Dependencies of Simulated Convective Cell and System Growth Biases on Atmospheric Instability and Model Resolution

Zhixiao Zhang1, Adam Varble2, Zhe Feng3, James Marquis4, Joseph Clinton Hardin3, and Edward J. Zipser5

1University of Oxford
2Pacific Northwest National Laboratory
3Pacific Northwest National Laboratory (DOE)
4Unknown
5Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah, USA

March 13, 2024

Abstract

This study evaluates convective cell properties and their relationships with convective and stratiform rainfall within a season-long convection-permitting simulation over central Argentina using measurements from the RELAMPAGO-CACTI field campaign. While the simulation reproduces the total observed rainfall, it underestimates stratiform rainfall by 46\% and overestimates convective rainfall by 43\%. As Convective Available Potential Energy (CAPE) increases, the overestimation of convective rainfall decreases, but the underestimation of stratiform rainfall increases such that the high bias in the contribution of convective rainfall to total rainfall remains approximately constant at 26\% across all CAPE conditions. Overestimated convective rainfall arises from the simulation generating 2.6 times more convective cells than observed despite similar observed and simulated cell growth processes, with relatively wide cells contributing most to excessive convective rainfall. Relatively shallow cells, typically reaching heights of 4–7 km, contribute most to the cell number bias. This bias increases as CAPE decreases, potentially because cells and their updrafts become narrower and more under-resolved as CAPE decreases. The gross overproduction of shallow cells leads to overly efficient precipitation and inadequate detrainment of ice aloft, thereby diminishing the formation of robust stratiform rainfall regions. Decreasing the model’s horizontal grid spacing from 3 to 1 or 0.333 km for representative low and high CAPE cases results in minimal change to the cell number and depth biases, while the stratiform and convective rainfall biases also fail to improve. This suggests that improving prediction of deep convective system growth depends on factors beyond solely increasing model resolution.

Hosted file

Hosted file

Dependencies of Simulated Convective Cell and System Growth Biases on Atmospheric Instability and Model Resolution

Zhixiao Zhang\(^1\), Adam C. Varble\(^{1,2}\), Zhe Feng\(^2\), James N. Marquis\(^2\), Joseph C. Hardin\(^2\), and Edward J. Zipser\(^1\)

\(^1\)Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah, USA
\(^2\)Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA

Corresponding author: Adam C. Varble (adam.varble@pnnl.gov)

\(^\dagger\)Current Affiliation: Department of Physics, University of Oxford, Oxford, England, UK

Key Points:

- A convection-permitting simulation overestimates the convective contribution to total rainfall, while underestimating stratiform rainfall.
- A large excess of simulated shallow convective cells increases as instability decreases, contributing to the stratiform rainfall bias.
- Increasing model resolution does not improve convective cell and convective-stratiform rainfall partitioning biases.
Abstract

This study evaluates convective cell properties and their relationships with convective and stratiform rainfall within a season-long convection-permitting simulation over central Argentina using measurements from the RELAMPAGO-CACTI field campaign. While the simulation reproduces the total observed rainfall, it underestimates stratiform rainfall by 46% and overestimates convective rainfall by 43%. As Convective Available Potential Energy (CAPE) increases, the overestimation of convective rainfall decreases, but the underestimation of stratiform rainfall increases such that the high bias in the contribution of convective rainfall to total rainfall remains approximately constant at 26% across all CAPE conditions. Overestimated convective rainfall arises from the simulation generating 2.6 times more convective cells than observed despite similar observed and simulated cell growth processes, with relatively wide cells contributing most to excessive convective rainfall. Relatively shallow cells, typically reaching heights of 4–7 km, contribute most to the cell number bias. This bias increases as CAPE decreases, potentially because cells and their updrafts become narrower and more under-resolved as CAPE decreases. The gross overproduction of shallow cells may lead to inadequate detrainment of ice aloft, thereby diminishing the formation of robust stratiform rainfall regions. Decreasing the model’s horizontal grid spacing from 3 to 1 or 0.333 km for representative low and high CAPE cases results in minimal change to the cell number and depth biases, while the stratiform and convective rainfall biases also fail to improve. This suggests that improving prediction of deep convective system growth depends on factors beyond solely increasing model resolution.

Plain Language Summary

The ability of a storm-resolving weather model to predict rainfall over central Argentina was evaluated with data from a field campaign. Although the model accurately predicted the total amount of rain, it produced far too much relatively heavy rainfall and not enough light rainfall. The overestimation of intense rainfall increased as the atmosphere became less favorable for intense storms, which correlated with far too many predicted storm cells, especially ones that were relatively shallow. The excessive frequency of storm cells prevented the formation of widespread lighter rainfall that was much more frequent in observations. Increasing the spatial resolution of the model to better resolve storm circulations did not improve predictions, suggesting model representation of storm precipitation formation and growth processes requires improvement beyond model resolution to better predict storm rainfall intensities.

1 Introduction

Organized convective clouds critically impact weather (e.g., extreme precipitation and severe winds) and climate (e.g., synoptic waves, intra-seasonal to seasonal oscillations, and decadal teleconnections) through redistributing atmospheric heat, moisture, and momentum (Houze, 2004). Convective regions correspond to net latent heating at nearly all heights, while stratiform regions correspond to net heating in the upper troposphere and net cooling in the lower troposphere (e.g., Schumacher et al., 2004; Liu et al., 2015) with a dependence on the height of condensate transport from convective regions (Han et al., 2019). Relatively greater stratiform contributions to total latent heating integrated in time and space elevates tropical large-scale circulation responses and wave propagation from the tropics to extratropics (e.g., Schumacher et al., 2004). Accurate representation of convective-stratiform partitioning by area and precipitation
as a function of system life cycle and ambient environmental conditions is crucial for weather and climate prediction.

Weather and climate models have difficulties reproducing observed convective-stratiform partitioning. General circulation models (GCMs) used for long-range climate prediction and global weather models are too coarse to resolve convective-scale processes such that convection parameterizations are needed. However, most sub-grid scale convection parameterizations do not attempt to represent stratiform regions or mesoscale organization. Stratiform precipitation is left to grid scale processes (e.g., Pan & Randall, 1998) or parameterized by semi-empirical relations (e.g., Donner, 1993; Donner et al., 2001; Yang et al., 2013). Higher resolution convection-permitting models (CPMs) with usually 4 km or less horizontal grid spacing explicitly allow convection, can resolve mesoscale circulations, and are often able to reproduce observed rainfall totals (e.g., Prein et al., 2013). Nevertheless, CPMs often fail to reproduce observed convective-stratiform area and rainfall partitioning, underestimating the areal coverage and volume of stratiform precipitation while overestimating the areal coverage and volume of convective rainfall (e.g., Varble et al., 2011, 2014a-b; Caine et al., 2013; Hagos et al., 2014; Fan et al., 2017; Feng et al., 2018, 2023b; Zhang et al., 2021).

Model convective cell biases likely contribute to convective-stratiform partitioning biases. Atmospheric circulation boundaries (e.g., fronts, dry lines, terrain flows, boundary layer rolls, cold pool outflows) spatially aggregate convective cells with modulation by vertical wind shear (e.g., Rotunno et al., 1988; Mulholland et al., 2018). Larger and aggregated convective cells have reduced evaporation associated with dry air entrainment (e.g., Jeevanjee & Zhou, 2022) and convective updraft merging (Glenn & Krueger, 2017) that may impact precipitation efficiency. These processes may have biased representation in CPMs. Past model evaluations suggest that CPMs overproduce the number of deep convective cores containing heavy rainfall (Yun et al., 2020) while reproducing the number and total rainfall of MCSs (Prein et al., 2017; Zhang et al., 2021). CPMs with kilometer-scale grid spacing also underestimate dry air entrainment (e.g., Bryan & Morrison, 2012) and produce overly wide convective updrafts and downdrafts (e.g., Varble et al., 2020).

Convective updrafts horizontally detrain heat, moisture, momentum, and condensate to promote stratiform anvil growth (Houze, 2004). Mesoscale updrafts and downdrafts associated with mid-level inflow in a sheared environment can promote stratiform rainfall enhancement (e.g., Chen & Frank, 1993), but condensate transport is still the primary source for stratiform growth (Gamache & Houze, 1983). Under-resolved and overly wide and strong convective updrafts in km-scale models with excessive riming (e.g., Varble et al., 2014a; Fan et al., 2017; Stanford et al., 2017) may produce insufficient ice detrainment to stratiform regions which limits stratiform precipitation (Varble et al., 2014b; Han et al., 2019). Thus, CPM-overestimated convective contribution to rainfall might stem from coupled dynamical and microphysical processes.

The sensitivity of simulated convective cells and updrafts to model resolution has been investigated in many previous case studies using idealized and real case simulations (e.g., Petch et al., 2002; Bryan et al., 2003; Craig & Dörnbrack, 2008; Lebo & Morrison, 2015; Stanford et al., 2020; Wang et al., 2022). Bryan & Morrison (2012) found that convective rainfall and cell depth in a mid-latitude, continental squall line decreased as horizontal grid spacing decreased from 4 km to 250 m, partially because convective updrafts entrained more mid-tropospheric dry air as resolution increased, though such changes are not systematic across all environments (e.g.,
Bryan et al., 2003; Morrison et al., 2015). Others have found that convective cell area decreases and convective cell number increases moving from 3-km to finer grid spacing with lesser changes for grid spacing below 200-250 m (Lebo & Morrison, 2015; Nicol et al., 2015; Stanford et al., 2024). Convective updraft strength increases moving from 4-km to 1-km grid spacing owing to decreasing vertical pressure gradient forces as updraft width decreases (Stein et al., 2015; Morrison, 2016). Further decreases in grid spacing to 250-m or less can result in weaker updrafts owing to increasing buoyancy dilution from dry air entrainment effects (e.g., Wang et al., 2020). These convective draft differences can also modulate vertical transport of zonal momentum that affects the convective system’s evolution (Varble et al., 2020).

With regional weather and climate models already being run with 3–4 km grid spacing (e.g., Casaretto et al., 2021; Dowell et al., 2022), there is an urgent need to understand CPM biases and their causes to guide model improvement. This study leverages a warm season CPM simulation, several case-focused simulations with grid spacing varying from 3 to 0.333 km, and measurements collected from the Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO; Nesbitt et al., 2021) and Clouds, Aerosols, and Complex Terrain Interactions (CACTI; Varble et al., 2021) field campaigns. A primary objective is to use convective cell tracks to evaluate simulated convective cell growth including its contribution to convective and stratiform precipitation, as well as its sensitivity to convective instability and model resolution.

The remaining sections are organized as follows: Section 2 introduces the model setup, observed and simulated datasets, and methods for identifying and tracking convective and stratiform objects. Section 3 presents evaluation of domain-total convective and stratiform rainfall and their interactions. Section 4 analyzes simulated convective cell biases. Section 5 investigates convective updraft property contributions to cell biases. Section 6 focuses on the sensitivity of cell biases to model resolution. Finally, discussion and conclusions are presented in Section 7.

2 Data and Methodology

2.1 Observations

Our analyses focus on the Sierras de Córdoba (SDC) range (the mountain range cutting through d2 and d3 in Figure 1) in central Argentina, which is offset ~400 km east of the Andes. This region is moistened by the northerly South American low-level jet (Salio et al., 2002, 2007; Sasaki et al., 2022, 2024; Vera et al., 2006) under the influence of synoptic troughs (Piersante et al., 2021; Rocque & Rasmussen, 2022) and a surface low pressure in the lee of the Andes (Seluchi et al., 2003) that build convective instability beneath inversions and steep lapse rates caused by westerly flow over the Andes (Rasmussen & Houze, 2011, 2016; Ribeiro & Bosart, 2018; Schumacher et al., 2021). This meteorological setup interacts with the mountainous terrain to produce frequent deep convection initiation (Nelson et al., 2021, 2022; Marquis et al., 2021, 2023), rapid growth (Mulholland et al., 2018; Feng et al., 2022), and organization (Mulholland et al., 2019; Trapp et al., 2020; Singh et al., 2022) of deep convection, making it a prime location to study deep convective cloud processes. This led to the RELAMPAGO (Nesbitt et al. 2021) and CACTI (Varble et al. 2021) field campaigns being conducted in this area between October 2018 and April 2019.
Figure 1. Model domains for conducting the multiscale simulations. The red dot represents the radar and radiosonde location with 20-, 50-, 80-, and 110-km radar range rings in black.

About 20 km east of the primary SDC north-south ridgeline, a ground-based C-Band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (CSAPR2) was operated. From October 2018 through February 2019 (Varble et al., 2021), the CSAPR2 collected plan projection indicator (PPI) volume scans every 15 minutes with elevation varying from 0.5° and 33° (Hardin et al., 2018). CSAPR2 did not collect PPI volumes from 27 December 2018 to 20 January 2019, 9 February to 23 February 2019, and after 3 March 2019 due to operational interruptions. Non-meteorological and second-trip echoes are removed using the Taranis radar processing package (Hardin et al., 2020). Rain rates are retrieved using quality controlled CSAPR2 reflectivity, differential reflectivity, and specific differential phase measurements for points without likely hail contamination, following Bringi & Chandrasekar (2001). These retrievals were then re-gridded to Cartesian coordinates with 500-m horizontal and vertical grid spacing using the Python ARM Radar Toolkit (Helmus & Collis, 2016).

The processed CSAPR2 dataset is used to analyze convective-stratiform rainfall partitioning and convective cell life cycles. Every 15-minute Top-Of-Atmosphere (TOA) infrared (IR) brightness temperature (Tb) measurement at 2-km grid spacing (Smith and Thieman 2019) from Geostationary Operational Environmental Satellite 16 (GOES-16) is matched to radar-tracked convective cells (see section 2.3 for tracking details). Environmental conditions are derived from the Interpolated Sonde (INTERPSONDE) product (Fairless & Giangrande, 2018). INTERPSONDE temporally interpolates radiosondes with scaling of the moisture profiles to continuous precipitable water measurements collected by a microwave radiometer. Inputted radiosondes were launched every 3 to 4 hours at the CSAPR2 site between 12 and 00 UTC (9–21 LT). These sounding derived parameters are matched in time with each convective cell’s initiation time.

2.2 Simulations

A convection-permitting simulation covering 15 October 2018 to 30 April 2019 was conducted using the Weather Research and Forecasting (WRF: Skamarock & Klemp, 2019)
model version 4.1.1 with 15-minute output that matches the observed radar volume frequency. Its domain (d2) is shown in Figure 1. The simulation is performed at 3-km horizontal grid spacing with 80 vertical levels preferentially stacked below 5-km altitude but with all layer thicknesses less than 500 m. Microphysical processes are parameterized using the Thompson aerosol aware scheme (Thompson & Eidhammer, 2014), planetary boundary layer (PBL) processes are parameterized using the Mellor-Yamada Nakanishi Niino (Nakanishi & Niino, 2006, 2009) eddy diffusivity mass flux scheme, the surface layer is parameterized by the Eta similarity scheme (Janjic, 2002), and radiation is parameterized by the RRTMG shortwave and longwave schemes (Iacono et al., 2008). This model setup is very similar to the operational High Resolution Rapid Refresh (HRRR) model (Dowell et al., 2022). Rainfall is computed at 2.5 km above mean sea level (AMSL) consistent with observations for comparisons to avoid ground clutter and variable lowest radar beam heights with range while remaining below the melting level. Contributions of graupel and hail to precipitation are ignored in simulations to be consistent with radar retrievals.

Table 1. Case Study Simulation Time Periods

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Domains</th>
<th>Analysis Periods</th>
<th>d1 Restart</th>
<th>d2 Initialization</th>
<th>d3 Initialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low CAPE 3 km</td>
<td>d1</td>
<td>00–12Z, 26 Nov</td>
<td>12Z, 25 Nov</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Low CAPE 1 km</td>
<td>d1, d2</td>
<td>00–12Z, 26 Nov</td>
<td>12Z, 25 Nov</td>
<td>12:15Z, 25 Nov</td>
<td>N/A</td>
</tr>
<tr>
<td>High CAPE 3 km</td>
<td>d1</td>
<td>16Z, 10 Nov – 6Z, 11 Nov</td>
<td>12Z, 09 Nov</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>High CAPE 1 km</td>
<td>d1, d2</td>
<td>16Z, 10 Nov – 6Z, 11 Nov</td>
<td>12Z, 09 Nov</td>
<td>4:15Z, 10 Nov</td>
<td>N/A</td>
</tr>
<tr>
<td>High CAPE 333 m</td>
<td>d1, d2, d3</td>
<td>16Z, 10 Nov – 6Z, 11 Nov</td>
<td>12Z, 09 Nov</td>
<td>4:15Z, 10 Nov</td>
<td>10:15Z, 10 Nov</td>
</tr>
</tbody>
</table>

Higher resolution simulations for two convective cases are conducted with innermost domain horizontal grid spacings of 1 and 0.333 km, respectively (Fig. 2). As described in Table 1, case study simulations that include the higher resolution domains are run for two separate periods representing low CAPE conditions (< 300 J kg\(^{-1}\)) and high CAPE conditions (> 1000 J kg\(^{-1}\)). In each period, there are 3 simulations performed, one with only d1, a second with d2 nested into d1, and a third with d3 nested into d2 and d1. Two-way nesting is employed. These simulations are restarted from the seasonal simulation using a 12 UTC (9 LT) restart file prior to the start of the event. The nested inner domains (d2 and d3) are delayed in their starts and allowed to spin up for 11.75 hours and 5.75 hours, respectively. Exact restart, initiation, and analysis times are listed in Table 1. The total simulated hours including model spin up are 24 hours for the 3 low CAPE period runs and 30 hours for the 3 high CAPE period runs. The full CSAPR2 coverage area (110 km range) is encapsulated by d3 (Fig. S1). All 3 domains have the same vertical levels and physics parameterizations used in the seasonal run, except that the
planetary boundary layer scheme is turned off in d3, where diffusion is computed using a
prognostic equation for the 1.5-order turbulent kinetic energy closure (Bretherton & Park, 2009).

2.3 Convective Cell Tracking

Observed and simulated convective cells are consistently tracked using the open-source
PyFLEXTRKR algorithm (Feng et al., 2023a) applied to 15-minute composite (column
maximum) reflectivity maps derived from the WRF simulations and the CSAPR2 observations.
The melting layer was designed to avoid cell identifications associated with high melting level
reflectivity (Feng et al., 2022). The CSAPR2 reflectivity measurements at native 500-m grid
spacing, and the higher resolution simulations with 0.333-km and 1-km horizontal grid spacing,
are conservatively coarsened to 3-km horizontal grid spacing by averaging reflectivity in linear
units (mm6 m$^{-3}$) and then converting to log$_{10}$ (dBZ) units. Terrain blockage of CSAPR2 radar
beams is analyzed with a digital elevation map using the wradlib (Heistermann et al., 2013)
Python package. The same beam blockage mask is applied to the WRF output to have consistent
observing volumes with measurements. Dates and times in which the CSAPR2 did not obtain
PPI volumes were also removed in the WRF dataset.

Following the method in Steiner et al. (1995), the tracking algorithm identifies convective
cores using the horizontal texture of composite reflectivity by defining the peakedness of each
point, which is the difference between each grid point reflectivity (Z_{grid}) and the surrounding
background reflectivity (Z_{bkg}). Z_{bkg} is defined using averaged values within a 13.5-km radius
from each 3-km spacing grid point. A grid point is classified as a convective core if the
reflectivity peakedness ($Z_{grid} - Z_{bkg}$) is higher than the reflectivity-dependent threshold equal
to $10\cos(\pi Z_{bkg}/120)$ or if Z_{grid} exceeds 55 dBZ. To avoid over-segmentation, identified
convective cores are further expanded with a Z_{bkg}-dependent dilation radius (R_{core}) defined by
Equation 1 where R_{core} has units of km and Z_{bkg} has units of dBZ:

$$R_{core} = \min \left[\max \left(3 + 0.5 \left\lfloor \frac{Z_{bkg} - 25}{5} \right\rfloor, 3 \right), 5 \right]$$ (1)

5 km is set as the maximum dilation radius to avoid grouping of too many convective
cores into one object. Core grid points adjoining one another are merged into individual core
objects. Core objects are then horizontally expanded 1 km at a time until they reach another
object or 7 km distance from the core. When they meet another object, they are not merged with
it. This expanded mask around cores encapsulates cells and is applied to track cells more easily
via overlap between the time gap of 15 min. Examples of identified convective cell masks in
observations and the 3-km simulation are shown with black contours in Figure S1. These
convective cells are tracked based on their spatial overlapping masks exceeding 30% between
consecutive timesteps, producing track trajectories like those shown by black lines in Figure S1.
Convective cell advection is estimated using the cross-correlation of reflectivity between
consecutive timesteps and applied to increase the overlapping cell masks between timesteps. The
minimum core area for tracking after dilation is 5 pixels with an area of 45 km2. Additional
tracking details are described in Feng et al. (2022). A convective cell is identified as a merger if
it is initially isolated but sufficiently overlaps with another larger cell at the next timestep.
Similarly, a split is a convective cell sufficiently overlapping with a larger cell 1 timestep prior to
being isolated.
In addition to cell tracking for 3-km horizontal grid spacing, a similar algorithm is applied to the CSAPR2 500-m, WRF 1-km, and WRF 0.333-km native grids for obtaining higher-resolution cell tracks. To adapt the tracking to finer grid spacings, the 1-km cell tracking uses a similar core dilation radius as described by Equation 1 but with an adjusted minimum dilation from 3 km to 2 km. The 0.5-km and 0.333-km cell tracking use 1-km minimum core dilation with a minimum core area adjusted from 45 to 13 km². The radius of the region for computing background reflectivity is also reduced from 13.5 km to 11 km in 1-km and 0.333-km settings. In addition, the core expansion into a cell mask is limited to 5 km in these higher resolution runs.

All convective cell statistics are computed within their cell masks. Cell areas are defined by the area within the cell masks (black contours in Figure S1) where the composite reflectivity is greater than 10 dBZ. Echo Top Height (ETH) is estimated for each convective cell using the highest altitude where reflectivity exceeds 10 dBZ within the convective cell masks. Convective area and ETH are calculated throughout the lifecycle of convective cell tracks. Cell track initiation times are matched with the INTERPSONDE and simulated observing site vertical profile derived environmental conditions at that time. We focus on the most unstable CAPE (MUCAPE, simplified as CAPE hereafter), which is the CAPE associated with the parcel lifted from the level with the maximum equivalent potential temperature in the lower troposphere. The time evolution of CAPE at the CSAPR2 radar location is well reproduced by the season-long simulation, as shown in Zhang et al. (2021). Convective and stratiform rainfall are retrieved from the 2.5-km altitude simulated and CSAPR2 derived rain rates with convective rainfall defined as rain rates within convective cell masks and the rain rates outside convective cell masks defined as stratiform rainfall.

3 Simulated Rainfall Evaluation

The temporal evolution of WRF-simulated rainfall in d3 follows that of observed rainfall estimated from the CSAPR2 radar (Figure S2a), with perhaps a few subtle distinctions. The cumulative rainfall is slightly underestimated by the simulation (Figure S2b) but within the ~15% underestimation that is within the uncertainty expected from blended polarimetric C-band radar rain retrievals in past studies (e.g., Cifelli et al., 2011; Giangrande et al., 2014). The simulation also reproduces the general month-to-month variations in rainfall (Figure 2a). However, dividing the total rainfall into convective and stratiform contributions highlights more significant model biases. The WRF simulation overestimates the convective rainfall by 43% (Figure 2b) while underestimating the stratiform rainfall by 46% (Figure 2c). Thus, the simulated convective to stratiform rainfall volume ratio (66%) is much greater than observed (38%).

The simulated convective and stratiform rainfall biases are sensitive to CAPE conditions (Figure 3). The simulated overestimation of convective rainfall decreases as CAPE increases (Figure 3a), while simulated underestimation of stratiform rainfall increases (Figure 3b). Total rainfall is well predicted in low CAPE conditions but becomes increasingly underpredicted as CAPE increases (blue line in Figure 3c). Interestingly, bias in the ratio of convective to total rainfall is not sensitive to CAPE with simulations overestimating the convective contribution by 24–28% (orange line in Figure 3c). These values reflect a similar shift to more convective rainfall as CAPE increases in both simulations and observations; however, the simulations have much greater contributions to total rainfall from convective regions for all CAPE conditions.
Figure 2. Volume of (a) total, (b) convective, and (c) stratiform rainfall, as well as (d) convective/stratiform rainfall ratio by month with totals over all times shown in the legends.

Figure 3. (a) Convective and (b) stratiform rainfall in observations and simulations with model relative biases as a function of CAPE. (c) Total rainfall relative biases and convective contribution to total rainfall absolute biases conditioned by CAPE.

Stratiform rainfall volume generally increases with convective rainfall volume (Fig. S3). Their correlation coefficients are between 0.66 and 0.91 depending on CAPE conditions and whether observations or simulations are considered. The correlation coefficients in observations (Figure S3a, c) are lower than those in WRF (Figure S3b, d) because observed stratiform rainfall has a large range when convective rainfall is less than 10,000 mm km\(^2\) with some very large values that are not reproduced in WRF. Even neglecting those values, the observed linear regression slopes are greater than simulated suggesting the model requires more convective rainfall than is observed to yield a similar amount of stratiform rainfall. The regression slopes in
higher CAPE conditions are also less than those in lower CAPE conditions by about a factor of 2, meaning high CAPE storms tend to form less stratiform rainfall than low CAPE storms for a given amount of convective rainfall. This effect is captured by the simulation and might relate to more intense updrafts in higher CAPE conditions that produce more fast-falling rimed ice, less snow detrainment, and higher altitude anvils that accentuate sublimation relative to lower CAPE conditions. All these processes would slow the development of robust stratiform precipitation, and such processes may be exaggerated in the simulations relative to the observations.

![Figure 4](image.png)

Figure 4. Stratiform and convective rainfall volume in the 4 hours leading up to the peak rainfall volume in the domain at time 0 for peak volumes that exceed 2000 mm km2. (a–b) Observed and (c–d) simulated time series are shown for (a, c) low and (b, d) high CAPE conditions. Medians and means are represented by circles and horizontal lines, respectively. Interquartile and 5th to 95th ranges are shown by the bars and vertical lines, respectively.

The correlation between convective and stratiform rainfall can also be tracked in time to assess convective and stratiform interactions. The simulation produces a similar number of rainfall volume peaks > 2000 mm km2 to observed in lower CAPE conditions (56 vs. 60; Figure 4a, c) but underestimates the number of peaks in higher CAPE conditions (19 vs. 32; Figure 4b, d). For lower CAPE, observed stratiform rainfall is always greater than convective rainfall and grows at a faster rate than convective rainfall within 2 hours of peak total rainfall (Figure 4a). In contrast, the simulated stratiform rain volume remains lower than the convective rain volume with a growth rate that is similar or even slightly lesser than the convective growth rate (Figure 4b). Higher CAPE, on the other hand, facilitates more rapid convective growth than stratiform growth in observations. The simulation reproduces this effect but with much greater convective precipitation and much lesser stratiform precipitation (Figure 4b, d). This again demonstrates that the simulation can qualitatively capture the response of convective-stratiform rainfall ratio to CAPE but is unable to predict its absolute magnitude across CAPE conditions with a bias that is present throughout the entire growth stage of MCSs.
To assess how convective cells contribute to WRF overproduced convective rainfall, Figure 5 shows convective rainfall separated by small (\(< 300 \text{ km}^2\)), medium (300–550 km\(^2\)), and large (> 550 km\(^2\)) cells and simulated biases relative to observations. Rainfall produced by small cells is overestimated by the model in low CAPE conditions and underestimated in medium and high CAPE conditions. Medium-sized cell rainfall is overestimated by the model in low and medium CAPE and underestimated in high CAPE. Finally, large cell rainfall is overestimated by the model in all CAPE conditions. For all cell sizes, the observed convective rainfall increases as CAPE increases. However, this is only true for large cells in simulations, and simulated small cell rainfall decreases as CAPE increases. In low CAPE scenarios, all cell sizes contribute to overestimated convective rainfall, whereas in medium and high CAPE scenarios, the larger cells produce overestimated total convective rainfall. Furthermore, model bias increases as cell sizes grow. Clearly, cell properties change differently as a function of CAPE in observations and the simulation. Simulated convective cell biases are further evaluated in Section 4 to reveal potential causes of this difference.

4 Simulated Convective Cell Evaluation

Figure 6. Spatial occurrence (color fills) and propagation (vector) of (a) observed and (b) simulated convective cell tracks. The Z score is the domain-normalized number of cell hours at a point. Grey contours represent the 1-km terrain height AMSL.

There are 5,662 observed and 14,299 simulated convective cells that are tracked; thus, the model produces ~2.5 times more cells than are observed. An overestimation of cell number in 3-
4 km horizontal grid spacing models with the Thompson scheme including HRRR has been noted previously (Clark et al., 2014; Duda and Turner, 2021, 2023), though such a large bias is not seen for the number of convective systems using reflectivity-based objects (e.g., Grim et al., 2021). 2,355 observed and 6,016 simulated convective cells initiate and grow (by reflectivity area) within the domain, and these are used in further analyses. The simulation reproduces the spatial distribution of these cells, with the highest frequency centered over the SDC range just east of the highest ridgeline (Figure 6). The eastward propagation of these cells is also captured by the simulation, suggesting that it reasonably captures the processes controlling the spatiotemporal distribution of moist convection despite more numerous cells that may thus be the result of convective scale processes.

![Figure 7. Probability distributions of convective cell (a) lifecycle-maximum reflectivity, (b) 10-dBZ ETH, (c) lifetime, and (d) propagation speed. Red and blue dashed vertical lines represent the mean values in observations and simulations, respectively.](image)

The simulation also generally captures the peak probabilities of convective cell maximum reflectivity, lifetime, and propagation speed (Figure 7a, c, and d), though with a slight bias toward greater values. The greater occurrence of simulated reflectivities exceeding 60 dBZ could be related to the observed reflectivities being C-band in which large hydrometeors such as hail can produce non-Rayleigh scattering, whereas WRF reflectivities are estimated assuming purely Rayleigh scattering. The reflectivity difference is unsurprising based on previous studies (e.g., Varble et al. 2011). Differences between observation and simulation mean values are more substantial for ETH (Figure 7b). The model greatly overestimates the probability of shallow
convective cells (ETH = 2.5–7.5 km) and underestimates the probability of deep convection (maximum ETH > 7.5 km). Part of this difference is due to non-uniform beam filling and extrapolation artifacts in the Cartesian gridding of observations that results in an ETH high bias.

The high bias in simulated cell number is most apparent in low CAPE conditions for all cell areas and decreases as CAPE increases (Figure 8). However, the model produces more numerous convective cells across all CAPE conditions for all convective cell areas. The cell number bias also increases with the cell area in low CAPE conditions. However, in high CAPE conditions, the WRF overestimation of cell number decreases from small to medium area cells and increases from medium to large cells. This indicates potentially different process controls on cell size distributions in high CAPE relative to low CAPE conditions.

In addition to convective cell number, the convective cell area differences between the simulation and observations vary by CAPE. Simulated convective cell areas are larger than observed in low-medium CAPE conditions but the probability of large convective cells in high CAPE conditions is underestimated (Figure S4). Recall that the model overestimation of total convective rainfall decreases with CAPE, partially a result of the model overestimation of convective cell number decreasing with CAPE (particularly for large cells that produce the heaviest rainfall). The change in convective rainfall volume biases as cell area changes also far exceeds the change in convective cell number biases (Figure 5 vs. Figure 8).

Given the differences in observed and simulated cell properties, convective cell net growth is explored for the lifecycle growth period between the cell initiation and the lifecycle maximum cell area times. Net growth during this lifecycle period is controlled by convective cell expanding, shrinking, merging, and splitting processes, which are quantified and evaluated in Figure 9. Merging and splitting areas are the cell area difference between the two consecutive timesteps over which merging or splitting occurs and includes the potential shrinking and expansion during that period. Since a pure split is uncommon in both the observations and simulation, splits are combined with splits plus mergers occurring at the same time into the “other” category.

The mean and interquartile range values of the simulated small cell net growth are greater than observed. Observed and simulated cell expansion contributions to cell growth are both near 100% on average, with fewer contributions from shrinking, merging, and splitting. This indicates that small cell expansion growth dominates the observation-simulation net growth difference. However, medium area cell growth (Figure 9b) is underestimated by the model. Simulated
medium area cell shrinking is slightly underestimated and the simulated merging is slightly greater than observed, but these are not able to counteract the dominant control of cell expansion, which is greater in observations. The mean and median simulated large cell net growth and expansion are similar to observed (Figure 9c), which is the result of combined overestimated expansion and underestimated merging in the simulation. Thus, despite differences in observed and simulated cell numbers, areas, and contributions to rainfall, there are limited differences in cell area growth lifecycles.

Figure 9. Observed (red) and simulated (blue) convective cell area net growth with contributions from cell expansion, merging, shrinking, and other (splitting, splitting plus merging) during the growth period between initiation and lifetime-maximum area across all CAPE conditions. Means and medians are represented by circles and horizontal lines, respectively. Interquartile and 5th to 95th ranges are shown by bars and vertical lines, respectively.

5 Physical Controls on Convective Cell Biases

Convective updraft area is calculated throughout each individual convective cell lifecycle in the simulation. Updraft regions are defined as having vertical velocity greater than 2 m s\(^{-1}\) and
radar reflectivity greater than 10 dBZ within the identified convective cell footprints. Figure 10 shows that the lifecycle- and column-maximum convective updraft area positively correlates with the lifecycle-maximum aggregated convective cell area with a linear correlation coefficient higher than 0.9 ($r = 0.85–0.96$ for 200,000 times of random bootstrapping), indicating a robust positive correlation. The maximum convective cell area reached is usually twice the column-maximum updraft area reached during a cell’s lifecycle, though this ratio is sensitive to the definition of the updraft and cell area.

![Figure 10](image)

Figure 10. Lifecycle-maximum convective cell area as a function of lifecycle- and column-maximum updraft area. The color fill shows cell area probabilities conditioned on maximum updraft area, i.e., within each maximum updraft area bin.

Relationships of the lifecycle-maximum convective cell circle-equivalent diameter ($2\sqrt{\text{Area}/\pi}$) with the lifecycle-maximum 10-dBZ radar reflectivity ETH and lifecycle-minimum TOA IR T_b can inform potential observed and simulated updraft differences. In Figure 11, the highest observed ETHs reach 22 km, which is higher than those simulated, which reach 18 km, consistent with Figure 7b. The simulated linear regression slope between cell diameter and ETH (0.38) is lower than observed (0.52), indicating cells reach greater depths for a given cell area in observations as compared to the simulation.

Due to Cartesian gridding artifacts, non-uniform radar beam filling, and sidelobe contamination, the ETH estimated from ground-based radar measurements tends to be biased high (e.g., Lakshmanan et al., 2013), which likely contributes to the model-observation ETH difference. The TOA IR T_b measured by GOES-16 is re-gridded to WRF 3-km grids for comparison with simulated TOA IR T_b empirically derived from the simulated outgoing longwave radiation, following the approach in (Yang & Slingo, 2001). Higher TOA IR T_b indicates that the cloud top has more outgoing longwave radiation, which corresponds to a lower, warmer cloud top. The simulated lifecycle-minimum TOA IR T_b range of values agrees with that
observed, but the absolute value of the regression slope in the simulation is slightly less steep than observed (Figure 11c–d). That means for a given cell diameter, the simulation is more likely to have a lower cloud top than observed. This agrees with the radar ETH bias as a function of cell diameter, but with a much smaller difference, suggesting that a significant portion but not all the radar ETH difference is a retrieval artifact.

These relationships of convective updraft and cell properties suggest that convective cell area is a good qualitative proxy for updraft area and depth in the simulation. Although updraft properties are not directly retrievable from observations, it is physically plausible that observed cell area and depth also scale with updraft area (though potentially with a different slope). It is also plausible that the widest, deepest updrafts exist in relatively high CAPE conditions. This suggests that updraft widths would be least resolved in simulated low CAPE conditions, which is indeed where the largest model biases are found.

Figure 11. Observed and simulated (a–b) lifecycle-maximum 10-dBZ radar reflectivity ETH and (c–d) lifecycle-minimum TOA IR \(T_b \) as functions of lifecycle-maximum convective cell diameter. The color fill shows ETH and TOA IR \(T_b \) probabilities conditioned on maximum cell diameter. The ordinary least square fit lines are shown in black, and the r value represents the Pearson linear correlation coefficient.

Excessive numbers of shallow cells in the simulation bring the average cell depth down for a given cell width, which may negatively impact stratiform rainfall formation. Convective cells that do not reach well above the freezing level likely have limited ice detrainment that is critical to the formation of stratiform anvil regions, and the simulation has excessive numbers of these cells. It is also possible that the deep cells in the simulation fail to detrain vapor-grown ice
in sufficient amounts over sufficient height layers to adequately grow precipitating stratiform regions as highlighted in previous studies (Varble et al. 2014b, Han et al. 2019). In this scenario, underproduced stratiform precipitation in the simulation results in less extensive atmospheric stabilization caused by its upper-level latent heating over lower-level latent cooling. Such a process would leave more atmospheric instability to be consumed by additional convective cells. Thus, there could exist a positive feedback between the convective cell and stratiform biases, and such interactions deserve further investigation in the future.

Additional possible causes for excessive numbers of shallow convective cells are biased dynamical and/or microphysical processes. Focusing on possible dynamical biases, convective updrafts are severely under-resolved for 3-km horizontal model grid spacing, resulting in wider simulated updrafts than those in the real world. For relatively shallow cells with small areal coverage, updrafts are thinnest and thus potentially the most biased too wide, which could suppress entrainment dilution but enhance opposing vertical pressure gradients. The minimum resolved wavelength by WRF is approximately 7 times the grid spacing (Skamarock, 2004). Thus, despite explicit convection, this simulation at 3-km grid spacing only fully resolves a half wavelength feature like a convective updraft if it is 10.5 km or more wide, corresponding to a circular convective updraft area of 87 km2 and a cell area that is typically twice the updraft area (174 km2). This is substantially wider than most convective updrafts measured by aircraft (e.g., (Warner & McNamara, 1984; Lucas et al., 1994; Anderson et al., 2005) and radar wind profilers (e.g., Wang et al., 2020). Indeed, more than 2/3 of convective cell areas defined on a 500-m spaced grid are smaller than the minimum resolvable areal threshold (174 km2) at 3-km grid spacing (Figure S5). This could result in a shift of energy from unresolvable small cells into larger resolvable cell sizes in the simulation, possibly contributing to the previously discussed model biases.

6 Bias Sensitivity to Model Resolution

To test how increased model resolution affects simulated convective cell and convective-stratiform partitioning biases, low and high CAPE events were chosen (Table 1) and simulated with nested 1- and 0.333-km horizontal grid spacing domains to compare with the 3-km grid spacing results (see Section 2.2 for details). Observations were also analyzed on a 500-m horizontal grid in addition to the 3-km grid. All results in this section apply to the individual low and high CAPE events, though 3-km results are generally consistent with the season-long simulation results.

In the low CAPE case (black dots in Figure 12), convective rain volumes are overestimated by more than 84% in all 3 simulations (Figure 12b). The simulated convective rain volumes in the 3-km and 1-km runs are similar, but the 0.333-km run produces about 25% more convective rainfall than coarser simulations (Figure 12a). Figure 12c–d shows that the 3-km run accurately predicts the stratiform rainfall, but the 1-km and 0.333-km runs underestimate it by 24 and 46%, respectively. In Figure 12e–f, 1-km and 0.333-km convective and stratiform biases offset to produce total rainfall that is similar to observed in the low CAPE case while the 3-km run overestimates rainfall by 26%. In Figure 12g–h, simulated cell numbers are nearly double those observed for all resolutions with the 1-km experiment producing the most numerous convective cells.

In contrast to the low CAPE case, the high CAPE case’s convective rainfall is simulated accurately in the 3-km run but underestimated by ~30% in the 1-km and 0.333-km simulations.
Stratiform rainfall is greatly underestimated by the simulations, a bias that increases from −54% to −86% as horizontal grid spacing decreases from 3 to 0.333 km and is much worse than the low CAPE stratiform rainfall bias. The stratiform underproduction leads to total rainfall being underestimated by all simulations with 1-km and 0.333-km runs producing only half of what was observed due to additional contributions from underpredicted convective rainfall (Figure 12c–d). Simulated convective cell numbers are about double those observed for all model resolutions, similar to the low CAPE case (Figure 12g–h).

Figure 12. Rainfall and cell number statistics for 3-, 1-, and 0.333-km horizontal grid spacing simulations and 3-km horizontal grid spacing observations with biases relative to observations for the low and high CAPE events.

The convective contribution to total rainfall (Figure 12i–j) is also biased high for all simulations and increases as resolution increases for both low and high CAPE cases. Overall, stratiform rainfall biases and their biased contribution to total rainfall worsen as the model grid spacing decreases in these convective cases. This suggests that effectively reducing the
stratiform bias cannot be achieved solely via increasing the model’s resolution, pointing to physics parameterization contributions that require further evaluation. Additionally, some biases do not monotonically change with model resolution and vary between low and high CAPE cases, which agrees with some past studies (e.g., Bryan et al., 2003; Prein et al., 2021).

Figure 13. Probability distributions of convective cell areas for the (a) low and (b) high CAPE events for full resolution datasets (not averaged to 3-km grid spacing) except for the 0.333-km run that is averaged to 500 m to match 500-m observations. The vertical dashed lines represent the approximate minimum resolvable cell area in WRF with 3-km horizontal grid spacing.

Convective cell properties also vary substantially by resolution. In the low CAPE event, the 3-km run significantly underestimates the probability of convective cells at sizes smaller than 80 km2 (Figure 13a; 1.9 on the log10 scale). The 1-km run produces many more cells that are smaller than the 3-km run’s effective resolution, but still with cell areas shifted slightly larger than observed. The 0.333-km run agrees best with the observed distribution, indicating that decreasing model grid spacing below 500 m may be required to adequately resolve the cell area distribution in some conditions. Kolmogorov-Smirnov (KS) testing of differences between observed and simulated cell area distributions further demonstrates that p values increase as model resolution increases from 5×10^{-13} to 0.007 and 0.05 for 3-, 1-, and 0.333-km runs, respectively. Thus, at a 5% level, 3-km and 1-km runs significantly differ from observations while the simulated area distribution in the 0.333-km run does not. In the high CAPE event, the observed convective cells are larger than those in the low CAPE case (Figure 13). More convective cells in the 3-km simulation are shifted to the right side of the dashed line and better
resolved in these conditions as compared to the low CAPE event. The 3-km run also better
agrees with the observed cell area distribution for this high CAPE event (p value = 0.1) than the
1-km and 0.333-km runs (p values of 0.001 and 0.0001, respectively). The simulated updraft
width distribution differences (Figure S6) largely follow the cell area distribution differences in
Figure 13, showing that updrafts become better resolved with increasing resolution with cell
areas being a decent proxy for updraft area. However, all resolutions fail to reproduce the notable
shift from small to large cell sizes that is observed with increasing CAPE (Figure 13a–b) without
universal improvement of cell areas with resolution across both low and high CAPE conditions.

Despite shifts to smaller cell and updraft areas as model resolution increases, Figure S7
shows that convective cell depth is greatly underestimated across all resolutions in both low and
high CAPE conditions. Thus, all simulations, regardless of resolution, produce more numerous
shallow cells than observed that dominate the PDFs, with the caveat that a portion of the
difference is also due to high biased ETHs in observations. In both low and high CAPE events,
simulated shallow cell echo tops peak between 4 and 7 km AMSL. The excessive number of
these relatively shallow cells amplify convective rainfall with little contribution to stratiform
rainfall growth. Collectively, the model resolution sensitivity tests suggest that insufficient
model resolution is not the primary cause for convective cell area, depth, and stratiform growth
biases. This suggests that physics parameterizations such as the microphysics scheme’s control
on precipitation formation and growth are potentially primary contributors to cell number, cell
depth, and convective-stratiform partitioning biases.

7 Conclusions

This study evaluated the accuracy of convective cell and system growth in a season-long
convection-permitting WRF simulation with 3-km horizontal grid spacing using RELAMPAGO-
CACTI field campaign measurements. Observed and simulated cells were analogously defined
and tracked with results assessed in the context of atmospheric instability as represented by
CAPE, which was found to modulate model biases.

The simulation reproduced the observed total rainfall in low CAPE conditions and only
slightly underestimated it in high CAPE conditions. However, when separating rainfall into
convective and stratiform components, large biases were found, including:

- Convective rainfall was overestimated by 43% in the simulation, a bias that decreased
 with CAPE. However, simulated stratiform rainfall was underestimated by 46%, a bias
 that increased with CAPE.

- Stratiform rainfall increased with convective rainfall, but the simulation required about
double the convective rainfall to produce a similar amount of stratiform rainfall as that
observed.

- The large model overestimation of the convective contribution to total rainfall remained
 approximately constant at 26% through all CAPE conditions.

Convective and stratiform rainfall partitioning biases were related to the model
representation of convective cell number, area, depth, and growth characteristics, producing the
following results:

- The simulation contained 2.6 times the number of cells that were observed, primarily
 through the production of excessive numbers of relatively shallow cells (4-7-km cell
The model required a wider convective cell to reach the same convective depth as observed.

- The overproduction of simulated cells increases as CAPE decreases, potentially because these conditions are anticipated to result in more numerous shallow and narrow updrafts as compared to high CAPE conditions. The cell number overestimation also increases as cell area increased in low CAPE conditions, but the overestimation does not systematically change with cell area in high CAPE conditions.

- Relatively large cells contributed the most to convective rainfall biases, with contributions increasing as CAPE decreased. Despite this, cell growth processes via expansion, shrinking, merging, and splitting show limited differences between observations and the simulation.

Finally, possible controls of model resolution upon simulated convective cell biases were investigated in simulations of representative cases containing low and high CAPE conditions using 3-km, 1-km, and 0.333-km horizontal grid spacing. Simulated convective cell area was proportional to updraft area, indicating that radar reflectivity observations may be able to inform updraft width. A large proportion of convective cell areas defined using 500-m grid spacing radar observations were not fully resolvable with 3-km horizontal grid spacing in WRF, with small area cells that reached depths of less than 7 km being the worst resolved. Comparing analogous cell precipitation characteristics across model resolutions resulted in the following conclusions:

- The high cell number bias noted in the 3-km simulation was not mitigated by increasing model grid resolution.

- Despite better spatially resolving convective updrafts and cells, increasing model resolution amplified the simulated underestimation of stratiform rainfall and the overestimation of convective contribution to total rainfall.

- Total rainfall and cell areas during the low CAPE event were best captured by the 0.333-km run. However, these properties were best captured by the 3-km run during the high CAPE event.

This study implies that substantial convective cell and system rainfall biases can exist in continental convection-permitting simulations with settings commonly used in regional weather and climate modeling with strong modulation by environmental instability. Increasing model resolution by an order of magnitude neither reduces excessive numbers of precipitating congestus clouds nor decreases ratios of convective to stratiform precipitation, suggesting that improving prediction of deep convective system growth depends on factors beyond solely increasing model resolution. Following findings in past studies, a potentially substantial contributor to biases is the cloud microphysics parameterization that may promote too efficient precipitation formation and growth in congestus clouds with excessive supercooled liquid and rime in mixed phase clouds, which would strongly modulate convective cell identification and convective-stratiform precipitation partitioning. Further work is required to assess how well these findings correspond to other model setups with different environmental conditions. In addition, research is required to assess the speculated physical pathways by which convective cell and stratiform rainfall biases emerge such that they can be mitigated.
Acknowledgments

The study was funded by NSF project 1661662 and the U.S. Department of Energy (DOE) Office of Science Biological and Environmental Research as part of the Atmospheric System Research program. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RLO1830. Computing and disk storage resources were provided by the NCAR Computational and Information Systems Laboratory and the University of Utah Center for High Performance Computing. Some data analysis was also performed using computational resources provided by the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported under contract DE-AC02-05CH11231. We thank K. Ryder Fox (University of Miami) for contributing to the LES setup.

Open Research

The model setup for WRF runs and the observed and simulated convective cell track datasets are available here: https://doi.org/10.5281/zenodo.10655168 (Zhang et al., 2024). The PyFLEXTRKR software, designed for convective cell tracking, is openly available for download at GitHub repository: https://github.com/FlexTRKR/PyFLEXTRKR. The configuration for PyFLEXTRKR in this study can be accessed via at GitHub repository: https://github.com/zhixiaozhang/cacti_cell_tracking_config. The radar measurements, satellite retrievals, and raw model output are large datasets that can be accessed by contacting the authors.

References

