Malaria and other infections induce polyreactive antibodies that impact SARS-CoV-2 seropositivity estimations in endemic settings

Ruth Aguilar1, Alfonso Jiménez1, Rebeca Santano1, Marta Vidal1, Oumou Maiga-Ascofare2, Ricardo Strauss3, Joseph Bonney2, Melvin Agbogbey3, Odin Goovaerts4, Eric Ebenezer Amprofi Boham2, Evan Asamoah Adu2, Inocencia Cuamba5, Anna Ramírez-Morros6, Sheetij Dutta7, Evelina Angov7, Bin Zhan8, Luis Izquierdo1, Pere Santamaria9, Alfredo Mayor1, Joaquim Gascón1, Anna Ruiz-Comellas6, Luis M. Molinos-Albert1, John H. Amuasi2, Anthony Afum-Adjei Awuah2, Wim Adriaensen4, Carlota Dobano1, and Gemma Moncunill1

1Hospital Clinic de Barcelona
2Kwame Nkrumah University of Science and Technology College of Agriculture and Natural Resources
3Bernhard-Nocht-Institut fur Tropenmedizin
4Instituut voor Tropische Geneeskunde Departement Klinische Wetenschappen
5Centro de Investigacao em Saude de Manhica
6Institut de Recerca en Atencio Primaria Jordi Gol
7Walter Reed Army Institute of Research
8Baylor College of Medicine
9Institut d’Investigacions Biomediques August Pi i Sunyer

March 23, 2024

Abstract

Anti-SARS-CoV-2 seroprevalence is used as marker of viral exposure to estimate the proportion of previously infected population, track transmission, and monitor naturally- and vaccine-induced protection. However, in sub-Saharan African settings, antibodies induced by higher exposure to pathogens may increase unspecific seroreactivity to SARS-CoV-2 antigens, resulting in false positive responses. To investigate the level and type of unspecific seroreactivity to SARS-CoV-2 in Africa, we measured IgG, IgA and IgM to a broad panel of antigens from different pathogens by Luminex in 659 plasma samples from African and European subjects differing in COVID-19, malaria and other exposures. Seroreactivity to SARS-CoV-2 antigens in pre-pandemic African was higher compared to European samples, and positively correlated with antibodies against HuCoV, helminths, protozoa, and especially P. falciparum. African subjects presented higher levels of autoantibodies, a surrogate of polyreactivity, which correlated with P. falciparum and SARS-CoV-2 antibodies. Finally, we found an improved sensitivity in the IgG assay in African samples when using urea as chaotropic agent. In conclusion, our data suggests that polyreactive antibodies induced mostly by malaria are important mediators of the unspecific anti-SARS-CoV-2 responses, and that the use of dissociating agents in immunoassays could be useful for more accurate estimations of SARS-CoV-2 seroprevalence in African settings.

Hosted file