Emergency surgical intervention in Microwave ablation-induced massive lung necrosis

Ali Kimiaei¹, Seyedehtina Safaei¹, Pinar Çağan², and Cemal Asim Kutlu²

¹Bahcesehir University Faculty of Medicine
²Medical Park Göztepe hospital

March 17, 2024

Title: Emergency surgical intervention in Microwave ablation-induced massive lung necrosis

Authors and their affiliations

Ali Kimiaei
- Bahçeşehir University Faculty of Medicine
- ORCID: 0000-0003-0845-9556
- Akimiaei@outlook.com

Seyedehtina Safaei
- Bahçeşehir University Faculty of Medicine
- ORCID: 0009-0002-5368-3979
- Tinasafaei@outlook.com

Pinar Çağan
- Medical Park Göztepe hospital, department of thoracic surgery, Istanbul, Turkey
- VM Medical Park maltepe hospital, department of thoracic surgery, Istanbul, Turkey
- Bahçeşehir University Faculty of Medicine, department of thoracic surgery, Istanbul, Turkey
- pinarcagan@yahoo.com

Cemal Asim Kutlu
- Medical Park Göztepe Hospital, head, department of Thoracic surgery, Istanbul, Turkey
- Bahçeşehir University Faculty of Medicine, department of thoracic surgery, Istanbul, Turkey
- cemalasim.kutlu@med.bau.edu.tr

Corresponding author:

Name: Ali Kimiaei

Affiliation: Bahcesehir University School of Medicine

Address: Shahrabi street, Tehran, Tehran, Iran

Postcode: 1767616977

Tel: +98-912-086-8815

Financial Disclosure Statement:
We confirm that we have not utilized any form of financial assistance or funding for this project.

Conflict of Interest Statement:

We would like to declare that there are no conflicts of interest present in our involvement with this project.

Author contribution statement

Ali Kimiaei: Conceptualization, methodology, validation, investigation, resource provision, data curation, original draft writing, review and editing, visualization, and project administration. Seyedhtina Safaei: Conceptualization, methodology, validation, investigation, resource provision, data curation, original draft writing, review and editing, visualization, and project administration. Pinar Çagan: Conceptualization, Validation, Writing - Review & Editing, and Supervision. Cemal Asim Kutlu: Conceptualization, Validation, Writing - Review & Editing, and Supervision.

Data availability statement

Not applicable

Ethics approval statement

Not applicable

Patient consent statement

Written informed consent to publish this case report was obtained from the patient.

Permission to reproduce material from other sources

Not applicable

Clinical trial registration

Not applicable

Keywords: microwave ablation, pulmonary metastasis, massive lung necrosis

Introduction:

Microwave ablation (MWA) has become an increasingly used procedure for the management of lung nodules in recent years. There are several indications for MWA in the management of lung cancer. These include both primary and secondary lung tumors, particularly for patients with up to five pulmonary metastases <3.5 cm or primary non-small-cell lung tumors ≤3 cm in diameter (1). We report a rare complication of MWA in a 33-year-old female with lung metastases from colon cancer. After ablation, massive pulmonary necrosis and tension pneumothorax arose, which were managed by the removal of serous pockets containing hematoma and wedge resection in the lateral basal segment of the lower lobe.

Case presentation:

A 33-year-old female patient presented to the emergency department with worsening back pain and dyspnea, three days after undergoing MWA for liver and lung metastases. The patient’s medical history is significant for metastatic colon cancer, smoking, and alcohol use. Previous surgical interventions include segmental colon and liver resections.

The recent MWA procedure employed the Surgnova Dophi 150E ablation device (Zhejiang, China) and was done CT-guided at 75W for 5 minutes, creating a 3×3 cm zone. The CT scan performed before the procedure shows a metastatic nodule on the right lung near the interlobar fissure and visceral pleura (Figure 1).

Upon physical examination, decreased breath sounds in the lower right, inspiratory crackles in the lower and middle right, and minimal crackles in the lower left were noted. Eventually, a chest CT revealed a minimal pneumothorax in the right lung, pleural effusion, and consolidations in the lower right lobe. The patient
was admitted, and tazocin (piperacillin, tazobactam), intravenous fluids, and nasal oxygen (2 L/min) were administered.

Subsequently, two days later, a chest x-ray revealed an increase in fluid, and the patient developed dyspnea. A catheter thoracostomy was performed, revealing hemorrhagic fluids. Pulmonary CTA disclosed localized pleurisy on the right and minimal pleurisy on the left (Figure 2). Fluid was present in the right interlobar fissure, and parenchymal collapse was detected in the lower zones of both lungs. Due to the hemorrhagic fluid and the radiological findings, thoracoscopic debridement was recommended. However, the patient declined this intervention.

Nine days after the emergency visit, the patient’s general condition improved, and the effusions regressed. She was discharged in the morning but returned to the emergency department later that day due to sudden, severe chest pain. A chest x-ray revealed a total pneumothorax and a tube thoracostomy was applied.

Methods:
A thoracotomy was performed to control air leakage. With the patient in the left lateral decubitus position, a 3 cm incision was made at the right 6th intercostal space to access the thoracic cavity. Upon optical observation, serous pockets containing hematoma in both anterior and posterior locations were identified. The pockets were opened, and hematoma and fibrin debris were cleared. Following pneumolysis, the upper lobe and the 6th segment were intact, while the lateral segments of the lower lobe and the middle lobe formed a cavity covered in yellow fibrin with visible bronchial openings (Figure 3). The damaged parenchyma was approximated with Vicryl sutures, and a wedge resection was performed with three staples to partially close the defect in the lateral basal segment of the lower lobe. Due to the inability to fully close the defect, the incision was enlarged for primary repair with 3/0 Vicryl in the defective areas of the middle and lower lobes. Finally, air leakage control was successful, and following bleeding control, one 24F chest tube was inserted, and the layers were properly closed. The patient successfully recovered and was discharged two days later (Figure 4).

Conclusion:
In conclusion, while MWA can be used in the management of lung metastases, it is not a complication-free procedure, and it is crucial to bear in mind the elevated risks of complications, particularly in lesions proximate to the visceral pleura. We believe ablating lesions in these locations should be carefully assessed and rethought, given the increased risk observed in our case and previous studies.

Discussion:
The surgical management of lung metastases is personalized based on the characteristics of the tumor, its extensions, and stage (2). Microwave and radiofrequency ablation can be potential alternatives if the tumor is not resectable or in the case of patient refusal.

In a recent meta-analysis on MWA usage in lung cancer, the study reported 81.1% (75.8%-86.0%) complete ablation rates (3). Median local tumor progression-free survival stood at 31.5 months (19.0-44.0 months), and overall survival was 25.6 months (19.4-31.8 months) (3). Stratification by tumor type revealed an estimated 18.7 months of overall survival for pulmonary metastasis and 24.4 months (16.9-31.8 months) for primary lung cancer (3). Progression-free survival (PFS) was 8.4 months (3.6-13.2 months), with a 3-year PFS rate of 56.0% (41.1%-70.9%) (3).

Furthermore, in a study assessing the safety of MWA procedures adjacent to the interlobar fissure, the overall success rate for ablation was 95.5%, and the PFS rates at 3, 6, 9, and 12 months were 89.4%, 83.3%, 74.2%, and 63.6%, respectively (4). Common complications observed included pneumothorax (34.8%), pleural effusion (24.2%), cavity formation (18.2%), and pulmonary infection (7.6%) (4). Other complications of MWA include pulmonary hemorrhage, chest wall injury, pulmonary abscess, thermal injury to adjacent structures, and tumor recurrence (1). It was suggested that puncturing the antenna through the interlobar fissure might pose a potential risk for complications (4).
The only reported case of massive lung necrosis after MWA involved an elderly male patient in his 80s diagnosed with lung squamous cell carcinoma (5). On the fourth day post-MWA, the development of pneumothorax and dyspnea and failure to manage the symptoms resulted in an urgent left upper lobectomy (5). The authors suggested that the elastic properties of the lung tissue in the elderly are more fragile, requiring a reduced frequency and time threshold when performing MWA in this population (5). However, massive necrosis in our 33-year-old patient raises questions about potential contributing factors in younger individuals, such as tumor location and characteristics or technical aspects of the procedure.

References:

