High Spatiotemporal Resolution River Networks Mapping on Catchment Scale Using Satellite Remote Sensing Imagery and DEM Data

Peng Li1, Yun Zhang1, Cunren Liang2, Houjie Wang1, and Zhenhong Li3

1Institute of Estuarine and Coastal Zone, College of Marine Geosciences, Ocean University of China
2Peking University
3Chang’an University

March 18, 2024

Abstract

Characterizing and understanding the changes in the flow regimes of rivers have been challenging. Existing global river network datasets are not updated and can only identify rivers wider than 30 m. We propose a novel automated method to map river networks on a monthly basin scale for the first time at 10-m resolution using Sentinel-1 Synthetic Aperture Radar, Sentinel-2 multispectral images, and the AW3D30 Digital Surface Model. This method achieved an overall accuracy of 95.8%. The total length of the Yellow River network produced is 40,280 km, approximately 3.2 times that of the Global River Widths from Landsat (GRWL) database, more effectively covering small and medium rivers. The monthly river geometry revealed a positive correlation between river network area and precipitation. This study is expected to provide a cost-effective alternative to accurately mapping global river networks and advance our understanding of the changes and drivers of river systems.

Abstract content goes here

Figure 1: This is a caption
High Spatiotemporal Resolution River Networks Mapping on Catchment Scale Using Satellite Remote Sensing Imagery and DEM Data

Peng Li¹,², Yun Zhang¹,², Cunren Liang³, Houjie Wang¹,², and Zhenhong Li⁴

¹Institute of Estuarine and Coastal Zone, College of Marine Geosciences, Key Lab of Submarine Geosciences and Prospecting Technology, Ministry of Education, Ocean University of China, Qingdao, China.
²Laboratory of Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
³Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, China.
⁴College of Geological Engineering and Geomatics, Chang’an University, Xi’an, China.

Corresponding author: Houjie Wang (hjwang@ouc.edu.cn)
Peng Li, and Yun Zhang are co-first authors of this article.

Key Points:

- We proposed a new method for mapping 10 m resolution continuous river networks on a monthly basin scale using satellite images and DEMs.
- This method provided detailed information on small- and medium-sized rivers with an overall accuracy of 95.8%.
- There is a strong positive correlation between monthly river network area and precipitation.
Abstract

Characterizing and understanding the changes in the flow regimes of rivers have been challenging. Existing global river network datasets are not updated and can only identify rivers wider than 30 m. We propose a novel automated method to map river networks on a monthly basin scale for the first time at 10-m resolution using Sentinel-1 Synthetic Aperture Radar, Sentinel-2 multispectral images, and the AW3D30 Digital Surface Model. This method achieved an overall accuracy of 95.8%. The total length of the Yellow River network produced is 40,280 km, approximately 3.2 times that of the Global River Widths from Landsat (GRWL) database, more effectively covering small and medium rivers. The monthly river geometry revealed a positive correlation between river network area and precipitation. This study is expected to provide a cost-effective alternative to accurately mapping global river networks and advance our understanding of the changes and drivers of river systems.

Plain Language Summary

Understanding the impacts of climate change and human activities on water resources across different regions greatly depends on the knowledge of river networks with high spatial and temporal resolution. Small tributaries are important components in river network evolution and water transmission. To date, several studies have mapped interannual variations in rivers with widths >30 m; however, the distribution and variations in small rivers remain unclear. By integrating multispectral and radar satellite remote sensing images as well as topographic data, we created continuous monthly river network maps at the basin scale, allowing us to capture the details of dynamic changes in river networks with higher spatiotemporal resolution. As a result, the method used in this study provides detailed information on small and medium rivers, with the length of the connected rivers being thrice that of the existing datasets. We demonstrate the possibility of mapping global river networks monthly at a resolution of 10 m, providing valuable information for global surface water resource planning and management and improving our understanding of spatial links between land and water interfaces.

1 Introduction

River networks interact with the atmosphere, vegetation, and geomorphology; play important roles in global hydrological and biogeochemical cycles; and are natural hotspots for environmental sustainability and economic growth (Raymond et al., 2013; Allen et al., 2018). Spatial characteristics, such as river surface area and river channel morphology, are essential for discharge estimation, flood forecasting, riverbed evolution, hydrogeomorphic processes, and carbon emission assessment. From a long-term and global perspective, characterizing and understanding the dynamic changes in the flow regimes of rivers have been challenging (Wu et al., 2023). Therefore, there is a pressing need to understand what contributes to global river extent changes through better observation and modeling.

However, existing river network datasets, mainly from Landsat imagery, can only identify rivers with channel widths greater than 30 m (Pekel et al., 2016; Allen & Pavelsky, 2018), and ignore the temporal variations in rivers narrower than 30 m (Lu et al., 2020). Small river ecosystems are surprisingly active, with frequent land-atmosphere interactions and 50% of the total carbon emissions (Raymond et al., 2013; Butman et al., 2016). Ignoring the importance of small rivers underestimates the role of river networks in biogeochemical cycles (Lu et al., 2021).
Thus, large-scale, accurate, and up-to-date river network maps are beneficial for sustainable
development, government decision-making, and public awareness.

Currently available global and regional river network datasets are mainly derived from
digital elevation models (DEMs) or remote sensing images (Li et al., 2022). The key to developing
hydrological maps from DEMs is to calculate the flow direction of each pixel (Strong & Mudd,
2022; Tarolli & Mudd, 2020), such as the HydroSHEDS and MERIT Hydro datasets.
HydroSHEDS is a global hydrological dataset obtained from the SRTM elevation data with a
resolution of 90 m (Lehner & Grill, 2013). Yamazaki et al. (2019) generated the MERIT Hydro
dataset, which effectively solved the problem of limited coverage of HydroSHEDS at high
latitudes. However, vertical uncertainties in the DEM data may distort the topographic slope and
further affect the flow direction estimation. In addition, global DEM data sources are not updated
in a timely manner, making it difficult to reflect the dynamic changes in river networks (Rinne et
al. 2011; Schenk et al. 2014).

In recent years, Earth observation satellites have become an effective method for obtaining
long-term time series, accurate distributions, and dynamic changes in global river networks (Gong
et al., 2013; Yamazaki et al., 2015; Feng et al., 2019). Using Google Earth Engine (GEE) cloud-
based computing resources, the storage, computing, and analysis capabilities of remote sensing
big data have greatly improved (Gorelick et al., 2017). Pekel et al. (2016) produced a Global
Surface Water (GSW) dataset at 30 m resolution using GEE and Landsat images, which presents
the probability of surface water inundation for every pixel recorded by Landsat over the past four
decades. Allen & Pavelsky (2018) built the Global River Widths from Landsat (GRWL) Database
and estimated the total surface area of rivers and streams ≥30 m wide at mean annual discharge,
which is approximately 44% higher than previous estimates based on extrapolations of small
sample sizes (Raymond et al., 2013). Compared with Landsat images, commercial optical remote
sensing images usually have higher spatial resolution and richer spectral information; however,
they are also affected by clouds and shadows when identifying water bodies.

Synthetic aperture radar (SAR) sensors operating in the microwave region of the
electromagnetic spectrum are not limited by meteorological conditions and can penetrate clouds
and vegetation cover. The fusion of SAR and optical images for water classification has been
proven to capture the extent of surface water bodies at a higher spatial and temporal resolution
without being affected by clouds (Slinski et al., 2019; Li et al., 2023). However, river networks
extracted from remote-sensing images are fragmented and exhibit poor connectivity. Recent
studies have suggested that a combination of satellite remote sensing imagery and DEM data can
accurately extract continuous river networks and monitor their dynamic changes (Jones, 2019).

To address these challenges, we developed a new automated method that integrates Sentinel-
1 SAR, Sentinel-2 multispectral images, and DEM data to generate monthly river network maps
of the Yellow River basin (YRB) at a resolution of 10 m. The constraint of the topography on the
river flow direction was used to solve the problem of poor connectivity. Furthermore, we evaluate
the accuracy of the method and compare it with existing datasets. Finally, we investigated the
correlation between river network areas and climatic factors.
2 Materials and Methods

2.1 Study Area

The Yellow River is the second largest river in China, originating in the Qinghai-Tibetan Plateau and flowing eastward through the Loess Plateau and North China Plain to the Bohai Sea (Wu et al., 2017; Syvitski et al., 2022). The main stream of the Yellow River has a total length of more than 5,400 km and a drainage area of more than 750,000 km² (Wang et al., 2007). The upper reaches of the Yellow River are dominated by mountains, whereas the middle and lower reaches are dominated by plains and hills (Figure 1a–c), forming the youngest delta in China (Wang et al., 2022). Nearly 90% of the sediment originates from the middle reaches, and 60% of the river runoff originates from the upper reaches (Wang et al., 2017; Zhu et al., 2021; Chang et al., 2022).

The Yellow River provides water to 15% of China’s arable land and 12% of the population, accounting for 2.2% of the national runoff (Yin et al., 2021). It is characterized by water shortages, less water and more sediment, and different sources of water and sediment (Wang et al., 2019). With the gradual implementation of soil and water conservation and ecological restoration projects, the intensity of soil erosion in the Loess Plateau has decreased significantly, and the sediment load in the main stream of the Yellow River has shown a significant downward trend over the past 20 years (Syvitski et al., 2022). However, with the increasing frequency and intensity of extreme weather events, particularly rainstorms and droughts, changes in hydrological processes in the YRB are aggravating, posing challenges to water resource management, flood prevention, and water and sediment regulation (Lv et al., 2018; Shao et al., 2021). Unfortunately, the existing river network datasets derived from Landsat remote sensing images or DEMs limit the dynamic monitoring of temporal and spatial changes of small and medium-sized rivers in the basin.

Figure 1. Location of the study area. (a) Upper reaches, (b) middle reaches, and (c) lower reaches in the Yellow River Basin were derived from Sentinel-2 RGB imagery. Note that, RGB bands include band 4 (red), band 3 (green), and band 2 (blue).
2.2 Methods

The process of river network generation mainly includes the following two parts: (1) water body extraction by median composite generation and threshold segmentation algorithms based on filtered Sentinel-2 multispectral and Sentinel-1 SAR images, and (2) river network extraction based on Advanced Land Observing Satellite (ALOS) World 3D-30 m (AW3D30) Digital Surface Model (DSM) flow modeling, noise removal, and connectivity processing. Figure 2 shows the workflow of the proposed method.

Figure 2. Workflow of river networks extraction in the Yellow River Basin.
2.2.1 Datasets

Sentinel-2 multispectral remote sensing images were used as the main data source (Drusch et al., 2012), and Sentinel-1 SAR images were used to fill observation gaps caused by cloud cover and missing data. The Sentinel-2 Level-2A products provide orthorectified atmospherically corrected surface reflectance and can be freely obtained on the GEE platform. A total of 6,357 Sentinel-2 images were selected between January 2019 and December 2019. Considering the shortage of Sentinel-2 images with cloud cover of less than 20% in cloudy areas and data-missing regions (Yang et al., 2020b), Sentinel-1 Level-1 Ground Range Detected (GRD) products were selected as supplements, which consist of focused SAR magnitude data (Torres et al., 2012).

The AW3D30 DSM was obtained by resampling the AW3D product with a spatial resolution of 30 m and a vertical accuracy of 5 m (Tadono et al., 2014). Among the publicly available global digital elevation model (DEM) datasets, AW3D30 has the highest accuracy in mountainous areas (Liu et al., 2019; P. Li et al., 2021). Therefore, we used AW3D30 as auxiliary data to represent the topographic relief and constrain the river flow direction in the YRB.

Other datasets included the GSW dataset, 2020 Global Land Cover Map released by Environmental Systems Research Institute (known as ESRI), and the fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5) dataset. The GSW dataset is used to verify the accuracy of the results. ESRI 2020 Land Cover data were used to generate scatter density maps of water and non-water samples and determine the threshold for water body extraction. These data can be accessed from the GEE's public data catalog. Temperature, precipitation, and evaporation were derived from ERA5 to evaluate the impact of climate change on river surface area.

2.2.2 Water Body Extraction

For the Sentinel-2 multispectral images, in order to effectively reduce the impact of omission errors from clouds and cloud shadow detection, opaque clouds and cirrus clouds were removed using the QA60 band on GEE. The position of the cloud shadow was determined based on the solar geometric angle and elevation angle attributes of each image, and dark pixels generated by the cloud shadow were masked. These filtered images were clipped to the study area to derive a median composite with a cloud cover limit of less than 20%.

The median image composite method was computationally efficient and robust. Sentinel-2 images processed by cloud filtering every month were collected, and the median of each pixel value was calculated to generate a composite image every month. This method was also applied to Sentinel-1 images after filtering. Compared to a single Sentinel-1 image, the median composite image can suppress speckle noise (Figure S1).

We used Simple Non-Iterative Clustering (SNIC) superpixels segmentation algorithm combining decision trees to segment water bodies (Wang et al., 2023) (Figure S2 and S6). Using superpixels as subsequent processing units can greatly accelerate data processing efficiency and reduce the complexity of identifying water bodies.

We then combined the automatic water extraction index (AWEI) (Feyisa et al., 2014), modified normalized difference water index (MNDWI) (Xu, 2006), normalized difference vegetation index (NDVI) (Rouse et al., 1974), and enhanced vegetation index (EVI) (Huete et al., 2002) to distinguish between water bodies and non-water areas in Sentinel-2 images (Zou et al., 2018; Deng et al., 2019). The AWEI is divided into AWEInsh and AWEIsb based on the difference...
in noise sources produced by different types of areas. AWEI_{\text{In}} can effectively eliminate non-water pixels on dark building surfaces in urban background areas, that is for situations where shadows are not the main noise. AWEI_{\text{sh}} works mainly for situations in which shadows are the main problem. These indices are defined as follows:

\begin{align*}
AWEI_{\text{In}} &= 4 \times (\rho_{\text{Green}} - \rho_{\text{SWIR1}}) - (0.25 \times \rho_{\text{NIR}} + 2.75 \times \rho_{\text{SWIR2}}) \\
AWEI_{\text{sh}} &= \rho_{\text{Blue}} + 2.5 \times \rho_{\text{Green}} - 1.5 \times (\rho_{\text{NIR}} + \rho_{\text{SWIR1}}) - 0.25 \times \rho_{\text{SWIR2}} \tag{1} \\
MNDWI &= \frac{\rho_{\text{Green}} - \rho_{\text{SWIR1}}}{\rho_{\text{Green}} + \rho_{\text{SWIR1}}} \tag{2} \\
EVI &= 2.5 \times \frac{(\rho_{\text{NIR}} - \rho_{\text{Red}})}{(1 + \rho_{\text{NIR}} + 6 \times \rho_{\text{Red}} - 7.5 \times \rho_{\text{Blue}})} \tag{3} \\
NDVI &= \frac{\rho_{\text{NIR}} - \rho_{\text{Red}}}{\rho_{\text{NIR}} + \rho_{\text{Red}}} \tag{4}
\end{align*}

where $\rho_{\text{Blue}}, \rho_{\text{Green}}, \rho_{\text{Red}}, \rho_{\text{NIR}}, \rho_{\text{SWIR1}},$ and ρ_{SWIR2} are the surface reflectance values of the Sentinel-2 Blue (band 2), green (band 3), red (band 4), NIR (band 8), SWIR1 (band 11), and SWIR2 (band 12) bands, respectively.

We trained the decision tree classifier by collecting 10,093 water samples and 9,905 non-water samples (see Text S1), and generated scatter density maps for water and non-water bodies (Figure S4). Of the non-water sample points, 99.81% had MNDWI-EVI<0, whereas 92.39% of the water sample points had MNDWI-EVI>0 (Figure S4e). Of the non-water sample points, 99.83% had MNDWI-NDVI<0, whereas 91.43% of the water sample points had MNDWI-NDVI>0 (Figure S4f). Furthermore, 95.31% of the water sample points show AWEI_{\text{In}}>-0.6 (Figure S4g), whereas 91.21% of the water sample points show AWEI_{\text{sh}}>0 (Figure S4h). Therefore, we proposed a new threshold segmentation algorithm for Sentinel-2 water body detection, that is, only the pixels meeting the criteria ((AWEI_{\text{In}}>-0.6 or AWEI_{\text{sh}}>0) and (MNDWI>EVI or MNDWI>NDVI)) were classified as open surface water pixels, and the remaining were classified as non-water pixels.

Paddy fields with spectral and water color characteristics similar to those of rivers can easily cause confusion and reduce the accuracy of river network extraction. The NDVI time-series features of the water objects were analyzed to eliminate paddy fields from the results (Figure S5).

We marked pixels in the missing areas of the Sentinel-2 images as no data and replaced them with SAR water extraction results after completing the Sentinel-2 water extraction. For Sentinel-1 SAR images, we used a refined Lee filter to suppress speckle noise while preserving the image details (Lee et al., 1999; Amitrano et al., 2018). This filter uses a non-square edge direction window to maintain the edge information, and all elements of the covariance matrix are filtered using the same parameters to prevent crosstalk between the channels. By calculating Sentinel-1 Dual-Polarized Water Index (SDWI) (Jia et al., 2019), the difference between water and non-water bodies are amplified, making the histogram of water bodies resemble a bimodal distribution. Then, the water threshold in block processing was obtained using the maximum inter-class difference threshold segmentation (OTSU) algorithm to segment and binarize the Sentinel-1 median composite images (Otsu, 1979).
2.2.3 Delineation of River Centerlines

The river centerline was extracted using the RivWidthCloud algorithm proposed by Yang et al. (2020a), which can be directly invoked on the GEE platform. The algorithm was based on the results of the binary water body, which were divided into three steps: (1) calculation of the distance between each river pixel and the nearest non-river pixel, (2) convolution of the distance map to obtain the gradient map, and (3) skeletonization and refinement iterations (Figure S7).

Owing to the interference of non-water features, such as mountain shadows, snow, and ice, there are errors in the water body extraction results. We used the AW3D30 DSM data to fill in the depressions, calculate the D8 flow direction (Greenlee, 1987), estimate confluence accumulations, construct river network models, and generate buffers. This method can effectively reduce the errors caused by mountain shadows and maximally preserve the integrity of water information.

The flow model constructed using the AW3D30 DSM considers the adjacency relationship between river pixels and can generate continuous river networks. Therefore, we fused it with river network results extracted from remote sensing images, made directional connections to the fractured river networks, and generated an accurate and continuous river network with a spatial resolution of 10 m. Next, we compared the extracted results with those extracted from existing river network datasets and existing algorithms and quantitatively evaluated the accuracy of the results in terms of river length, river system density, and river network surface area.

3 Results

Figure S10 shows the dynamic changes in monthly river networks in the YRB in 2019. River density, that is, the ratio of river length to catchment area, increased from 0.038 km\(^{-1}\) in January and February to 0.042 km\(^{-1}\) in March and April, owing to upstream melting. The rivers developed rapidly in May and entered the wet season in July, which significantly improved the connectivity of river networks. At this time, the total length of the river was 40280 km and the density of the river system was 0.053 km\(^{-1}\), both of which increased to the annual maximum. After entering September, the rainy season turned to normal, and the density of the river system gradually decreased.

To validate the reliability of our algorithm, we used 2,556 random “true water” sampling points and 2,430 random “true non-water” points (Text S2 and Figure S8). The results indicated that the overall accuracy was as high as 95.77%. Furthermore, the user accuracy of 95.83% was obtained by dividing the accurately classified pixels by the total numbers of pixels classified in water, corresponding to complement of the commission error. In addition, the producer accuracy also reached a high level of 95.84%, which is the number of reference sites classified accurately divided by the total number of reference sites for water, representing complement of the omission error (Figure 4g and Table S1).

Furthermore, we compared our method (Figure 3c, 3g) with other algorithms for detecting river networks using Sentinel-2 imagery, including MNDWI (Figure 3d, 3h), an approach based on spectral indices and pixels (Zou et al., 2018) (Figure 3e, 3i), and the active-passive surface water classification (APWC) method proposed by Slinski et al. (2019) (Figure 3f and 3j). As there are many medium and large cities with dense populations in the mainstem of the YRB, some pixels in the area are always covered by shadows because high-rise buildings are too high or the building spacing is too small. The proposed algorithm effectively suppressed this type of shadow noise. Note that our algorithm does not require manual editing or data annotation, which makes it possible
to realize the automatic mapping of large-scale river networks with high spatial resolution on a high-performance computing platform.

Figure 3. Comparisons of the results of this method with other methods. Typical city (a) and mountain area (b) correspond to Figure 1a and 1b; (c) and (g) show the results of our method; (d) and (h) present the results of MNDWI; (e) and (i) are the results of Zou et al. (2018); (f) and (j) are the results of the APWC method proposed by Slinski et al. (2019).

4 Discussion

The results were superimposed on the GRWL and GSW datasets to qualitatively evaluate the spatial distribution and details of the river networks (Figure 4). The results show that our method can more effectively enhance the contrast between the fine river and the surrounding background, and can extract more small rivers (Figure 4a-f). However, river networks were the most accurate and complete when the river width was greater than 30 m, whereas broken river lines may exist in areas less than 30 m wide. In addition, the influence of ice and snow cover on river extraction errors cannot be completely eliminated in the Qinghai-Tibet Plateau.

We further calculated the drainage density and open water fraction (OWF, i.e., the ratio of the water surface area to the catchment area) and quantified the accuracy of our extraction results.
using existing river network datasets. The drainage density of Yellow River networks map we
determined is approximately three times higher than that of the existing GRWL and GSW datasets.
The OWF index of the Yellow River network map was approximately 3.2 times that of the GRWL
dataset. The GSW dataset contained artificial wetlands that were not considered part of the river
networks in this study. Therefore, the OWF index of the GSW dataset is higher than that of our
results. The superior performance of our method can be attributed to the following reasons: first,
we used Sentinel-2 imagery with high spatial resolution to extract more small streams than Landsat
images. Second, the use of Sentinel-1 to compensate for areas of Sentinel-2 images with clouds
and missing data can improve temporal resolution and capture monthly changes in the YRB
(Figure S9).

Figure 4. Comparisons with different river datasets and our results. The base map shows Yellow
River networks results and the existing the Global River Widths from the Landsat (GRWL)
database. (a), (c), and (e) Water surface results of the existing Global Surface Water (GSW) dataset.
(b), (d), and (f) Water surface results of our method. (g) Confusion matrix for the automated
accuracy assessment of our method. (h) Comparison of the river length (km) in the results of this
study, GRWL dataset and Global River Networks (GRN) dataset. (i) The relationship between the
surface area (yellow line), precipitation (blue column), temperature (red line), and evaporation
(green line) in the Yellow River Basin.

The rules established by Yan et al. (2019) were used to define and code river networks that
could describe the topological relationships, hierarchical structures, and hydraulic connections of
rivers at the same or different orders. The river lengths in our dataset were compared to those in
the GRWL and Global River Network (GRN) datasets (Yan et al., 2019) in Figure 4h. Overall, the total length (40,280 km) of the connected rivers provided in our results was 28,587 km longer than all rivers in the GRWL dataset, and 19,389 km longer than all rivers in the GRN dataset. Particularly, the length of connected rivers of order \(\geq 4 \) in our dataset is longer than that of the GRWL dataset and GRN dataset, indicating that our results have a better coverage of small and medium-sized rivers (Figure S11).

At the catchment scale, the scale dependence of runoff was attributed to spatial differences in precipitation, lithology, channel width, and catchment morphology. Assuming that the changes in soil water content and infiltration are negligible, the change in river network area depends mainly on the difference between precipitation and evaporation. Figure 4i indicates that the change in the water surface area during the rainy season was significantly greater than that during the dry season. The minimum area of the river networks appeared in January, with a total area of 8,306 km\(^2\) and the maximum area occurred in August, with a total area of 10,267 km\(^2\). Precipitation and evaporation in the YRB were positively correlated with monthly changes in river network area. Considering that the average monthly precipitation is 10-20 times that of evaporation, the river network area is primarily controlled by seasonal precipitation changes, increasing after the spring and summer rainy seasons and decreasing in autumn and winter.

5 Conclusions

Studies on the impacts of climate change and human activity on river basins are highly dependent on the spatial and temporal distributions of river networks. However, the lack of accurate river networks with high spatiotemporal resolution in many regions makes these impacts poorly understood. In this study, we proposed a method for generating catchment-scale continuous river network maps for every month by integrating Sentinel-1 SAR and Sentinel-2 multispectral images with AW3D30 DSM data. This method can reveal detailed information on small and medium-sized rivers, with the length of the connected rivers being three times that of the existing datasets. The proposed detection rule can be used to extract large river network areas rapidly. The error caused by water spectral and morphological diversity as well as seasonal changes is reduced to the greatest extent, which makes large-scale and long-term water extraction more universal.

Compared to existing water extraction algorithms, the proposed method demonstrates its capability and effectiveness in the shadow noise environment of urban high-rise buildings and mountainous areas, indicating that it has certain advantages over other single water indices. In addition, compared to existing river network products, this method improves the extraction area of water and the extraction rate of small rivers. Therefore, it provides an alternative economic means for the long-term monitoring of river network changes, quantifying, and understanding the contribution of human activities and climate change to river channel evolution. In the future, further integration of the Surface Water and Ocean Topography mission will facilitate the rapid acquisition of river width, elevation, and discharge parameters on a global scale.

Open Research

The codes and river network maps of the Yellow River Basin are available in Zenodo (Li et al., 2023). Sentinel-1, Sentinel-2, AW3D30, and GSW datasets used in this study are available at GEE (https://developers.google.com/earth-engine/datasets/). ESRI 2020 Land Cover is freely available at https://livingatlas.arcgis.com/landcover/. The ERA5 datasets are available from the Copernicus ECMWF Climate Data Store (Muñoz Sabater, 2019).
Acknowledgements

Peng Li was supported by the National Natural Science Foundation of China (No. 42041005-4). Zhenhong Li was supported in part by the Shaanxi Province Science and Technology Innovation Team under Grant 2021TD-51 and the Shaanxi Province Geoscience Big Data and Geohazard Prevention Innovation Team under Grant 2022. We thank Maoxiang Chang, Canran Tu, Quanta Zh, Jie Liu, Shu Li, Hui’an Yang, Jianbo Bai, and Guoyang Wang from the Coastal Remote Sensing Group, Ocean University of China for their assistance with the field survey, data analysis, and manuscript review. The authors are very grateful to the anonymous reviewers, the editor (Valeriy Ivanov), and assistants (Meghan Ramil and Phillip Cobb) for their constructive and excellent reviews, which greatly improved the quality of the article.

References

Muñoz Sabater, J. (2019): ERA5-Land hourly data from 1950 to present. [Dataset]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.e2161bac

