
P
os
te
d
on

18
M
ar

20
24

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
71
07
36
16
.6
95
60
62
4/
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
o
u
ld

n
ot

b
..
.

Blockchain interoperability patterns

Guzmán Llamb́ıas1,2, Laura González1, and Raúl Ruggia1

1Facultad de Ingenieŕıa, Universidad de la República
2Pyxis Research, Pyxis

March 18, 2024

Abstract

Design patterns are best practices for known problems in a specific context. Many patterns have been proposed in different

domains, such as object-orientated programming, software architecture, and workflows, to name a few. However, blockchain

interoperability is a recent area of work and, to our knowledge, no design patterns have been defined yet. The purpose of this

work was to identify blockchain interoperability patterns that may exist in blockchain interoperability solutions. We identified

six patterns through the observation of 35 interoperability solutions. A specification was built for each pattern using the

Alexandrian template. The specification was evaluated with five semi-structured interviews with blockchain experts to collect

data on the comprehension, completeness, and utility of the patterns. The results show that all interviewees identified the

patterns. However, the pattern specification has different degrees of confidence in terms of clarity, completeness, and utility.

Finally, all interviewees thought that the proposed patterns may be helpful to software architects in their first blockchain

interoperability project.

1



Blockchain interoperability patterns
Guzmán Llambı́as∗†, Laura González∗, Raúl Ruggia∗

∗ Facultad de Ingenierı́a, Universidad de la República, Montevideo, Uruguay
∗{gllambi, lauragon, ruggia}@fing.edu.uy

†Pyxis Research, Pyxis, Montevideo, Uruguay
†guzman.llambias@pyxis.tech

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be
accessible.

Abstract—Design patterns are best practices for known prob-
lems in a specific context. Many patterns have been proposed
in different domains, such as object-orientated programming,
software architecture, and workflows, to name a few. However,
blockchain interoperability is a recent area of work and, to
our knowledge, no design patterns have been defined yet. The
purpose of this work was to identify blockchain interoperability
patterns that may exist in blockchain interoperability solutions.
We identified six patterns through the observation of 35 inter-
operability solutions. A specification was built for each pattern
using the Alexandrian template. The specification was evaluated
with five semi-structured interviews with blockchain experts to
collect data on the comprehension, completeness, and utility of
the patterns. The results show that all interviewees identified
the patterns. However, the pattern specification has different
degrees of confidence in terms of clarity, completeness, and
utility. Finally, all interviewees thought that the proposed patterns
may be helpful to software architects in their first blockchain
interoperability project.

Index Terms—software architecture, blockchain, interoperabil-
ity, design patterns

I. INTRODUCTION

Design patterns are best practices for known problems in
a specific context, and several design patterns have been
specified on different domains (e.g. object oriented program-
ming and software architecture). Blockchain domain is not the
exception, and some patterns have been specified [1], [2].

Blockchain interoperability is a recent research area, as
blockchains are silos of information that cannot interoperate
with each other or other software systems [3], [4]. It is
a challenge for a blockchain to communicate with another
software system or accept data [5]. In recent years, the aca-
demic and industry community has proposed several solutions
to deal with this challenge [4]. An observer can note that
these solutions share some similarities with each other, and
some of them may be identified as common practices to
recurrent problems (i.e. patterns). However, to the best of
our knowledge, no design patterns or best practices have
been proposed to help software architects build these types
of solution. Taking into account all this, this work poses the
following research question: What patterns can be identified
from existing blockchain interoperability solutions?

To answer this question, we analysed 35 blockchain inter-
operability solutions and identified six patterns. Each pattern
was specified following the Alexandrian template [6] and qual-
itative methods were used to evaluate them. Semi-structured

interviews were conducted to five blockchain experts to eval-
uate clarity, completeness and utility of the patterns.

The results show that there exist patterns in blockchain inter-
operability solutions. All interviewees identified two patterns
or more and all patterns were identified by at least one inter-
viewee. The results also show that the patterns had different
levels of confidence related to clarity, completeness, and utility.
For example, one pattern (i.e. Light Client) was not clear
enough and not understood by most of the interviewees. All
interviewees considered the patterns to be a good contribution,
but could be improved and suggested some improvements to
be more complete. However, all of them mentioned that all
the problems they experienced were reflected in the patterns.
However, they were not sure whether these patterns reflected
all the interoperability problems that exist. All interviewees
considered the patterns useful, and most of them believed
that having these patterns should improve their decisions and
”speed up” their development. Finally, all interviewees thought
that the patterns may be helpful to software architects in their
first blockchain interoperability project.

The main contributions of this paper are: 1) the identifica-
tion of patterns in existing blockchain interoperability solu-
tions by observing 35 blockchain interoperability solutions,
2) a specification of these patterns using the Alexandrian
template, and 3) an evaluation using semi-structured interviews
conducted to five blockchain experts to evaluate clarity, com-
pleteness, and utility of the patterns.

The remainder of the paper is organised as follows. Section
II provides background concepts. Section III describes the
research approach. Section IV describes the identified design
patterns. Section V presents the results of the evaluation and
discussion. Section VI analysed the related work. Finally,
Section VII presents conclusions and future work.

II. BACKGROUND

A. Blockchain

A blockchain is a distributed database over a network of
nodes (or participants) structured as an ordered list of blocks
[7]. Each block has a set of transactions and is linked to its
predecessor blocks by a cryptographic hash. The hash of a
block is built using the block data and the hash of the previous
block. This protection enables nodes to notice if a block was
modified. The modified blocks are discarded by these nodes.
In practice, this behaviour provides data immutability to the



blockchain. Once a transaction is committed, it cannot be
modified or deleted.

Users of the blockchain can submit transactions, and each
transaction must be signed with the user’s private key. This
ensures the integrity of the transaction and its ownership.
Although transactions are signed with the user’s private key,
users use pseudonyms to submit transactions to the blockchain.
This enables a certain level of anonymity for the users,
although not full anonymity.

Blockchains use consensus protocol rules that nodes must
follow to maintain the state of the database [7]. This behaviour
enables the blockchain to operate without a centralised trusted
third party to maintain the state of the database. These rules
define how the nodes agree to consider a transaction valid
and be committed to the blockchain. Two of the most popular
consensus protocols are Proof-of-Work and Proof-of-Stake.
Consensus protocols usually define a fee that users must pay
to process submitted transactions. These fees motivate nodes
to participate in the consensus protocol, as they are rewarded
for validating the submitted transactions.

Some blockchains provide scripting capabilities to en-
able users to deploy autonomous software programs on the
blockchain [7]. These programs are called Smart Contracts.
Smart contracts can be triggered autonomously by any user
by submitting a transaction to the blockchain. Smart contracts
usually have local storage that enables them to hold data
or digital assets such as cryptocurrencies. They can also
invoke other Smart contracts or transfer digital assets from
one user to another. Smart contracts can only use its local
data as they follow the closed-world assumption of blockchain
computation. In case they require data from external systems,
they need to use Oracles to import these data. Oracles are a
trusted third party that may have many forms. Oracles can be
normal users that submit external data to the Smart Contract
sor they can be specialised software that invoke the Smart
Contracts to provide these data. Chainlink1 is an example of
an Oracle.

B. Blockchain interoperability

Wegner defines interoperability as “the ability of two or
more systems to exchange information despite their differences
in language, interfaces and execution platform“ [8]. However,
it is a challenge for blockchain systems to interoperate with
each other or with other external software systems [5]. In
general, blockchains are designed as information silos and
do not provide interoperability capabilities. Furthermore, it
is a challenge for a blockchain to accept data from another
blockchain. In some scenarios, blockchains may trust external
software systems and accept their data (e.g. Oracles). However,
other scenarios are not straightforward, and blockchains must
achieve consensus between each other on the truthfullness of
the data exchanged [5].

Blockchain interoperability usually involves at least two
blockchains, a source blockchain and a target blockchain. The

1https://chain.link/

source blockchain executes a local transaction that triggers a
cross-chain transaction that spans the domain of the source
blockchain into the domain of the target blockchain. As a
result, a local transaction is submitted to the target blockchain.
In some cases, the target blockchain trusts the source of the
transaction and commits the transaction directly. However,
in an untrusted scenario, the target blockchain must verify
that the transaction was actually committed to the source
blockchain and that it is reliable.

Blockchain interoperability solutions enable blockchain in-
teroperability and the execution of cross-chain transactions.
Several interoperability solutions have been proposed in recent
years [3] [4]. Notary Scheme is a centralised solution in
which a trusted third party monitors the source blockchain
and submits transactions to the target blockchain. Sidechains
defines a two-way peg mechanism to connect blockchains.
The two-way peg mechanism enables bidirectional asset trans-
fers between a mainchain (i.e. source blockchain) and a
sidechain (i.e. target blockchain). Sidechains usually enhance
the mainchain with new features, better performance, or lower
costs. Sidechains may have their own consensus protocol and
implementation and be totally different from the mainchain.
As a result, the mainchain is isolated and protected from
cryptographic breaks in the side chain. Relays are smart
contracts deployed on each blockchain that verify the received
transaction using Simple Payment Verification mechanisms.
Atomic Swaps specify a protocol with steps that two users
on two blockchains must follow for the atomic exchange
of digital assets. Although Atomic Swaps are considered an
interoperability solution by some literature, they do not follow
Wegner’s definition of interoperability, as they do not involve
data exchange between blockchains. Enterprise relays are a
trusted solution that involves two gateways, each gateway
connected to a blockchain. They comprise a communication
protocol that enables communication between gateways and
cross-chain transactions. Gateways verify cross-chain transac-
tions using verification proofs generated by other gateways.
Finally, Blockchain of Blockchains is a sophisticated solution
that involves a mainchain and several chains, which use the
mainchain to execute cross-chain transactions.

Blockchain interoperability can be used to enable asset
exchange, asset transfer, or data sharing between two or more
blockchains. In an asset transfer scenario, an asset hosted on
a source blockchain is moved to a target blockchain. The
asset must be burnt or locked in the source blockchain, and
a semantic equivalent asset must be created on the target
blockchain. Burn/lock and creation of assets must be atomic
tasks to maintain consistency between both blockchains. Oth-
erwise, the asset may be duplicated. This problem is known
as double spending the asset. The asset exchange scenario
involves two users and two blockchains. User A hosts the
asset A1 in blockchain A, and user B hosts the asset B1 in
blockchain B. Users need to exchange assets, and as a result,
user A hosts the asset B1 on blockchain B and user B hosts the
asset A1 on blockchain A. This exchange must be performed
atomically to avoid a user from keeping both assets. Finally,



the data-sharing scenario involves a source blockchain that
queries or sends data to a target blockchain.

III. RESEARCH APPROACH

The research approach is depicted in Fig. 1 and started
with a pattern mining phase. In this phase, observation and
analysis of existing interoperability solutions were performed.
The output was a set of candidate patterns that served as
input to the second phase: pattern specification. In this second
phase, patterns were specified following a pattern template and
became the first draft of the patterns and output of the second
phase. The process iterated through these two phases until a
final version of the patterns was defined. The third phase per-
formed the evaluation using qualitative methods, in particular,
semi-structured interviews. This third phase returned to the
pattern specification phase to improve the specification. The
following subsections describe these phases in detail.

Fig. 1: Research approach

A. Pattern mining

This work considered the inductive approach for pattern
mining, as it is considered a correct approach by the software
pattern community [9]. In particular, following the Artifactual
approach proposed by Kerth and Cunningham, that observes
and analyses existing projects to mine patterns [10].

The literature review performed by Llambı́as et al. [4]
served as an initial input, as it presented a feature-based
classification of several blockchain interoperability solutions.
During observation and analysis, the rule of three was applied
to have an initial draft of the mined patterns. In the pattern
community, the rule of three informally suggests that there
should be at least three known uses of a solution to a
problem, to consider that solution a pattern [9]. Later, this
initial draft was refined by observation and analysis of other
interoperability solutions reviewed by reference authors in the
blockchain interoperability community [3]. Popular industry
interoperability solutions were added in another iteration.
Finally, through snowballing new interoperability solutions
were analysed. Table I presents the trace of the interoperability
solutions. Table II presents the recurrence of the patterns in
the observed interoperability solutions.

Trace Blockchain interoperability solution

Llambı́as et al. [4]
Polygon PoS Bridge, Cosmos, Weaver, RSK,
Polkadot, Optimism, Hyperledger Cactus, Block-
NET, ARK, YUI, Hermes, BTC Relay

Belchior et al. [3] Quant, Peace Relay, Token Bridge

Popular Solana Wormhole, BNB Chain Bridge, Arbitrum,
StarkNET, Infura, Alchemy, Moralis

Snowball

Chain Bridge, ETH Near Relay, Block.io, Get-
Block, BTC-Relay, zkBridge, Allbridge, zkSync,
Celer Bridge, Kaleido, Chain API, Gravity Bridge,
Quick Node

TABLE I: Interoperability solutions

B. Pattern specification

The patterns were specified following the Alexandrian tem-
plate [6] and the guidelines proposed by Wellhausen and
Fiesser [11]. Every specified pattern has a name that identifies
it. They have a summary that resumes the pattern in a
short description. It has a problem that describes a recurrent
situation to be solved and helps to identify when to apply
the pattern. It has a context that presents the preconditions so
that the problem and solution are recurrent. Forces describe
why the problem is difficult to solve. Patterns have a solution
that explains how to solve the proposed problem in the specific
context. They also have consequences that describe the benefits
and liabilities to consider after the solution is applied. Patterns
may be related to other patterns and they also have know
usages that describe the occurrence of the pattern in the
existing real world.

Pattern Interoperability solution
Relayer Polygon PoS Bridge, Cosmos, Weaver, RSK, Ark, YUI, Her-

mes, Token Bridge, Wormhole, BNB Chain Bridge, Arbitrum,
StarkNet, Chain Bridge, ETH Near Relay, zkBridge, Celer
cBridge, Gravity Bridge

API
Gateway

Hyperledger Cactus, Quant, Infura, Alchemy, Moralis,
Block.io, GetBlock, Kaleido, Chain API, Quick Node

Light
Client

Cosmos, Weaver, RSK, Polkadot, BlockNet, YUI, BTC Relay,
Peace Relay, BNB Chain Bridge, StarkNet, ETH Near Relay,
BTC-Relay, zkBridge

Temporal
transfer

Polygon PoS Bridge, RSK, Optimism Bridge, Wormhole,
BNB Chain Bridge, Arbitrum, StarkNet, ETH Near Relay,
Celer cBridge, Gravity Bridge

Permanent
transfer

Polygon PoS Bridge, BNB Chain Bridge, Allbridge, Celer
cBridge

Aggregator Optimism Bridge, BNB Chain Bridge, StarkNet, zkBridge,
zkSync, Gravity Bridge

TABLE II: Patterns invariance
C. Pattern evaluation method

To evaluate the patterns, this work used a qualitative
evaluation method. In particular, semi-structured interviews
were conducted to gather the opinion of blockchain experts
about the proposed patterns. Semi-structured interviews are a
suitable method for collecting qualitative data, as they provide
an opportunity for discussion and exploration around a certain
topic [12]. They were used to collect the opinion of blockchain
experts to evaluate the understanding, completeness, and utility
of the patterns.

The interview was designed based on the guidelines pro-
vided by Brinkmann and Kvale [12] and Turner [13]. The
questions were grouped into four categories: identification,
comprehension, utility, and completeness of the patterns. Table
III presents the questions grouped by category.

A pilot interview was conducted to identify issues in its
design. As a result, the questions were improved and refined.
The timeframe of the interview was also adjusted.

Participants were selected using purpose and snowball
sampling. Since blockchain interoperability is a recent topic,
recruiting participants was not a straightforward task and
required different recruitment strategies. First, a Linkedin post
was published that described the work and called interested
candidates to participate in the interview. This allowed us



Category Questions
Identification Did you identify any of the proposed patterns in your

previous experiences or were all new to you?
Comprehension What do you think of the clarity of the patterns?

Would you change something to improve its com-
prehension, or do you think they are clear enough?
What do you think was the most difficult part to
understand or maybe not difficult?

Utility How useful or not are these patterns for a blockchain
developer starting his first interoperability project?
What would have changed or not in your previous
blockchain interoperability experiences if you have
had these patterns?

Completeness What do you think about the description of the
patterns? Do they provide all the information you
think is necessary to use them or should they provide
more information around certain topics?
Do you think there is an interoperability issue not
reflected in the patterns that is necessary to include,
or do you think all the aspects you know are covered?

TABLE III: Questions grouped by category
to recruit two interviewees. Second, an email was sent to
a colleague referral that was accepted. Third, academic re-
cruitment was performed at a computer science conference2.
Snowballing was performed asking the recruited candidates
for a referral interested in the topic. Snowballing allowed the
recruitment of two interviewees. All candidates must have
between two and five years of experience in blockchain-based
development, seven years in the information technology area,
and at least participation in one project in which they were
required to interoperate two or more blockchains. Table IV
presents the demographic information of the interviewees3.
The recruitment time frame limited the number of total par-
ticipants.

id Role IT BCE BCIP EL Nat.
Pilot senior

blockchain
developer

10 8 1 Master
Degree

Kosovo

1 blockchain
company
co-founder

7 3 1 PhD
Student

Brasil

2 blockchain
developer

11 3 1 System
Analyst

Uruguay

3 Lead
blockchain
developer

18 5 +3 Under-
graduate

Uruguay

4 Associate
Professor

16 5 1 PhD Italy

5 Technical
lead

20 5 1 Computer
Systems
Degree

Uruguay

TABLE IV: Participants information.
The interviews were conducted in November 2023. Each

participant received an email with the patterns4, main topics
to be covered in the interview, the expected duration, and the
measures taken related to privacy and data confidentiality. All
participants signed an informed consent to use their opinions
and thoughts in this research. The interviews were carried out

2Enterprise Design, Operations and Computing
3IT = years of experience in information technologies, BCE = years of

experience in blockchain based development, BCIP = number of blockchain
interoperability projects, EL = Education level, Nat = Nationality.

4The original patterns sent to the interviewees can be found in (url to be
published after reviewers-comments)

using Zoom or Microsoft Teams, depending on the language
of the interview. Zoom was used for English speakers and
Microsoft Teams for Spanish speakers. This decision was
made primarily due to the automatic transcript capabilities of
each tool. All interviews were recorded in video and audio.
On average, the interviews had a duration of 73 minutes, in
which the shortest took 50 minutes and the longest took 82
minutes. The interviewer took notes during each interview.

The raw data collected from the interviews were processed
and then analysed. Data analysis was performed in parallel
with data collection (i.e. interview execution) and followed an
inductive approach. Codes and categories were progressively
defined after each interview analysis 5. Microsoft Word com-
ments were used to code the transcripts.

After data analysis, the main conclusions of each interview
were sent to the interviewee to confirm their opinions. All
interviewees returned positive feedback about this resume.

The design, execution and data analysis of the interviews
were performed by the main author of this article. The
interview questions were designed by all the authors.

IV. BLOCKCHAIN INTEROPERABILITY DESIGN PATTERNS

This section describes a resume of the proposed patterns
following the Alexandrian template. Table V presents a general
overview and Fig. 2 the pattern relationships.

Fig. 2: Pattern relation overview

A. Relayer pattern

Summary: A third-party middleware (centralised or decen-
tralised) called Relayer enables to send the state of an executed
transaction from a source blockchain to a target blockchain.
Blockchains may be homogeneous or heterogeneous. Fig. 3
presents a graphical representation of the pattern.

Fig. 3: Relayer pattern

Context: A target blockchain needs the state of an executed
transaction on a source blockchain to perform a task (e.g.
execute a smart contract).

Problem: How to send the state of an executed transaction
from a source blockchain to a target blockchain.

5The code book employed in this interview can be found at (url to be
published after reviews to keep a double blind review)



Category Pattern Summary
Infrastructure Relayer A Relayer enables to send the state of

an executed transaction from a source
blockchain to a target blockchain.

API Gate-
way

The API Gateway simplify the connec-
tivity between traditional business ap-
plications and one or more blockchains
through an API.

Aggregator The Aggregator listens to the execution
of transactions on a source blockchain
and packages a large set of these
transactions into a compressed dataset.
Then submits this dataset to a target
blockchain as a unique transaction.

Security Light
Client

A smart contract on the target
blockchain verifies the received data
of a source blockchain and makes the
data available to other smart contracts.

Data migra-
tion

Permanent
transfer

An asset hosted on a blockchain
is permanently transferred to another
blockchain.

Cross-chain
application
design

Temporal
transfer

An asset hosted on a source blockchain
is temporary transferred to a target
blockchain. That asset can be tempo-
rary used in the target blockchain un-
til it is returned back to the source
blockchain.

TABLE V: Interoperability patterns overview

Forces:
• Communication: Usually, blockchain technology does

not provide a native mechanism to communicate directly
with another blockchain. It is a hard task for a blockchain
to interoperate with another blockchain.

• Data format: The source blockchain may use a different
data format than the target blockchain.

• Decentralisation: Blockchain-based applications try to
avoid using centralised components.

• Performance: Data must be available in a timely manner
on the target blockchain to complete the task.

• Costs: the execution and storage of blockchain transac-
tions usually imply costs for the user that submits the
transaction. Computational processing in a blockchain
also implies costs for the user.

• Transaction signing: Users must sign all transactions
submitted to the blockchain.

Solution: Use a middleware component called Relayer that
listens to the transactions committed on the source blockchain
and sends them to the target blockchain. The Relayer enables
point-to-point communication between the two blockchains.
The Relayer can transform the transaction data format from
the source blockchain data format to the target blockchain data
format, so that the latter can process these data. The Relayer
signs the transaction submitted to the target blockchain on
behalf of the source blockchain.

Relayers may be developed for a specific scenario or may be
general-purpose Relayers that can be reused in several scenar-
ios. The first always create the same blockchain transactions
or invoke the same smart contract on the target blockchain,
and is built for a specific purpose of a business process. The
second are smart Relayers that can create different blockchain
transactions or invoke different smart contracts depending on
the transaction content. Finally, the Relayer can be a native

node of the blockchain tightly coupled with its behaviour or
it can be provided by an external third party.

Consequences:
Benefits:
• Communication: The source blockchain can send the

state of an executed transaction to a target blockchain.
• Data format: The target blockchain can understand the

syntax of the received transaction.
Liabilities:
• Communication: The Relayer provides a point-to-point

communication. In case the source blockchain needs to
communicate with another blockchain, a new Relayer
must be deployed to enable point-to-point communication
between them.

• Performance: The Relayer may be a bottleneck and may
not send the transaction state in a timely manner to the
target blockchain.

• Decentralisation: In case the Relayer is centralised, it
becomes a point of failure that needs to be monitored.
Furthermore, a centralised component adds trust to the
solution that may contradict the use of blockchain tech-
nology. A decentralised Relayer reduces this risk but adds
more complexity, as there must be consensus among all
the Relayer instances.

• Costs: The computational processing and storage of the
received transaction on the target blockchain incur costs
that must be paid by the Relayer.

• Transaction signing: The Relayer signs the transactions
submitted to the target blockchain and acts on behalf of
the source blockchain.

Related patterns: The Light Client pattern provides cross-
chain transaction verification to a trusted Relayer.

Known uses: Wormhole, Weaver, Cosmos, Token Bridge.

B. API Gateway pattern

Summary: A third-party middleware called API Gateway
simplifies the connectivity of one or more traditional business
applications with one or more blockchains through an API.
Fig. 4 presents a graphical representation of the pattern.

Fig. 4: API Gateway pattern
Context: A business application needs to communicate with

one or more blockchains to complete its business process. For
example, to submit transactions or query the blockchain.

Problem: The business application have to understand the
low-level connectivity details to communicate with one or
more blockchains.



Forces:
• Blockchain heterogeneity: Every blockchain has its own

technical requirements to establish a connection to it.
• Security: Every blockchain requires a private key to sign

the transactions submitted to the blockchain.
• Infrastructure: Business applications needs a blockchain

node to communicate with the blockchain. To connect to
N blockchains, a business application needs to host N
blockchain nodes. One node for each blockchain.

• Availability: If the blockchain node is down, the business
application cannot communicate with the blockchain.

• Costs: The blockchain node requires hardware and soft-
ware costs that must be considered.

• Decentralisation: The blockchain operation and avail-
ability do not depend on individual decisions of its
participants (i.e. decentralised). The business application
only needs a blockchain node to communicate with it and
does not require any authorisation or permissions.

• Performance: The blockchain node must handle the load
generated by the business application.

Solution: Use a third-party middleware called API Gateway
that exposes a high-level interface and enables a business
application to communicate with one or more blockchains
without requiring the application to understand the low-level
technical details of the communication.

Consequences:
Benefits:
• Blockchain heterogeneity: business applications do not

have to understand low-level details to connect with each
blockchain. They use a high-level interface (e.g. http
endpoints) to connect to the blockchain.

• Blockchain node: No blockchain node is required to
connect with the blockchain.

• Costs: The owner of the business application must not
afford hardware and software for each blockchain node
and costs related to monitoring it.

Liabilities:
• Security: The business application may not own the

private key to connect to each blockchain. The API
Gateway may act on behalf of the business application.

• Availability: The API Gateway becomes a new point of
failure in the solution. This component is not controlled
by the business application and unpredictable down-times
may affect its normal operation.

• Costs: API Gateways usually charge for the services
provided and this cost must be considered.

• Decentralisation: The API Gateway is a centralised
component provided by a third party that reduces the level
of decentralisation. If the owner of the API Gateway uni-
laterally defines any change (e.g., cancelling the service),
the business application might be affected.

• Performance: An additional intermediary adds an over-
head in the communication. The API Gateway can be a
communication bottleneck.

Related patterns: No related patterns were identified.

Known uses: Infura, Alchemy, Quant, GetBlock, Kaleido.

C. Light client pattern

Summary: A smart contract on the target blockchain stores
a trusted consensus state of a source blockchain and provides
operations to verify data against this state. Fig. 5 presents a
graphical representation of the pattern.

Fig. 5: Light client pattern
Context: A source blockchain sends data to a target

blockchain using an interoperability mechanism (e.g. applying
the Relayer pattern). Blockchains may use different consensus
protocols, but support the same technical capabilities (e.g.
same hash functions and signature algorithms).

Problem: How can smart contracts hosted on the target
blockchain can use the received data reliably without a trusted
third party.

Forces:
• Data acceptance: It is a challenge for a blockchain to

accept external data from another blockchain. The target
blockchain must verify that the received data are valid
and have been committed to the source blockchain.

• Data query: In general, smart contracts cannot directly
query the blockchain ledger. Smart contracts can only
query data from its local storage or another smart con-
tract.

• Transaction storage: Transactions committed to the
blockchain require storage to store them.

• Costs: Usually, data storage and computational execution
on the blockchain implies costs for the user that submitted
the transaction. Smart contract invocation to another
smart contract may also imply costs to the user.

• Performance: Transactions compete to be grouped into
a block and recorded on the blockchain. The order in
which transactions are sent to the blockchain may not be
the same in which they are processed and recorded.

• Transaction execution failure: Validators (e.g. miners
in Bitcoin) reject transactions with errors or failures. A
block with rejected transactions is discarded and is not
registered on the blockchain.

Solution: Use a smart contract on the target blockchain
called Light Client, that receives data from the source
blockchain and validates it using the attached proof. Some
common data proofs include block headers and zero knowl-
edge proofs. The Light Client provides functions to query the
stored data. Light clients are usually implemented using smart
contracts and use its local storage to store the received data.

Consequences:
Benefits



• Data acceptance: The target blockchain has verified data
from the source blockchain that is available to be used by
business process implemented on the target blockchain.

• Data query: Smart contracts hosted on the target
blockchain can query the Light Client smart contract to
use the received data.

Liabilities:
• Transaction storage: New data requires storage to be

recorded on the target blockchain and may impact the
requirements to host a node of the target blockchain.

• Costs: Submitting data and store it on the Light Client
implies costs to the submitter. Querying the Light Client
may also imply costs.

• Performance: Data verification on the Ligth Client
is usually considered as a transaction on the target
blockchain. This transaction must compete with other
transactions to be included on a block. The processing
and verification of this new transaction may not be
immediately performed as it is received.

• Transaction execution failure: A failure processing a
transaction caused by a bug in the Light Client, may cause
to miss data from the source blockchain or affect the
target Light Client reliability (e.g. false positives).

Related patterns: Relayer, Temporal and Permanent trans-
fer patterns may use the Light Client to enable cross-chain
transaction validation.

Known uses: BTC Relay, Cosmos, RSK, Weaver, YUI.

D. Temporal asset transfer pattern

Summary: An asset hosted on a source blockchain is
temporary transferred to a target blockchain. That asset can
be temporary used in the target blockchain until it is returned
back to the source blockchain. Fig. 6 presents a graphical
representation of the pattern.

Fig. 6: Temporal transfer pattern
Context: Blockchains execute transactions with different

costs and performance. In addition, blockchains have different
characteristics and not every blockchain supports the same
features. Blockchains have technical compatibility (e.g. same
hash functions and signature algorithms) that enables them
to semantically understand shared data. A user may want
to temporary move an asset from a source blockchain to a
target blockchain to have some benefit of these blockchain
heterogeneity (e.g. execute transactions at less costs).

Problem: How an asset from a source blockchain can be
temporary transferred to a target blockchain and returned. How
can be returned back with all its state changes performed by
the execution of transactions in the target blockchain.

Forces:
• Data acceptance: It is a challenge for a blockchain to

accept external data from another blockchain. The target
blockchain must verify that the received data are valid
and have been committed to the source blockchain.

• Costs: The execution and storage of blockchain transac-
tions usually imply costs for the user that submits the
transaction.

• Transaction execution failure: A failure verifying a
transaction by a blockchain validator (e.g. miners in
Bitcoin) causes the transaction to be discarded.

• Asset availability: In a given moment, an asset can only
be available for use in a single blockchain. In other case,
there is the risk of double spending the asset.

Solution: The asset must be blocked on the source
blockchain and create a semantically equivalent asset on the
target blockchain. The locked asset cannot be used or changed.
After the asset has been used on the target blockchain, it
must be destroyed, and if and only if the asset was correctly
destroyed, then the asset on the source blockchain must be
unlocked.

Consequences:
Benefits:
• Asset availability: The asset is available to use in the

target blockchain.
• Costs: Transactions may be executed at a lower cost or

with higher performance in case the target blockchain
enables it.

Liabilities
• Costs: Locking and unlocking the asset on the source

blockchain and minting and destroying the asset on the
target blockchain are operations that have costs to be
considered.

• Transaction execution failure: A failure in the process
of destroying the asset in the target blockchain may block
the asset permanently on the source blockchain.

• Data acceptance: The asset must not be minted on the
target blockchain until the target blockchain verifies the
asset has been locked on the source blockchain. The asset
must not be unlocked on the source blockchain until the
source blockchain verifies it has been destroyed on the
target blockchain.

Related patterns: The Tempral asset transfer uses the
Relayer to send data from the source blockchain to the
target blockchain. It can also use the Light Client pattern to
enable cross-chain transaction validation when an untrusted or
centralised Relayer is used.

Known uses: RSK, Polygon PoS Bridge, Wormhole.

E. Permanent asset transfer pattern

Summary: An asset hosted on a blockchain is permanently
transferred to another blockchain. Fig 7 presents a graphical
representation of the pattern.

Context: A user has an asset on a blockchain and does
not want to use that blockchain anymore. This may happen in



Fig. 7: Permanent transfer pattern

case another blockchain provides better features, less costs or
higher performance, among other reasons. Blockchains have
technical compatibility (e.g. same hash functions and signa-
ture algorithms) that enables them to semantically understand
shared data.

Problem: How to permanently move an asset from a source
blockchain to a target blockchain.

Forces:

• Data acceptance: It is a challenge for a blockchain to
accept external data from another blockchain. The target
blockchain must verify that the received data are valid
and have been committed to the source blockchain.

• Costs: the execution and storage of blockchain transac-
tions usually imply costs for the user who submits the
transaction.

• Transaction execution failure: A failure verifying a
transaction by a blockchain validator (e.g. miners in
Bitcoin) causes the transaction to be discarded.

• Asset availability: In a given moment, an asset can only
be available for use in a single blockchain. In other case,
there is the risk of double spending the asset.

Solution: The asset in the source blockchain is destroyed
and a new asset is created on the target blockchain that is
semantically equivalent.

Consequences:
Benefits

• Asset availability: The asset is available to use at the
target blockchain and is semantically equivalent to the
destroyed asset. The latter is destroyed in the source
blockchain and cannot be recovered.

Liabilities:

• Data acceptance: The asset must be minted on the target
blockchain only when the target blockchain verifies the
asset has been destroyed on the source blockchain.

• Costs: The destruction and minting of the asset have a
cost for the user. In case the Relayer pattern is used, the
Relayer may incur in additional costs for the user for the
data transfer.

• Transaction execution failure: A failure in the minting
process may imply a complete loss of the asset if the
asset was destroyed on the source blockchain.

Related patterns: Uses the Relayer pattern for data transfer
and the Light Client for cross-chain transaction validation.

Known uses: Polygon PoS Bridge, Allbridge, Celer
cBridge.

F. Transaction aggregator pattern

Summary: A third party middleware called Aggregator
listens to the execution of transactions on a source blockchain
and packages a large set of these transactions into a com-
pressed dataset. This compressed dataset is submitted as a
unique transaction to a target blockchain. Fig 7 presents a
graphical representation of the pattern.

Fig. 8: Transaction aggregator pattern
Context: The source blockchain needs to send the state of

a large set of executed transactions to a target blockchain.
Problem: How to efficiently send the state of a large set

of transactions executed on a source blockchain to a target
blockchain.

Forces:
• Communication: In general, blockchain technology does

not provide a native mechanism for communicating di-
rectly with another blockchain. It is a hard task for a
blockchain to interoperate with another blockchain.

• Costs: Each time a user submits a transaction to the
blockchain, the user must pay a fee to process the
transaction.

• Performance: Only a finite number of transactions can
be included in a block. Processing a large set of trans-
actions may be time consuming, as they may need to be
processed in more than one block.

• Transaction selection: Transaction validators define
which transactions must be included in a block based on
the incentive they have to process the transaction. Some
transactions of the set may not be processed until the
validators defines to do so.

• Data acceptance: It is a challenge for a blockchain to
accept external data from another blockchain. The target
blockchain must verify that the received data are valid
and have been committed to the source blockchain.

• Decentralisation: Blockchain technology is decen-
tralised by nature. This design enables its correct opera-
tion besides individual decisions made by its participants.

• Transaction storage: Storage is required on the target
blockchain to store the details of transactions sent by the
source blockchain.

Solution: Use a component called Aggregator that listens
to the recorded transactions on the source blockchain and
groups them into a batch. The Aggregator digests this batch
of transactions, creating a smaller piece of data called Rollup,
with the resulting state of each transaction. This Rollup is a
smaller piece of data and does not contain all the details of
each transaction, just the resulting state after its execution on
the source blockchain. Afterwards, the Aggregator sends the
Rollup to the target blockchain as a unique transaction.

Consequences:



Pattern \Interviewee 1 2 3 4 5 Total
Relayer x x x 3
API Gateway x x x x x 5
Light Client x 1
Temporal transfer x x x x 4
Permanent transfer x x 2
Aggregator x x x 3

TABLE VI: Pattern identification by interviewee

Benefits:

• Communication: A source blockchain can notify the
execution state of a large set of transactions to a tar-
get blockchain. This communication is enabled by the
Aggregator.

• Costs: It is possible to process a large set of transactions
in the target blockchain with less costs than processing
them individually.

• Performance: It is possible to efficiently process a large
set of transactions on the target blockchain in less time,
compared to process them individually.

• Transaction storage: The record of the execution state
at the target blockchain only requires the storage of a
unique transaction with the execution state of the set of
transactions executed on the source blockchain.

Liabilities:

• Transaction selection: The validators at the target
blockchain may not have the right incentives to process
the Rollup and the transaction may not be processed.

• Decentralisation: The Aggregator decides which trans-
actions may be grouped together in a batch. If it is a
centralised third party, it may be biased in the transaction
selection and leave some transactions unattended.

• Data acceptance: A transaction verification mechanism
must be defined to validate the Rollup on the target
blockchain. Two examples are optimistic verification or
zero-knowledge proofs verification.

• Costs: The Aggregator may charge additional costs for
generating the batch. There are costs related to the
execution of the Rollup on the target blockchain that need
to be considered.

Related patterns: The Aggregtor uses the Light Client
pattern for cross-chain verification. The Aggregator uses the
Relayer to send data from the source to the target blockchain.

Known uses: Arbitrum, zkBridge, StarkNet and zkSync.

V. EVALUATION

The patterns were evaluated through semi-structured inter-
views to assess clarity, completeness, and utility.

A. Results

Table VI presents the patterns identified by each intervie-
wee. All interviewees identified the usage of two or more pat-
terns in their previous experiences. All patterns were identified
by at least one interviewee. All interviewees considered the
patterns to be a good contribution to blockchain interoperabil-
ity.

1) Clarity: The clarity of a pattern refers to the level of
understanding of a pattern for the interviewee. All interviewees
stated that they got a general understanding of the patterns,
although four out of six interviewees (included pilot) did
not understand the Light Client pattern or thought it was
an Oracle pattern. After an explanation from the interviewer,
two of the interviewees recognised the pattern and two did
not know about the pattern before. An interviewee worked
with the RSK bridge and understood the pattern because
she recognised it in the known examples. All interviewees
stated that they would get a global understanding of the
patterns if the relationship between them were explained. Two
interviewees mentioned that a pattern categorisation would
also have helped. Two interviewees mentioned that the patterns
were easy to understand. All interviewees suggested specific
adjustments to improve the clarity of the patterns. Some of
these suggestions were included in this work, while others are
planned to be included in future work.

2) Completeness: The completeness of a pattern implies
how complete the patterns are considering the information
provided and the known-to-date interoperability problems of
the interviewees. Use case examples showing how patterns
may be used was the most mentioned improvement for com-
pleteness. Furthermore, two interviewees mentioned that the
patterns required more technical details to implement them
(e.g. a reference implementation). All interviewees mentioned
that all the problems they had experienced in blockchain inter-
operability projects were reflected in the examples. However,
some interviewees were not sure if these patterns reflected all
existing interoperability problems. In particular, an interviewee
suggested analysing the Blockchain of blockchains solution
and analyse if a pattern could be mined. In addition to
the previous comments, all interviewees suggested interesting
improvements to enrich the patterns6.

3) Utility: The utility of a pattern refers to the usefulness
of a pattern for blockchain interoperability projects. All inter-
viewees found the proposed patterns useful, although an inter-
viewee mentioned that the patterns are useful for a designer
audience and not much for a developer that needs to implement
them. Three interviewees mentioned that these patterns may
allow them to ”make more conscious design decisions” and
”speed them up”, as patterns describe known problems and
solutions. Two interviewees stated that these patterns would
serve to learn about blockchain interoperability. Finally, all
interviewees mentioned that these patterns would have helped
them in some way during their first interoperability experience.

B. Discussion

One of the main key findings of this study was that all
interviewees identified two or more patterns, and all patterns
were identified by at least one interviewee. The study strongly
shows that the API Gateway and the Temporal transfer patterns
are widely applied patterns in the sample population, as all

6A list of all the suggested improvements can be found at (url to be
published after reviews to keep a double blind review)



interviewees identified the former, and most of them identified
the latter pattern. A similar trend was found for two patterns
(i.e. Relayer and Aggregator), although it was less strong.
This last trend led to the consideration that these two patterns
are likely to be used in the software industry. Most of the
interviewees did not understand correctly one of the patterns
(i.e. Light Client), and some of them were misguided to think
about Oracles. This shows that the Light Client pattern was
not clear enough. However, we consider that this pattern needs
to be rewritten rather than discarded. Table II shows that there
exists a common behaviour around cross-chain transaction
verification. We consider that this common behaviour is likely
to be specified as a pattern. Finally, the results show a
trend that these patterns may help software architects and
designers to build blockchain interoperability solutions, as all
interviewees mentioned in the interview.

Overall, the results of this study partially answered the
proposed research question What patterns can be identified
from existing blockchain interoperability solutions?. This
study can claim that there are blockchain interoperability pat-
terns and that some of them were discovered with different lev-
els of confidence. However, we do not pretend with this study
to cover all blockchain interoperability patterns. The discovery
of patterns is far from complete. Second, this study shows
that the proposed patterns may help blockchain developers
during their first experience with blockchain interoperability.
Third, remarks on the clarity of some patterns showed that the
evaluation method is robust and allowed us to detect patterns
that do not meet the expected clarity to be understood by the
sample population.

This study opens many future research directions. First,
interoperability solutions can be modelled using these patterns
and start working around specifications instead of code. Sec-
ond, new guidelines can be proposed for software architects to
design their interoperability solutions based on these patterns.
Finally, model-driven development tools can be built following
these patterns to ease the development of blockchain interop-
erability solutions.

C. Threats to validity

External validity Although most of the interviewees iden-
tified the proposed patterns, this cannot be generalised to
the global blockchain community. Clearly, a low number of
interviewees is not enough to draw a general conclusion. Fur-
thermore, since 50% of the interviewees were from Uruguay,
this could have biased the results to only a geographical region.

Internal validity The communication skills of the inter-
viewer has a direct effect on the gathered data through semi-
structured interviews [12]. This may limit the amount and
quality of the collected data. To mitigate this threat, a pilot
was conducted to rehearse the interview, and each interviewee
confirmed a resume of the main conclusions of the interview.
This allowed us to confirm the results of each interview.
Furthermore, data were analysed as they were collected by
confirming the results with the interviewee in the interview
itself, as recommended by Brinkmann and Kvale [12].

Coding and data analysis were performed by the main
author of this work, which could have biased the final results.

Patterns were specified by the main author and supervised
by the other authors, and no other validation was performed.
To mitigate pattern writing accuracy, the guidelines provided
by Wellhausen and Fiesser [11] were followed.

The patterns were extracted through the observation of
blockchain interoperability solutions documentation. It is pos-
sible that the misinterpretation and biases of the researcher
could have influenced the results.

VI. RELATED WORK

Montgomery et al. [14] presented four blockchain inter-
operability patterns: Ledger transfer, Atomic Swap, Ledger
interaction, and Ledger entry point coordination. We consider
the ledger transfer pattern to be a combination of the Tem-
poral and Permanent transfer patterns. Although both patterns
share some similarities, we consider it better to treat them
differently, as they have different consequences and behaviour.
Montgomery et al. considered the Atomic Swap, however, we
decided not to consider it, as it does not satisfy the definition
of interoperability. They involve two independent transactions
that are coordinated by two users in each blockchain, and
the data do not span from a source blockchain to a target
blockchain. The patterns described by Montgomery et al. pro-
vide a brief description of each pattern. Our approach followed
the Alexandrian template, providing more information and an
evaluation using semi-structured interviews.

The Weaver team presented three patterns to integrate
distributed ledgers [15]. This is an interesting approach, as
they cover distributed ledgers and not only blockchain ledger
structures. Some similarities may be found with our patterns,
but little information is provided to perform an accurate com-
parisson. The Consensus-based integration between ledgers
pattern refers to the fact that a source ledger communicates
its consensus view to a target ledger. A consensus view is
an agreed representation of the state of the ledger by all
members of the ledger. This pattern seems to be a combination
of our Relayer and Light client patterns. The Standard API
integration between application pattern refers to build an API
on top of the distributed ledger to enable the exchange of its
state and share similarities with the Relayer pattern. Finally,
the Single enterprise participating in multiple networks pattern
refers to a third-party that coordinates the exchange of state
between the ledgers. It shares similarities with the Notary
Scheme (see Section II and none of our patterns is similar to
this proposal. It would be interesting to analyse it in the future.
Unfortunately, this work does not provide any evaluation to
compare with our results.

Xu et al. [1] presented a collection of design patterns for
blockchain-based applications with four categories: Interaction
with External World, Data Management, Security and Struc-
tural Patterns of Contract. Lieu et al. [16] proposed twelve
design patterns for blockchain-based self-sovereign identity
systems to help understand and apply self-sovereign identity
to software design. They grouped these patterns into three



groups: key management, decentralised identifier management,
and credential design. Mühlberger et al. [2] proposed four Or-
acle patterns: Pull-based inbound oracle, Push-based inbound
oracle, Pull-based outbound oracle and Push-based outbound
oracle. These works used a similar template pattern to our
work, but no evaluation was performed that allowed us to
compare them. Mühlberger et al. used qualitative evaluation
methods to evaluate the patterns.

Finally, Wöhrer and Zdun [17] proposed a set of patterns
for smart contract development on Ethereum. Through a Mul-
tivocal Literature Review, they mined eleven design patterns
grouped in five categories: Action and Control, Authorisation,
Lifecycle, Maintenance and Security. For each pattern, they
provided a problem, a solution, and illustrative code examples.
The pattern mining process performed by this work took
a different approach from ours. They analysed the code of
Ethereum smart contracts hosted on open source repositories,
while our analysis was performed on the documentation of
existing interoperability solutions. A code analysis of existing
interoperability solutions can complement our work to provide
more details about the implementation of our patterns.

Overall, several authors proposed patterns around
blockchain and blockchain interoperability with different
levels of specification and evaluation. On the one hand,
academic studies around blockchain patterns provide rich
specifications using well-known pattern templates, but lack
of evaluation methods to confirm their usage. On the other
hand, blockchain interoperability patterns are proposed by
the industry using a brief introduction to the patterns, but
provide little information to serve as best practice guidelines.
There is some overlap between existing work and our paper,
which helps to confirm the correct direction in the proposed
patterns.

VII. CONCLUSIONS AND FUTURE WORK

This study identified six blockchain interoperability patterns
by observing 35 blockchain interoperability solutions. These
patterns were specified using the Alexandrian template and
evaluated using qualitative methods. Semi-structured inter-
views were conducted with five blockchain experts to evaluate
their comprehension, completeness, and utility. As a result,
it was possible to partially answer the proposed research
question What patterns can be identified from existing
blockchain interoperability solutions? All interviewees iden-
tified two or more patterns, and all patterns were identified
by at least one interviewee. This result led us to confirm
that a small sample of the software industry identified the
patterns. Furthermore, the results showed different levels of
confidence. Some patterns (i.e. API Gateway and Tempo-
ral transfer patterns) were clearly identified by the sample
population, while other patterns (i.e. Relayer and Aggregator
patterns) were likely identified. A pattern (i.e. Light Client)
was not clear enough and could not be understood by most of
the sample population. This remark highlights the robustness
of the evaluation method in detecting patterns that do not meet
the expected clarity to be understood by the sample population.

Finally, the sample considered that the proposed patterns may
help blockchain developers speed up their development in their
first blockchain interoperability experience.

Future work includes improving the patterns through sug-
gestions from the interviewees. In addition, use quantitative
methods to evaluate quantitative characteristics of the patterns.
Finally, the development of guidelines to help software archi-
tects design interoperability solutions based on these patterns.

ACKNOWLEDGMENT

Guzmán Llambı́as was supported by Pyxis. The research
that gives rise to the results presented in this publication
received funding from the Agencia Nacional de Investigación
e Innovación under the code POS NAC 2022 4 174476. I
am very grateful to all the interviewees who participated and
to Diego Vallespir for his support with the interviews. Icons
made by Freepik from www.flaticon.com

REFERENCES

[1] X. Xu, C. Pautasso, L. Zhu, Q. Lu, and I. Weber, “A pattern
collection for blockchain-based applications,” in Proceedings of the
23rd European Conference on Pattern Languages of Programs, ser.
EuroPLoP ’18, New York, NY, USA, 2018. [Online]. Available:
https://doi.org/10.1145/3282308.3282312

[2] R. Mühlberger, S. Bachhofner, E. Castelló Ferrer, C. Di Ciccio, I. Weber,
M. Wöhrer, and U. Zdun, “Foundational oracle patterns: Connecting
blockchain to the off-chain world,” in Business Process Management:
Blockchain and Robotic Process Automation Forum, Seville, Spain, Sep.
2020, pp. 35–51.

[3] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A survey
on blockchain interoperability: Past, present, and future trends,” ACM
Comput. Surv., vol. 54, no. 8, pp. 1–41, Oct. 2021. [Online]. Available:
https://doi.org/10.1145/3471140

[4] G. Llambı́as, L. González, and R. Ruggia, “Blockchain interoperability:
a feature-based classification framework and challenges ahead.”

[5] B. Pillai et al., “Cross-blockchain technology: Integra-
tion framework and security assumptions,” IEEE Access,
vol. 10, pp. 41 239–41 259, Apr. 2022. [Online]. Available:
https://doi.org/10.1109/ACCESS.2022.3167172

[6] C. Alexander, The timeless way of building. Oxford, United Kingdom:
New york: Oxford university press, 1979, vol. 1.

[7] X. Xu, I. Weber, and M. Staples, Architecture for blockchain applica-
tions. New York, NY, USA: Springer Cham., 2019.

[8] P. Wegner, “Interoperability,” ACM Comput. Surv., vol. 28,
no. 1, p. 285–287, mar 1996. [Online]. Available:
https://doi.org/10.1145/234313.234424

[9] C. Kohls and S. Panke, “Is that true...? thoughts on the
epistemology of patterns,” in Proceedings of the 16th Conference
on Pattern Languages of Programs. New York, NY, USA:
Association for Computing Machinery, 2009. [Online]. Available:
https://doi.org/10.1145/1943226.1943237

[10] N. Kerth and W. Cunningham, “Using patterns to improve our architec-
tural vision,” IEEE Software, vol. 14, no. 1, pp. 53–59, Feb. 1997.

[11] T. Wellhausen and A. Fiesser, “How to write a pattern? a rough guide
for first-time pattern authors,” in 16th European Conference on Pattern
Languages of Programs, Irsee, Germany, Jul. 2011. [Online]. Available:
https://doi.org/10.1145/2396716.2396721

[12] S. Brinkmann and S. Kvale, Doing Interviews. Thousand Oaks, CA,
USA: SAGE Publications Ltd, 2018.

[13] D. W. Turner III, “Qualitative interview design: A practical guide
for novice investigators.” The Qualitative Report, vol. 15, no. 3, pp.
754–760, Oct. 2022. [Online]. Available: https://doi.org/10.46743/2160-
3715/2010.1178

[14] H. Montgomery et al., “Hyperledger cactus whitepaper,”
Mar. 2022, (accessed Dic. 2023). [Online]. Available:
https://github.com/hyperledger/cacti/blob/7bb39576080592919bea0ac89646b32105e1748e/whitepaper/whitepaper.md



[15] The Weaver Team, “Integration patterns,” (accessed Dic.
2023). [Online]. Available: https://labs.hyperledger.org/weaver-
dlt-interoperability/docs/external/what-is-interoperability/integration-
patterns

[16] Y. Liu, Q. Lu, H.-Y. Paik, and X. Xu, “Design patterns for blockchain-
based self-sovereign identity,” in Proceedings of the European
Conference on Pattern Languages of Programs 2020, ser. EuroPLoP
’20. New York, NY, USA: Association for Computing Machinery,
2020. [Online]. Available: https://doi.org/10.1145/3424771.3424802

[17] M. Wöhrer and U. Zdun, “Design patterns for smart contracts in
the ethereum ecosystem,” in 2018 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and Commu-
nications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), 2018, pp. 1513–1520.


