2013 ($\delta^{34}S$ and $\Delta^{33}S$).

Experiments conducted by Whitehill and Ono (2012) where they focused on isotopic mixing ratios ($\delta^{34}S$ vs. ^{33}S and $\Delta^{33}S$ vs. $\Delta^{36}S$) of oxidation products of photoexcited ($^1B_1^1A_2$)SO$_2$ and residual ground state SO$_2$. For additional insight a simple self-shielded photoexcited enrichment factors ($^{34}\varepsilon$ vs. ^{33}E and ^{33}E vs. ^{36}E) at pressures ranging from 4.48 to 25.7 mbar using a 150W Xenon arc lamp spectrum was added to the analysis. The results are presented in Figures 14 and 15. Figure 14 shows that calculated enrichment factors $^{34}\varepsilon$ and ^{33}E present clearly different values to isotopic mixing ratios $\delta^{34}S$ vs. $\Delta^{33}S$ for produced 0S (Whitehill and Ono, 2012). Residual SO$_2$ show negative values of $\delta^{34}S$ and $\Delta^{33}S$, for experiments conducted at 25.7 mbar of partial pressure of SO$_2$, are quite similar to those calculated in this report. Most significantly, the calculated $^{34}\varepsilon$ and ^{33}E values are not only very close to those reported by Whitehill and Ono (2012) for produced SO$_3$, but they also have a very similar slope (inset a).

The comparisons in Figure 15 are even more revealing since ^{33}E vs. ^{36}E slope calculated from spectra in this report almost perfectly match the ^{33}E vs. ^{36}E slope reported by Whitehill and Ono (2012) for produced SO$_3$, and residual SO$_2$. Furthermore, in both cases the $^{36}E/^{33}E$ and $\Delta^{36}S/\Delta^{33}S$ slopes are particularly identical (Figure 15 inset a for clarity). From the above discussion it can be suggested that the ($^1B_1^1A_2$)SO$_2$ photoexcitation band is likely to have a
small isotopic effect that is transported to the SO₃ products. A quantitative mass balance analysis of the reaction products and residuals is necessary for obtaining further insight into the processes taking place at the chamber experiments reported by Whitehill and Ono (2012) and Whitehill et al. (2013).

Figure 15: Calculated ³³E vs. ³⁶E isotopic effects from spectra reported in this study using a 150W Xenon arc lamp spectrum and compared to experiments by Whitehill et al. (2013) (Δ³³S and Δ³⁶S).

3.4 Geochemical implications
The origin of S-MIF found in stratospheric sulfate aerosols (SSA) is still debated. Savarino et al. (2003) attributed the S-MIF to SO₂ photoexcitation, because the SSA array of Δ³⁶S/Δ³³S ≈ −4.3 matched early photoexcitation experimental results where KrF excimer laser (248 nm of narrow band) was used (Δ³⁶S vs Δ³³S slope ≈ −4.2; Farquhar et al., 2001). It is suspected that experiments using narrow-band UV spectra, which are significantly different from the sunlight spectrum, do not simulate isotope fractionation in the atmosphere (e.g., Claire et al., 2014). Subsequently, Danielache et al. (2012) reported ³²,³³,³⁴,³⁶SO₂ absorption cross-section
measurements for the $\tilde{B}^1 B_1 - \tilde{X}^3 A_1$ band, allowing predictions of sulfur isotopic compositions in sulfate aerosols under various atmospheric conditions. Then, Hattori et al. (2013) modeled chemical reaction networks with a one-box model and calculated the isotope ratio of sulfate, assuming that SO$_2$ photoexcitation causes MIF with the 32,33,34,36SO$_2$ absorption cross-section measurements. The results of ΔS/S magnitudes and Δ36S/Δ33S ratios in sulfates reproduce those within the SSA array. Thus, it is suggested that SO$_2$ photoexcitation (reaction R1) is the origin of the S-MIF in SSA. However, this result strongly depends on the results of the absorption cross-section measurements by Danielache et al. (2012). In this section we compare photoexcitation induced enrichment factors calculated from reported cross-sections to ice core data reported by Gautier et al. (2018), Shaheen et al. (2013) and Baroni et al. (2008). Gautier et al. (2018) have updated Δ36S/Δ33S ratio to -1.56 ± 0.25 for records of the past 2,600 years, further modeling is required to explain the discrepancies between models based on spectra and observations. However, the Δ36S/Δ33S’s difference of the updated data by Gautier et al. (2018) may not be significant to determine the origin of S-MIF. The Δ36S/Δ33S slope can be changed by mixing processes between mass-independent and mass-dependent sulfur species, that is, when non-zero Δ33S signature is “diluted.” This process happens because of the non-linearity character of the Δ33S and Δ36S definitions (Endo et al. under review).

Attenuation by atmospheric shielding of UV light below 300 nm renders all possible photoexcitations unlikely below 10 km. At an altitude of 30 km, the band of available UV radiation expands to 290 nm, and at an altitude of 40 km, UV light with wavelength longer than 280 nm can participate in the reaction. At 50 km of altitude, the atmospheric shielding effect significantly weakens, and the entire SO$_2$ UV absorption $\tilde{B}^1 B_1 - \tilde{X}^3 A_1$ band contributes to the photoexcitation process (See Figure S7). Solar flux at different altitudes generates different S-MIF signatures on the SO$_2$ photoexcitation reaction. Solar flux at different altitudes used in the calculation of altitude dependent photoexcitation rate constants were obtained from modelled current atmosphere (Danielache et al., 2023) using actinic solar flux (Gueymard, 2004) at the top of atmosphere. The results of isotopic fractionation of self-shielding free SO$_2$ photoexcitation reaction (250–320 nm) are shown in Figure 16 (brown circles).

The same calculation at different altitudes combined with self-shielding under an SO$_2$ column density ranging from 1.21x1014 to 1.21x1016 molecules cm$^{-2}$ are shown in Figure 16 (violet and yellow triangles), and for SO$_2$ column densities up to 1.21x1017 molecules cm$^{-2}$ which are closer to those reported during the Pinatubo eruption are presented in Figure 17. For a further comparison, comparisons isotopic effects calculated by Hattori et al. (2013) are added to Figure 17. Figure 16 also shows volcanic data from Gautier et al. (2018) (red stars), Shaheen et al., (2014) (black stars) and Baroni et al., (2008) (violet stars). Self-shielding free photoexcitation effect is almost 0 in 33E and stays unchanged with altitude, 36E range from -10% at 10 km to 4% at 30 km. Altitude variability do not produce any significant $^{36}E/^{33}E$ slope but it they show an interesting overlap with volcanic data suggesting that the ^{36}E variability is produced by altitude. Self-shielding calculations show a more revealing result in which increased column density (up to 1.21x1016 molecules cm$^{-2}$) creates a $^{36}E/^{33}E$ slope compatible with the reported volcanic data. The data presented in Figure 17 includes the data in Figure 16 but it has expanded both 33E and 36E axis. By expanding the 33E and 36E axis, self-shielding calculations more realistic to a stratospheric eruption (1.21 x1017 molecules cm$^{-2}$) shows that the slope does not change but also is compatible and of reverse signs to the altitude and self-shielding.
calculations of Hattori et al. (2013) and also $^{36}E/^{33}E$ slope compatible with volcanic reported data.

Figure 16: The isotopic fractionation from SO$_2$ photoexcitation using modern atmospheric solar flux at different altitudes and comparison with Hattori et al. (2013). (a) ^{34}e and ^{33}E. (b) ^{33}E and ^{36}E. The volcanic data is from Gautier et al. (2018) (red stars), Shaheen et al. (2013) (black stars) and Baroni et al. (2008) (violet stars).
Figure 17: Photoexcitation enrichment factors calculated from this report compared to those reported by Hattori et al. (2013). Self-shielding calculation with column densities of 10^{19} molecules cm$^{-2}$ (530 DU) as suggested by Guo et al. (2004) produced values of $E^{36} = 1.314\%$ and $E^{33} = 1.163\%$ which fall well outside of the range in the plot.

4 Conclusions

This study presents the cross-sections of 32SO$_2$, 33SO$_2$, 34SO$_2$, and 36SO$_2$ for the $B^1B_1 - X^1A_1$ absorption band at 293.15 K measured at a resolution of 0.4 cm$^{-1}$ with an error of 3–10%. In this report we implemented an algorithm using the LAD linear regression which was applied to finely calibrate the linear relationship between absorbance and pressure and then achieve the cross-section data at each wavelength. The overall features of measured cross-sections, that is, the peak positions of isotopologues, are consistent with previous studies (Danielache et al., 2008; Danielache et al., 2012). We obtained both more detail in the absorption peaks and a significant improvement in errors derived from noise during the measurement. For S-MIF related to SO$_2$ photochemistry, S-MIF predicted from our new spectral measurements do not reproduce results of S-MIF observed in SO$_2$ photochemical experiments performed by Whitehill et al. (2013). The discrepancy supports Whitehill’s argument that large S-MIF originates in the intersystem crossing rather than photoexcitation alone.
Acknowledgements

This study does not have real or perceived financial conflict of interest for any author. We would like to thank Shohei Hattori and Naohiro Yoshida for sample preparation and Matthew S. Johnson for technical advice. We also wish to thank Yi Ding for his consultation and advice on machine learning and algorithms. This research was funded by JSPS KAKENHI (grant numbers 22H05150 and 20H01975).

Data Availability Statement

The spectral data presented in this manuscript was recorded at the Tokyo Institute of Technologies with experimental devices described in the experimental section. Reported data set in this study are available at Harvard Dataverse repository of research data via https://doi.org/10.7910/DVN/AP8ISE with CC0 1.0 license/Data use agreement. Figures were made with Origin Ver. 2022 (Origin Lab). The code used in this manuscript for the calculation of absorption cross-sections is licensed under MIT and Published on GitHub https://github.com/PatrickYLi/LAD-Regression/tree/multi-core and Zenodo (doi/10.5281/zenodo.10836723)

References

Anderson, R. J., and P. R. Griffiths (1975), Errors in absorbance measurements in infrared Fourier transform spectrometry because of limited instrument resolution, Analytical Chemistry, 47(14), 2339-2347, doi:10.1021/ac60364a030.

Barra, I., L. Khiari, S. M. Haefele, R. Sakrabani, and F. Kebede (2021), Optimizing setup of scan number in FTIR spectroscopy using the moment distance index and PLS regression: application to soil spectroscopy, Scientific reports, 11(1), 1-9, doi:10.1038/s41598-021-92858-w.

Photoabsorption cross-section measurements of 32S, 33S, 34S, and 36S sulfur dioxide for the $B'B_1$-$X'A_1$

Introducing atmospheric photochemical isotopic processes to the PATMO atmospheric code,

Dreissig, I., S. Machill, R. Salzer, and C. Krafft (2009), Quantification of brain lipids by FTIR
spectroscopy and partial least squares regression, *Spectrochimica Acta Part A: Molecular and

Hofmann, and T. E. Larson (2014), Frontiers of stable isotope geoscience,

Endo, Y., S. O. Danielache, and Y. Ueno (2019), Total pressure dependence of sulfur mass‐
independent fractionation by SO$_2$ photolysis, *Geophys Res Lett*, 46(1), 483-491,

Kjaergaard (2015), Photoabsorption cross-section measurements of 32S, 33S, 34S, and 36S
sulfur dioxide from 190 to 220 nm, *Journal of Geophysical Research: Atmospheres*, 120(6),

Endo, Y., S. O. Danielache, M. Ogawa, and Y. Ueno (2022a), Absorption spectra
measurements at ~1 cm$^{-1}$ spectral resolution of 32S, 33S, 34S, and 36S sulfur dioxide for the
206–220 nm region and applications to modeling of the isotopic self‐shielding, *Geochemical

Endo, Y., Sekine, Y., and Ueno, Y. (2022b). Sulfur mass‐independent fractionation during
SO$_2$ photolysis in low‐temperature/pressure atmospheres. *Chemical Geology*, 609, 121064.
doi.org/10.1016/j.chemgeo.2022.121064

Endo, Y., Y. Ueno, S. Aoyama, and S. O. Danielache (2016), Sulfur isotope fractionation by
broadband UV radiation to optically thin SO$_2$ under reducing atmosphere, *Earth and

Farquhar, J., H. Bao, and M. Thiemens (2000), Atmospheric influence of Earth’s earliest sulfur cycle,

Farquhar, J., J. Savarino, S. Airieau, and M. H. Thiemens (2001), Observation of wavelength‐
sensitive mass‐independent sulfur isotope effects during SO$_2$ photolysis: Implications for the early
atmosphere, *Journal of Geophysical Research: Planets*, 106(E12), 32829-32839,

Guéymard, C. A. (2004), The sun’s total and spectral irradiance for solar energy applications and

SO$_2$ release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite
sensors. *Geochemistry, Geophysics, Geosystems*, 5(4).

https://doi.org/10.1029/2003GC000654

Herzberg, G. (1945), *Molecular spectra and molecular structure*, D. van Nostrand.

