Kerr Microcombs in Integrated Waveguide Ring Resonators enabled by Graphene Nonlinearity

Alexandros Pitilakis1 and Emmanouil E Kriezis1

1Affiliation not available

March 18, 2024
Kerr Microcombs in Integrated Waveguide Ring Resonators enabled by Graphene Nonlinearity

Alexandros Pitilakis, Senior Member, IEEE, and Emmanouil E. Kriezis, Senior Member, IEEE

Abstract—We theoretically demonstrate the generation of Kerr microcombs in integrated graphene-clad silicon-nitride slot waveguide ring resonators. In our work, the graphene monolayer provides the enabling nonlinearity, by means of its third-order surface conductivity. We use the Lugiato-Lefever equation framework, modified to incorporate the frequency dispersion of all eigenmode properties, including nonlinearity, in an ultrawide octave-spanning spectrum. The waveguide parameters are rigorously computed by a full-vector mode solver where we input graphene’s full set of electromagnetic properties, both linear and nonlinear; the latter are extracted by quantum perturbation formulas, as a function of graphene’s chemical potential and equilibrium lattice temperature. Our results show the potential of graphene, as a 2D material with electrically tunable linear and nonlinear response, for Kerr combs or other integrated nonlinear devices, such as mode-locked and Q-switched lasers.

Index Terms—Kerr microcomb, graphene, ring resonator, integrated waveguide, silicon nitride, electro-optic, nonlinear optics.

I. INTRODUCTION

Kerr optical frequency combs (OFC) [1]–[3] can be generated by coupling a CW pump laser into a dispersive and nonlinear travelling-wave resonator, Fig. 1. Under specific conditions, the counter-action between group velocity dispersion (GVD) and Kerr-type refractive nonlinearity gives rise to pulse-train output from the resonator, whose spectrum is an OFC, i.e., a set of equidistant ‘teeth’ separated by the free-spectral range (FSR) of the cavity. An OFC is also defined by the balance between the cavity’s aggregate attenuation, which is inversely proportional to its quality (Q) factor, and the parametric gain imparted by external pumping and cascaded four-wave mixing (FWM). Evidently, high values in nonlinearity, Q-factor, and optical confinement are the desired features for the resonator. The most frequently used resonators for Kerr OFC are bulk whispering-galleries, e.g., magnesium fluoride micropillars [4], [5], designed for very high Q-factors and critically coupled to optical fibers. As contemporary practical applications shift towards photonic integrated circuits (PIC), waveguide ring resonator (WRR) Kerr combs have also appeared [6], [7], underpinned by the same principles but also requiring for redesign to exploit the stronger light-matter interaction in integrated nanophotonics. In all resonator platforms, bulk or PIC, the external-control circuitry typically involves one or multiple pump lasers, whose frequency and amplitude can be accurately controlled in a timescale comparable to the roundtrip time, $t_R = 1/\text{FSR}$. The performance of an OFC can be quantified by its footprint, FSR, spectral span (number of teeth), and pumping threshold power. Applications of OFCs include interconnects [8], massively parallel coherent communications [9], RF photonics [10], ultrafast distance measurements (LIDAR) [11], chip-scale atomic clocks [12], dual-microcomb spectroscopy [13], low noise microwave generation [14], integrated optical frequency synthesizers [15], and extremely precise astrophysical measurements [16].

Graphene is an emerging 2D optical semiconductor [17], compatible with standard silicon-photonic technology, allowing for electro-optical control (EOC) over its response in an ultrawide spectral window [18], [19], and exhibiting a high third-order nonlinearity [20]–[23]. These features paved the road towards recent advances in nonlinear applications of graphene-comprising integrated photonic waveguide devices [24], [25], demonstrating its high potential for Kerr OFCs. From a PIC technology perspective, enhancing the light-graphene interaction is a waveguide engineering task, quite similar to dispersion engineering, the cornerstone of Kerr OFCs. Additionally, in graphene-comprising (GC) waveguides, we gain access to extra degrees of freedom, namely the high nonlinearity from the 2D material and the EOC over both its linear and nonlinear properties, albeit in a coupled manner. The recent literature touching upon the generation of Kerr OFCs in usch EOC-PIC-GC-WRR devices is relatively limited: B. Yao et al. present so-far the only experimentally measured Kerr comb in a PIC-GC-WRR [26], where EOC is used to tune the dispersion of the cavity and thus the output OFC; theoretical and numerical works [27]–[29] present designs and analyses of EOC-PIC-GC-WRR. We note, however, that none of above works rigorously considers graphene’s own nonlinearity, much less its spectral dispersion.

In this work we show that graphene’s nonlinear surface conductivity, $\sigma^{(3)}$, can be exploited towards Kerr OFC generation in PIC-WRR. This is accomplished by nanophotonic waveguide engineering in the low-loss silicon-nitride-on-insulator (SNOI) platform, while rigorously accounting for the spectral dispersion in graphene’s properties, including the nonlinearity. Previous related works, e.g., [26], only employed graphene’s linear surface conductivity, $\sigma^{(1)}$, to balance the overall dispersion against the bulk material-induced nonlinear phase. The encouraging results presented in this work tug towards another degree of control over the microcomb, through graphene’s chemical potential (μ_G): This property can be electrically tuned by gating or biasing, in a wide range [30], that instantaneously modifies graphene’s linear and nonlinear properties. Finally, another unveiled path is towards accessing graphene’s rich nonlinear response at higher optical intensities: The non-perturbative regime [31], [32], where photogenerated...
carrier-induced nonlinear refraction coincides with saturable absorption (SA) [25], can potentially further improve the Kerr microcomb performance owing to the simultaneous increase in the parametric gain and decrease in the losses (increase in Q-factor).

The structure of the paper is as follows: Following this introduction, in Section II we present the methods used in the theoretical and numerical treatment of the subject. The results are presented and analyzed in Section III and the summary and conclusions of the work can be found in Section IV.

II. METHODS

The study of Kerr microcombs in this work starts from the presentation and development of the theoretical and computational tools for the numerical simulation and proceeds to the identification of the various operational regimes and the corresponding threshold parameter ranges. We use the Lugiato-Lefever equation (LLE) framework [33], whose parameters are rigorously derived by a full-vector finite-element method (FEM) eigenmode solver applied to the ring waveguide cross-section, Fig. 2, [34]. The numerical solution of the LLE is done using split-step Fourier method (SSFM) [35], modified for the inclusion of fully dispersive linear and nonlinear properties of the waveguide and resonator system. The ultrawideband frequency dispersion of graphene properties, both linear and nonlinear, which are fed to our FEM solver, are computed using well established equilibrium quantum formulas [22], [36].

A. The Lugiato-Lefever Equation Framework

Even though the LLE was first proposed [37] for the study of the interplay of FWM with diffraction in transverse (lateral) profiles arising in nonlinear cavities, the same equation can be used for the study of interplay between FWM and dispersion in longitudinal profiles [38]; the LLE equation can be easily derived from the infinite Ikeda map [39] describing the pumped nonlinear system in a ring cavity. For our purposes, the LLE provides a simple and elegant one-equation framework that allows for the full treatment of Kerr microcombs [33], [40], [41], both in the transient/dynamic and in the static regime; the former is crucial for practical “locking” to the soliton operation regime while the latter is insightful for the identification of the parameter ranges defining each operation regime. Finally, another advantage of the LLE, from the implementation perspective, is that it is essentially a damped, detuned and driven version of the nonlinear Schrödinger equation (NLSE), which have been extensively employed in straight waveguide nonlinear applications, from fibers [42] to integrated waveguides [43], and recently in increasingly more advanced formulations [25]. The alternative approach to the LLE, for the study of Kerr microcombs, is a coupled-mode theory (CMT) framework in the time domain [44], where the field in the resonator is expanded in the spectrum of its eigenmodes, which are nonlinearly coupled via FWM. It has been shown that the two approaches, LLE and CMT, are equivalent under certain approximations and can both benefit from computations in the spectral domain via FFT formulations [45].

The most widely used form of the LLE is in the two-timescales format: A slow-timeframe (t), corresponding to the evolutions in the order of the round-trip time (tR) in the travelling-wave resonator, and a fast-timeframe (τ), corresponding to the intra-cavity evolutions and assumed to be moving with the group-velocity of the pumped resonance. The fast-time can be defined either in the interval τ = [−tR/2, tR/2] or [0, tR), equivalent to the azimuth angle scanning the resonator circumference φR = [0, 2π], or as the Fourier-inverse of the modal expansion. We have opted for the former, as it provides a solid connection to the CMT framework and to the dispersive properties of the eigenmodes in a broad spectrum. The cavity is pumped by an external CW laser at frequency ωp, tuned near the ‘closest cold-cavity resonance’ (CCCR) natural frequency. For this configuration, the LLE-like equation for the study of Kerr microcomb in the two-timescales format can be written following standard notation, e.g., see section 5.2 and Eq. (50) in [3] or Eq. (2) in [33], as

\[
\frac{\partial E(t, \tau)}{\partial t} = \left(L F_{NLSE} - \frac{\theta}{2} - i \delta_0 \right) E(t, \tau) + \sqrt{\theta} E_{in}, \quad (1)
\]

where \(F_{NLSE} \) denotes an NLSE-like operator in [1/m] units

\[
F_{NLSE} = -\frac{\alpha}{2} + i \sum_{n \geq 2} \frac{\delta_n}{n!} \left(i \frac{\partial}{\partial \tau} \right)^n + i \gamma |E|^2, \quad (2)
\]

using the \(\exp (i \omega \tau) \) sign convention throughout. The various parameters and variables appearing in (1) and (2) are defined as follows:

- \(E(t, \tau) \) is the E-field amplitude inside the resonator (i.e., along the fast-time \(\tau \)) as the slow-time \((t) \) progresses, normalized so that \(|E|^2 \) directly measures the power in Watts.
- \(L \) is the effective cavity length, e.g., \(L = 2\pi R \) for a ring microresonator of radius \(R \).
- \(t_R \) is the round-trip time and corresponds to the inverse of the FSR of the comb. It can be computed as \(t_R = \frac{Ln_{g0}}{C0} \), with \(n_{g0} \) being the group index at the central resonance frequency of the cavity, which is typically the CCCR frequency, \(n_{g0} = n_g(\omega_{CCCR}) \approx n_g(\omega_p) \).
- \(\alpha \) in [1/m] units is the propagation power-loss coefficient of the waveguide that makes up the cavity; in resonator
terms, it accounts for its intrinsic (resistive and radiative) linewidth or Q-factor, via $\alpha L Q_{\text{int}} = t_R \omega_p$.

- β_n, with $n \geq 2$, are the dispersion parameters of the waveguide, with β_2 corresponding to GVD in $[s^2/m]$ units. When β_3 and higher are omitted, the equation is identical to the LLE. $\beta_1 = n_{gr}/c_0$ is related to the t_R.

- γ is the nonlinear parameter of the waveguide in $[1/m/W]$ units, identical to the one used in the NLSE.

- θ is the power coupling coefficient of the cavity, related to its external Q-factor or linewidth. The resonator is typically designed for critical coupling, i.e., $Q_{\text{ext}} \approx Q_{\text{int}}$.

- δ_0 is the normalized phase detuning of the pump with respect to the CCCR, i.e., $\delta_0 = [\beta_0 (\omega_{\text{CCR}}) - \beta_0 (\omega_p)]L$, where $\beta_0 = n_{\text{eff}} k_0$ is the phase constant.

- E_{in} is the pumped CW E-field amplitude, with $|E_{\text{in}}|^2$ measured in Watts.

In the simplest form of the above LLE-like master equation, all the parameters are constants and only the GVD parameter is considered (i.e., $\beta_n = 0$ for $n \geq 3$), in which case the master equation corresponds exactly to the original LLE [38]. However, extensions can be devised, first and foremost to modulate the pump field, E_p, and calculating the fast-time form of the total E-field inside the resonator at that slow-time instant, i.e., $E(t_0, \tau)$. The calculation involves operations in the fast-time domain and in the spectral/frequency domain (the reciprocal of the fast-time), which are interrelated by the periodicity of Fourier transform in these travelling wave resonators, $E(\tau) \leftrightarrow \tilde{E}(\omega)$. The initial cavity field, i.e., $E(t_{\text{init}}, \tau)$, is noise-seeded by vacuum fluctuations. Externally controlled parameters of the modeled system, e.g., the pump frequency (detuning) or power, can be changed along the slow-time. Finally, the total power of the produced comb and the out-coupled fields can be computed at each slow-time instant from $E(t, \tau)$, inside the resonator.

In our implementation, the spectral domain corresponds to the azimuthal-mode resonance orders relevant to the pumped resonance (e.g., to the integers $\mu = [-100, +100]$, with $\mu = 0$ being the pumped CCCR), and not to a set of equidistant spectral frequencies. The effect of the linear dispersive terms, i.e., the first two in the RHS of (2) and the last two terms in the parentheses in the RHS of (1), are directly introduced in the spectral (ω_{μ}, or just μ) domain using discrete Fourier transform of the fast-time fields; this approach has been proven [45] to be equivalent to CMT approaches [44] but more computationally efficient than performing all operations in the time domain. The dispersion of the modal attenuation constant, $\tilde{\alpha}(\omega)$, that is relevant to this work, is directly introduced as an imaginary part in the real-valued phase constant, $\beta(\omega)$. This approach is far superior to time-derivatives, e.g., Section 2.3.2 in [42], from the numerical implementation standpoint; moreover, it allows us to consider an arbitrary order of terms, much how it is standard practice for the phase dispersion.

The effect of the instantaneous nonlinear terms is introduced to the intracavity E-fields in the fast-time (τ) domain, by a slow-time stepping algorithm, i.e., in an averaged/mean-fields sense [38]. The slow-time step size $\Delta \tau$ can be adaptively adjusted along the simulation, with respect to the overall magnitude of the nonlinearity and the power, to improve computational efficiency; in terms of the perturbation theory, the criterion to satisfy is that the peak accumulated phase due to nonlinear effects is vanishingly small,

$$\Delta \Phi_{\text{NL}} = \gamma P_{\text{peak}} \Delta \tau' \ll 1, \quad (3)$$

where $P_{\text{peak}} = \max_{\tau} \{|E(t, \tau)|^2\}$ and $\tau' = (L/t_R)t$, in $[m]$ units, is the normalized slow-time, directly corresponding to the distance traveled along the resonator circumference after slow-time t at the mean group velocity. Now, the dispersion of the nonlinear mode parameter, $\tilde{\gamma}(\omega)$, is introduced as follows: Considering only the last term in (2), plugged into (1) with everything else zeroed out, we write $\partial E/\partial z' = +i\gamma |E|^2 E =$

![Fig. 2. Cross-section of the graphene-clad SiN-slot waveguide from which the dispersive LLE properties are rigorously extracted.](image)
\(\bar{\mathcal{N}}_\gamma E\); now, the nonlinear \(\tau\)-domain operator can be formally written using the \(\bar{\gamma}\) spectra and fast-time field \(E = E(\tau)\) as
\[
\bar{\mathcal{N}}_\gamma = \frac{i\text{IFT}[\bar{\gamma}(\omega)\text{FT}[|E|^2 E]]}{E}
\]
in [1/m] units, where FT/IFT is the direct/inverse Fourier pair. In the standard perturbation practice, the fast-time field after a nonlinear step \(\Delta z' = (L/t_R)\Delta t\) can be written as
\[
\frac{\partial E}{\partial z'} = \bar{\mathcal{N}}_\gamma E \Rightarrow E(z' + \Delta z', \tau) \approx E(z', \tau) \exp(\bar{\mathcal{N}}, \Delta z').
\]
Finally, an iterative Crank-Nicolson (CN)-like numerical scheme is also employed to increase the step size with controlled error; it involves a fictitious mid-step and the consequent splitting of the linear and nonlinear contributions in two halves. Typically, 2-5 CN iterations are enough for \(\Delta \Phi_{\text{NL}} \approx 0.1\) rad.

Summarizing the SSFM algorithm for the solution of the LLE: Knowing the ‘step-start’ E-field inside the resonator, i.e., \(E(t_{\text{start}}, \tau)\), the following procedures take place for each slow-time step \(\Delta t\), i.e., to compute the ‘step-end’ filed \(E(t_{\text{end}}, \tau)\):

1) External \(t\)-dependent parameters (e.g., \(\delta_0\)) are adjusted.
2) Maximum step-size \(\Delta t\) is computed using (3).
3) In-coupled pump, \(\sqrt{2}E_{\text{in}}\), in (1), is added in \(\tau\)-domain; if \(\theta\) is dispersive, addition is done in \(\omega_{\mu\tau}\)-domain.
4) Dispersive linear/nonlinear term contribution is added in the \(\omega_{\mu\tau}\)-domain, respectively, as explained above.
5) CN iterations are performed until \(E(t_{\text{end}}, \tau)\) converges.
6) Comb power and out-coupled spectra are computed.

C. Identifying Operation Regimes and Critical Parameters

The pumped nonlinear/dispersive resonator system provides a rich platform for nonlinear dynamics, of which the phase-locked cavity soliton is only one regime. These dynamics can be studied via the steady-state solutions of the LLE, derived by negating the slow-time derivative and, optionally, also the fast-time derivative. Without going into details that pertain to the bifurcations of the nonlinear system [47], we will say that the parameters that mostly govern its response are the CW pumping power, \(|E_{\text{in}}|^2\), the pump frequency detuning, \(\delta \omega\), and the GVD, \(\beta_2\); note that the sign relation between \(\{\delta \omega, \beta_2, \gamma\}\) also defines the operation regime. For instance, for bright solitons to arise, a combination of self-focusing nonlinearity (positive \(\gamma\)) and anomalous GVD (negative \(\beta_2\)) is typically used; however, the same dynamics can be attained for opposite-sign parameter values, i.e., for defocusing nonlinearity (negative \(\gamma\)) with normal GVD (positive \(\beta_2\)).

The relevant conclusions extracted from such a stability analysis are the following: (i) there is always, i.e., for any detuning, a laser power range in which a Kerr comb can be generated, and (ii) there is an optimal path to traverse the LLE-solution bifurcation map to lock-in to a stable Kerr comb. Building upon the latter conclusion, the detuning of the pump laser frequency with respect to the CCCR is both one of the critical parameters for a Kerr microcomb and one that can be easily controlled (externally); so it is immensely important. Typically, the detuning is temporally scanned (specifically by slowly de/increasing the pump frequency through the main resonance, for anomalous/normal GVD regime, respectively) to lock into a stable cavity soliton regime, whose spectrum corresponds to a wideband comb.

The four characteristic operation regimes, for the most often used case of \{positive \(\gamma\); anomalous GVD; CW pump\} can be successively attained for pump frequency decreased through the CCCR (starting from \(\omega_p > \omega_{\text{CCR}}\), i.e., \(\delta \omega > 0\)):

1) Modulation Instability (MI) induced stable dissipative structures in the \(\tau\)-domain, also referred to as “Turing rolls”; the spectrum is a primary comb with teeth spaced by several FSRs and is attained for \(\delta \omega > 0\) or near-zero.
2) MI-induced chaos, i.e., unstable dissipative structures with a broad but noisy spectrum centered at \(\omega_p\); this regime typically arises for slightly negative \(\delta \omega\).
3) Soliton breathers (or molecules), i.e., multiple unstable dissipative cavity solitons that rapidly evolve (e.g., shift, split, merge, collide or even disappear) as \(t\) advances; this transitional regime is typically “brief” in \(\delta \omega\) tuning.
4) Phase-locked stable cavity soliton(s), one or multiple, with narrow hyperbolic secant pulse shapes corresponding to a well-formed broadband comb-like spectrum; this regime is largely stable, and the soliton phase and amplitude can be mildly tuned for a broad \(\delta \omega < 0\) range.

For larger detuning, above or below the CCCR frequency, the CW laser cannot efficiently couple power into the resonator and, thus, there are no temporal dynamics (output is CW).
in terms of the quantities defined in this work as

\[F^2 = \frac{|\gamma|}{L_0^2} |E_{in}|^2. \]

(6)

Threshold values for primary comb formation are in the order of \(F^2 \approx 2 \) but, depending on dispersion, full combs require \(F^2 > 10 \). In all cases, low waveguide losses (high Q-factor), high nonlinearity, and short cavities help decrease the pumping power threshold. However, note that, in integrated micro-resonators, \(L \) cannot be decreased too much, because bending (radiative) losses would become significant and add to the ohmic (resistive) losses for whom the modal attenuation \(\alpha \) primarily accounts for in this work.

D. Electro-optical Control via Graphene

In this work, we assume that a graphene monolayer sheet is covering an integrated WRR in such a way that the lightweight travelling along the waveguide can maximally interact with it. Appropriately designed electrical contacts are assumed integrated in the structure, e.g., [26], [30], [31], without interfering with the optical propagation, so that graphene’s optical response can be tuned practically instantaneously and with only a few-V voltages. In quantum electronic terms, tuning refers to a change in graphene’s chemical potential (\(\mu_c \)), or Fermi energy, exploiting its linear energy-momentum dispersion and the zero-bandgap feature, valid near the tip of the Dirac cone [17].

Theoretical and experimental evidence for linear and third-order nonlinear surface conductivity, \(\sigma^{(1)} \) and \(\sigma^{(3)} \), respectively, confirm the importance of tuning \(\mu_c \) with respect to the *half-photon energy*, i.e., \(\mu_c \leq \hbar \omega/2 \).

In the NIR spectrum, pristine graphene (\(\mu_c \ll \hbar \omega/2 \)) is quite absorptive despite its atomic thickness: its linear conductivity takes the characteristic value \(\sigma^{(1)} \approx \sigma_0 \approx q^2/4\hbar \approx 61 \mu\text{S} \) responsible for the 2.3% absorption by a free-standing monolayer at normal incidence. Tuning \(\mu_c \gg \hbar \omega/2 \) cancels the interband absorption mechanism (Pauli blocking) and thus reduces graphene absorption making it optically transparent, \(\sigma^{(1)} \ll \sigma_0 \). The spectra \(\sigma^{(1)}(\omega) \) can be computed by the Kubo-formulas [22], [36] and depend, apart from \(\mu_c \), also on the ambient temperature and quality of graphene sample; the latter is usually quantified by the intraband and interband momentum relaxation lifetimes (or rates) or the carrier mobility. Note that the \(\text{Imag} \{\tilde{\sigma}^{(1)}\} \), contributing to the phase constant, can also be electrically controlled and exhibits a sharp resonance (maximization) near \(\mu_c = \hbar \omega/2 \); this property was used in [26] to tune the dispersion of the Kerr comb.

The third-order Kerr-like perturbative nonlinearity of graphene in the NIR, both its magnitude and its sign, have been a topic of much debate over the last 15 years [48]. The present consensus is that near \(\mu_c = \hbar \omega/2 \) graphene nonlinearity is defocusing with an peak in its magnitude, which is appreciable, e.g., \(\sigma^{(3)} \approx +1 \times 10^{-21} \text{S/m/V}^2 \). The actual value and sign can vary, especially with \(2\mu_c/\hbar \omega \), while some rather involved expressions for the complex-valued \(\tilde{\sigma}^{(3)}(\omega) \) spectra have been extracted by quantum calculations at equilibrium [22], [36]. Note that by \(\sigma^{(3)}_{\text{Kerr}} \) we refer to the ‘self-acting’ nonlinearity, i.e., the response of the medium ontto itself when illuminated by monochromatic radiation \(\omega \). Formally, we write \(\sigma^{(3)}_{\text{Kerr}} \) as a fourth-rank tensor [22], [36], \(\sigma^{(3)}_{\text{Kerr}}(-\omega, \omega, \omega) \) with \(\{a, b, c, d\} = \{x, y, z\} \) being the components of the E-field; symmetries can be used to greatly simplify it, eventually revealing that only one tensor component, e.g., \(\sigma^{(3)}_{xxzz} \), is enough to fully quantify graphene’s Kerr response for the in-plane arrangement depicted in Fig. 2. Relations of the nonlinear surface conductivity to the equivalent bulk-medium nonlinear index (\(n_2 \)) or susceptibility \(\chi^{(3)} \), i.e., when graphene is modeled as a sub-mm thick slab, can be found in [23]. It is worth pointing out that \(\text{Imag} \{\tilde{\sigma}^{(3)}\} \) corresponds to the Kerr effect, while \(\text{Real} \{\tilde{\sigma}^{(3)}\} \), which can also be nonzero, denotes induced transparency (saturable absorption or photo-bleaching) or induced absorption (similar to two-photon absorption), depending on its sign. Finally, we point out that for high effective optical intensities, e.g., above 10 MW/cm², graphene nonlinearity enters into a non-perturbative electrodynamic regime where more complicated transient effects arise [30], [49]; of particular interest is high photogenerated carrier nonlinear refraction and deep saturable absorption [25], [31].

III. RESULTS

Our aim is to showcase the potential of Kerr microcomb generation in integrated waveguide ring resonators operating near the telecom wavelength of \(\lambda_0 = 1550 \text{ nm} \) (193.4 THz). To achieve a full-octave span we need to study the spectral band between [0.75, 1.5] \(\lambda_0 \) which is [2.33, 1.16] \(\mu\text{m} \) in our case, i.e., spanning 130 THz (130-260 THz). Most importantly, the lower wavelength is very close to silicon’s bandgap, where absorption will be detrimental. Thus, the integrated platform of choice in this work is Si\(_3\)N\(_4\)-on-insulator (SNOI), where foundry technology enables very low losses and high geometric feature resolution. The latter is important because graphene’s maximum nonlinearity in this band is defocusing (\(\gamma < 0 \)), meaning that our waveguide must have normal GVD for bright solitons to emerge. Now, normal GVD can be attained by the slot waveguide archetype (wire/rib type waveguides have anomalous dispersion), where waveguide engineering [24] has shown that a sufficiently narrow spacing between the two rails, e.g., 50 nm, is required to maximize the TE-polarized mode-field confinement in the slot and on the graphene sheet, which leads to a maximal \(|\gamma| \). The refractive index of Si\(_3\)N\(_4\) is given by Sellmeier-like formulas [50] with a value of 1.9793 at 1550 nm; for its nonlinear index, we assume a flat value of \(n_2 = 2.4 \times 10^{-19} \text{ m}^2/\text{W} \).

Concerning graphene, an unpatterned monolayer is employed in this work, assumed to fully clad the SNOI waveguides, Fig. 2. As described in the Methods, Section II-D, its relevant electromagnetic properties are: (i) \(\tilde{\sigma}^{(1)}(\omega; \mu_c, T, \tau_{i.e}) \), used by the FEM waveguide solver to compute the phase and attenuation spectra, and (ii) \(\tilde{\sigma}^{(3)}(\omega; \mu_c, T, \tau_{i.e}) \), used in a post-processing of the transverse waveguide mode profile to compute the self-acting Kerr nonlinear parameter spectra. In this work, we used the formulas of [22] with a lattice temperature of 300 K and assuming regular quality graphene

\[\text{For } \tilde{\sigma}^{(1)} \text{, Eq. (11)-(12) and (B1); for } \tilde{\sigma}^{(3)} \text{, Eq. (14)-(26) and (34).} \]

1For \(\tilde{\sigma}^{(1)} \), Eq. (11)-(12) and (B1); for \(\tilde{\sigma}^{(3)} \), Eq. (14)-(26) and (34).
samples (intra- and interband momentum relaxation lifetimes \(\tau_{i,e} = 20 \) fs).

A. Preliminary Dispersionless Case

We start from a preliminary dispersionless case study, where only the key LLE parameters have been introduced, using spectrum-averaged values. We consider a SNOI-slot waveguide ring resonator made of two SiN rails of 1\(\mu \)m×0.5\(\mu \)m spaced by 50 nm and clad by a graphene monolayer, Fig. 2, with a constant linear conductivity \(\sigma > \hbar \omega / 2 \) (corresponding to the low-loss regime) and a constant dispersionless nonlinear surface conductivity of \(\sigma^{(3)} = +i10^{-21} \) [S(m/V)^2], purely imaginary with the positive sign corresponding to defocusing refraction. The ring-resonator radius was chosen so that its circumference is \(L = 100 \) \(\mu \)m. From these, we calculate the LLE parameters at the pumping wavelength of 1550 nm (193.4 THz): \(n_{gr0} \approx 2 \) (FSR is 1.5 THz and roundtrip time is 0.67 ps), \(\alpha \approx 0.8/\text{mm} \) (\(Q_{\text{int}} \approx 10^4 \)), \(\gamma \approx -100/\text{m/W} \), \(\beta_2 = +1.1 \) ps^2/m (\(D_2 = -2.3 \) GHz), and \(\beta_3 = -0.0025 \) ps^3/m (\(D_3 = +49 \) MHz). Assuming critical coupling (\(Q_{\text{ext}} = Q_{\text{int}} \)) at the central frequency, (6) reveals that a 5 W pumping power is required to produce an appreciable Kerr comb; this was numerically verified in Fig. 3, by scanning the pump-laser detuning from –50 to 200 GHz. This configuration produces a comb with a 60 dB span from 120 to 270 THz [Fig.3(b) near \(t = 12.5 \) ns] corresponding to 125% octave. The four characteristic regimes (Turing rolls, MI-chaos, soliton breather, phase-locked soliton) are observed as the pump frequency is increased. We also note that the produced soliton, albeit stable for a large detuning range, is quite dispersive as denoted by the diagonal traces in Fig. 3(a) between 7 and 12.5 ns, owing to the high GVD and TOD. This preliminary case study helps us gain confidence that graphene can indeed produce Kerr microcombs, with the same features as the ones observed in more well understood configurations.

B. Full Waveguide Dispersion

The \(\sigma^{(1)} \) and \(\sigma^{(3)} \) values chosen for graphene in the previous case-study were optimistic and dispersionless, as evidenced by the symmetric spectra in Fig. 3(b). We take a step towards more realistic modeling by including the dispersion of all waveguide parameters in the LLE. We use quantum-electronic theory predicted formulas for graphene’s electromagnetic parameters, which dominate the dispersion of the waveguide losses (\(\alpha \) or \(Q_{\text{int}} \)) and nonlinear parameter (\(\gamma \)), respectively. Note that, for this waveguide, the phase dispersion (i.e., the parameters \(\beta_n, n \geq 2 \)) is dominated by the waveguide and bulk SNOI material dispersion, and not by graphene’s \(\text{Im} \{ \sigma^{(1)} \} \) dispersion.

To assess the magnitude of the dispersion, we sweep graphene’s chemical potential (\(\mu_c \)) and extract the spectra of the waveguide parameters with a mode solver, Fig. 2, seeking optimum configurations for an octave span around the central pumping at 1550 nm; for this study, the SiN rail width was reduced to 800 nm. The resulting parameter spectra are depicted in Fig. 4, where we observe graphene’s well-known trade-off between low losses and high nonlinearity near the half-photon energy line, in panels (a) and (c); in panel (b), we note that GVD is lower in the same region, which is favorable for more stable solitons, and is normal in all studied region. The higher order phase dispersion parameters, \(\beta_n \) for \(n \leq 3 \), are extracted by numerical differentiation of the \(n_{\text{eff}}(\omega) \) spectra computed by the mode solver. The dispersion of the coupling coefficient \(\theta \) was not considered, i.e., a constant \(Q_{\text{ext}} \) was selected, for critical coupling on the main resonance.

![Graph showing LLE parameters](image)

Fig. 4. Frequency and \(\mu_c \) dispersion of the waveguide parameters that are introduced in the LLE: (a) attenuation, (b) GVD, and (c) nonlinear parameter. The slot waveguide is made of two 800 nm×500 nm SiN rails spaced by 50 nm and overlaid by a graphene monolayer (\(\nu_{\text{intra, int}} = 20 \) fs) at room temperature.

![Graph showing LLE simulation](image)

Fig. 5. The evolution of the 1.48 THz-FSR comb’s intracavity (a) spectrum and (b) total power, as the pump detuning is swept through the 1550 nm resonance. The pumping power is 10 W and the full wideband dispersion of all parameters is accounted for as explained in the text.

Now, to evaluate the performance of this more realistic Kerr comb, we choose \(\mu_c = 0.5 \) eV as a compromise between low losses and adequately negative (defocusing) nonlinearity. We perform an LLE simulation with the SSFM with a higher CW...
pump power, 10 W, to compensate for the lower nonlinear parameter; we sweep the pump detuning from -10 to +50 GHz, acquiring the comb depicted in Fig. 5. The 60 dB bandwidth spans from 165 to 255 THz (55% octave), i.e., is less than half of what was attained in the optimistic dispersionless case. The spectra are naturally asymmetric, and we note a higher efficiency towards the blue flank, i.e., to the region where γ remains negative despite the increase of the losses; the red flank of the comb spectrum is more suppressed owing to the reduction of γ, Fig. 4(c).

C. Further Improvement

Revisiting (6), where the figure-of-merit $\mathcal{F} = \gamma/\alpha^2$ minimizes the pumping power for given L, we apply a spectral weighting on the $(\lambda_0, \mu_\varepsilon)$-dependent heatmaps of Fig. 4(a) and (c). From these, we infer that a two-fold decrease in $|E_{in}|^2$ could be achieved by pumping near $\lambda_0 \approx 1.95 \mu m$ with graphene set at $\mu_\varepsilon \approx 0.43$ eV.

Additionally, the SNOI waveguide dimensions could be re-engineered to seek an optimal configuration between $\{\alpha, \beta, \gamma\}$ or one could investigate graphene’s other aspect, e.g., the region $\mu_\varepsilon > \hbar \omega$ where its nonlinearity is self-focusing (with wire-type waveguide) or what improvement is attained for higher quality samples ($\tau_{\text{intra/inter}} > 20$ fs).

Finally, we could probe graphene’s richer nonlinear photoconductivity when it is pumped into the non-equilibrium thermodynamic regime where, apart from thermal effects, we must also consider the photogenerated carrier temporal dynamics, which are in the order of the roundtrip time. In such a regime, the combination of nonlinear refraction and saturable absorption [25], corresponding to higher γ and Q, respectively, offer an ideal combination for enhanced performance in Kerr comb generation.

IV. Conclusion and Outlook

We have theoretically and numerically demonstrated that graphene’s own third-order nonlinearity can be used to produce voltage-controlled octave-spanning THz-wide FSR Kerr microcombs, when a simple monolayer clads an engineered silicon-nitride slot-waveguide ring resonator. The analysis was carried out using the Lugato-Lefever equation framework, which was modified to include the ultrawideband frequency dispersion of all waveguide parameters, including the all-important nonlinearity. For the LLE parameters, we utilized a rigorous full-vector mode-solver formulation, fed by graphene’s dispersive linear and nonlinear surface conductivities; these were computed by perturbatively-extracted quantum-electronic formulas at thermal equilibrium.

These results show that graphene’s voltage-tunable response can be more elaborately harnessed, e.g., in tandem with pump laser detuning or modulation, for enhanced Kerr comb control. Its exploitation in nonlinear devices can be extended to other resonator-based devices, e.g., mode-locked and Q-switched lasers [51], or to non-resonant devices, e.g., supercontinuum generation or topological lattices. Finally, the LLE formulation outlined here can be helpful in modeling other nonlinear systems or devices characterized by pronounced and ultrawideband dispersion.

References
