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Abstract

The Late Pleistocene climate fluctuations have had a major impact on phylogeographic structure and historical dynamics of
marine fishes in the marginal seas of the western Pacific Ocean. The puffer fish Lagocephalus spadiceus, has high nutritional
and economic value in the South China Sea. To allow the examination of the demographic history and population structure
of the L. spadiceus, the mitochondrial DNA COI and Cyt b gene datasets of 300 individuals from eight populations in the
South China Sea was sequenced. High haplotype diversity (0.874 4+ 0.013) and low nucleotide diversity (0.00075 %+ 0.00058)
were observed. The phylogenetic tree and haplotypes network revealed no significant genetic differentiation along the coast of
the northern South China Sea. Neutrality tests, mismatch distribution analysis, and Bayesian skyline plots suggested that L.
spadiceus experienced population expansion during the Late Pleistocene. Ocean currents and climate change play important

roles in shaping the geographical distribution and genetic population structure of L. spadiceus.
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ABSTRACT

The Late Pleistocene climate fluctuations have had a major impact on phylogeographic structure and histo-
rical dynamics of marine fishes in the marginal seas of the western Pacific Ocean. The puffer fish Lagocephalus
spadiceus , has high nutritional and economic value in the South China Sea. To allow the examination of
the demographic history and population structure of the L. spadiceus , the mitochondrial DNA COI and
Cyt b gene datasets of 300 individuals from eight populations in the South China Sea was sequenced. High
haplotype diversity (0.874 + 0.013) and low nucleotide diversity (0.00075 £ 0.00058) were observed. The
phylogenetic tree and haplotypes network revealed no significant genetic differentiation along the coast of
the northern South China Sea. Neutrality tests, mismatch distribution analysis, and Bayesian skyline plots
suggested that L. spadiceusexperienced population expansion during the Late Pleistocene. Ocean currents
and climate change play important roles in shaping the geographical distribution and genetic population
structure of L. spadiceus .
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1 INTRODUCTION



In marine species, the phylogeography and genetic differentiation were influenced by historical events, in-
cluding ocean current systems, vicariance, Pleistocene climatic cycles, and life-history characteristics of
organisms (Liu et al., 2007; Ding et al., 2018). It is worth noting that some marine fishes have fragile genetic
structure due to their extensive larval and adult dispersal (Ashrafzadeh et al., 2021; Caccavo et al., 2018).
Climate oscillations during the Pleistocene greatly altered the environment of marginal seas of the western
Pacific, including the South China Sea (SCS). During glacial periods, the SCS formed a semi-enclosed sac-
shaped gulf and exposed approximately 0.7 million km? of continental shelf (Wang & Sun, 1994). Previous
molecular studies have shown that many marine fishes with high mobility exhibit low genetic structure in the
SCS, such asCirrhimuraena chinensis (Li et al., 2014) and Nuchequula mannusella (Gao et al., 2019). The
phylogeographic study of marine fishes alive in the SCS has particular significance for interpreting the con-
sequences of past events, geological configurations, and modern oceanographic aspects in this environment
(He et al., 2010).

Lagocephalus spadiceus is a non-toxic Lagocephalus species (Tuney, 2016), belonging to Tetraodontiformes,
Tetraodontidae, and Lagocephalus . It is a nearshore warm-water demersal fish that inhabits depth between
3 to 200 meters (Tuncer et al., 2008), distributed along the southern coast of Africa in the Indian Ocean,
eastward to the Indonesia and the Philippines of the Pacific Ocean, and northward to the coast of China (Liu
et al., 2016). In China, it occurs along the coastal areas of the SCS. Almost L. spadiceus is imported from
China in Japan (Yamaguchi et al., 2013), but this also makes it an easy target for widespread exploitations.
Recently, since the continuous increase in fishing intensity and deteriorating environmental conditions, the
wild resources of L. spadiceus have been drastically reduced (Hardy et al., 2014). There are fewer reports on
germplasm resource and genetic diversity evaluation of L. spadiceus . To better protect and rationally develop
the wild germplasm resources of L. spadiceus , it is imperative to conduct a genetic diversity assessment to
establish a theoretical basis for the scientific conservation and sustainable utilization of its genetic resources.

Genetic diversity is a vital component of biodiversity and prerequisite for the continuous adaptation of species
or populations to environment change and survival evolution. Species with a higher genetic diversity possess
a greater ability to environmental changes (Roldan et al., 2000). Mitochondrial DNA (mtDNA) constitutes a
tiny fraction of organismal genome size but has been widely used as a marker of molecular diversity in animals
for the past four decades (Galtier et al., 2009). This tool has been widely embraced by population geneticists,
following the works of Avise et al (1987) and Moritz et al (1987), among others. Experimentally, mtDNA is
present in most cells in high copynumber and is relatively easy, rapid, and inexpensive to sequence (Zink &
Barrowclough, 2008). Due to the relationship between the rate and time of evolution, effective information
sites are different, and their resolving power is different. Therefore, concatenating COI and Cyt b markers can
increase the number of effective genetic sites, resulting in more accurate and effective information compared
to single gene analysis (Halasan et al., 2021; Barrientos-Villalobos & Schmitter-Soto, 2019).

Our study examines the phylogeography, population genetic diversity, and demographic history of L. spadi-
ceus using COI and Cytb gene datasets. As of current knowledge, there has not been a documented report
on the population genetic of L. spadiceus . This study aims to address the lack of information on L. spadiceus
in the region by providing a comprehensive background report. Meanwhile, our study has contributed to a
better understanding of the evolutionary process that have influenced the phylogeography of coastal marine
fishes in China.

2 MATERIALS AND METHODS
2.1 Sample collection

A total of 300 specimens of L. spadiceus were obtained from eight geographic locations, including Beihai
(BH), Zhanjiang (ZJ), Leizhou (LZ), Danzhou (DZ), Dongfang (DF), Maoming (MM), Shanwei (SW), and
Zhangzhou (ZZ) in the South China Sea (Figure 1, Table 1). All L. spadiceus Specimens were collected from
bottom trawl surveys within the period of April 2022 to April 2023. A morphological analysis was used to
identify species (head, dorsal surface, and ventral surface are covered with small spines, the dorsal side of the
body is brownish-yellow or yellow-green, caudal fin is white at the upper and lower tips) (Liu et al., 2016;



Chen & Zhang, 2015). Fishes were given access to muscle tissue, which were then stored in 1.5 ml vials with
95% ethanol at -20°C until genomic extraction. Experimental procedures concerning fish were performed
following the Experimental Animal Administration Regulations.

2.2 DNA extraction, PCR amplification and sequencing

The total DNA of L. spadiceus was extracted from each muscle following the FastPure Cell/Tissue DNA
Isolation Mini Kit (Nanjing, China). The purity and concentration of DNA were checked using ultra micro-
spectrophotometer (NanoDrop 2000, United States of America). The primers of mtDNA were adapted from
Li et al (Li et al., 2018). The COI was boosted by the primers COI- F: 5~ AAACCACCGCCTGACACTC-3’
and COI- R: 5-GGGATTTTAACCCCCGGCAT-3’, the Cyt b was boosted by the primers Cyt b -F: 5'-
GCGCCCCAAAGTAAGGAGAA-3’ and Cyt b -R: 5'- GGGATTTTAACCCCCGGCAT -3’. PCR amplifi-
cation volume of 50 pl, including 25 pl 2x Tag PCR Master Mix, 2 pl each of primers (10 mol/L), 1 ul DNA
template, and 20 pyl ddH2O. PCR cycling conditions were applied: initial denaturation at 94 °C for 5 min, 35
cycles of denaturation at 94 °C for 1 min (COI ) or 30 sec (Cytd ), annealing at 58 °C (COI ) or 56 °C (Cyt
b ) for 1 min, extension at 72 °C for 1 min, and final elongation at 72 °C for 8 min (COI ) or 5 min (Cyt b
). Every PCR product was electrophoresed on 1% agarose gel, and PCR products were sent to Guangzhou
Ige Biotechnology Ltd (Guangzhou, China) for purification and DNA sequencing.

2.3 Data analysis
2.3.1 Genetic diversity

Forward and reverse splicing of all sequences using SeqMan in Larsergene v7.1.0 (Swindell & Plasterer, 1997),
and then compare and edit the sequences using the Clustal W method in MEGA v7.0 (Kumar et al., 2016).
The COI and Cyt b sequences were matched one by one for Multi-locus Sequence Analysis (MLSA) using
PhyloSuite v1.2.2 (Zhang et al., 2020). Count base composition and content, polymorphic sites (S ), and
parsimony informative sites (P ;) using MEGA v7.0 (Kumar et al., 2016). The haplotype numbers (H ),
haplotype diversity (H q), nucleotide diversity (r ), and mean pairwise difference (K ) were counted using
DnaSP v6.0 (Rozas et al., 2017).

2.3.2 Genetic structure

The Bayesian information criterion (BIC) in jModelTest v2.1.10 (Darriba et al., 2012) was used to establish a
substitution model for the haplotype datasets prior to phylogenetic analysis. Subsequently, the mitochondrial
COI and Cyt b gene datasets haplotypes were used to reconstruct the phylogenetic tree using the Bayesian
inference (BI). The congeneric species Lagocephalus laevigatus was chosen as an out group, from NCBI access
number 10400364 (COI ) and 10400369 (Cyt b ). Bayesian inference study was carried out using MrBayes
v3.2.7 (Ronquist et al., 2012), and one set of four chains was permitted to run concurrently for 20 million
generations. Every 1000 generations, a sample of the tree was taken, with the first 25% being eliminated as
burn-in. As the sampled generations increased, the log-likelihood maintained a constant level, and station-
arity was attained when the split average frequencies’ average standard deviation was less than 0.01 (Hall,
2016). Phylogenetic tree editing was done with FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/),
and median-joining haplotype network was produced using PopART v1.7 (Leigh & Bryant, 2015).

Genetic distance within and between populations were calculated using MEGA v7.0 (Kumar et al., 2016).
Subsequently, AMOVA was used to quantify genetic variation using F' -statistics at two geographically
distinct levels of subdivision: among and within populations. To test for statistical significance, 10, 000
permutations of the fixation indexF g1 were performed between pairs of populations using Arlequin v3.5
(Excoffier & Lischer, 2010).

2.3.3 Demographic history

The Tajima’s D (Tajima, 1989) and Fu's F' s (Fu & Li, 1993) tests were utilized to check for neutral
evolution. To examine population growth, the mismatch distribution (Rogers & Harpending, 1992) between
the sum of squared deviations (SSD) and Harpending’s raggedness index (Rg) was analyzed with Arlequin



v3.5 (Excoffier & Lischer, 2010). Changes in effective population size (Ne ) over time were deduced using
Bayesian skyline plot analysis in BEAST v2.6.3 (Bouckaert et al., 2019). To account for possible site-specific
variations, the rate of clock mutation was fixed at 1x10°® per year, as recommended for reef fishes (Delrieu-
Trottin et al., 2017). With a sample every 1000 iterations, 100 million generations of separate independent
Markov chain Monte Carlo (MCMC) studies were carried out. The molecular clock was calibrated using an
average divergence rate of 2% per million years for mtDNA (Schubart et al., 1998). ESS values were detected
until they reached 200, and these parameter values were displayed in Tracer v1.7.1 (Rambaut et al., 2018).

3 RESULTS
3.1 Genetic diversity

A total of 300 COI and Cyt b gene datasets (2598 bp) were obtained of L. spadiceus from eight geographic
locations (Figure 1). 94 polymorphic sites were detected among all individuals, including 28 parsimony
information sites and 66 singleton variable sites (Table 1). The average nucleotide composition was 23.2%
adenine (A), 27.3% thymine (T), 31.6% cytosine (C), and 17.9% guanine (G), with a slightly higher content of
A+T (50.5%) than G4C (49.5%), showing a clear anti-G bias. The mutation of DNA was unsaturated for the
transition/transversion (Ts/Tv) of bases in the COI and Cyt b gene datasets, which was 3.73. 95 haplotypes
were identified (GenBank accession numbers: 0Q970201-0Q970253 and OR428269-OR428309), the majority
of which were unique haplotypes (89.47%). Only ten haplotypes were shared between populations (Hap_1,
Hap_2, Hap_4, Hap_5, Hap_17, Hap_22, Hap_23, Hap_25, Hap_30, and Hap_65), and the most common Hap_1
(24.0%), Hap-2 (19.3%), and Hap_22 (11.0%) were found at each population (Figure 2).

Total haplotype diversity (H q) was high (H 4 = 0.8744-0.013), while nucleotide diversity (m ) was low
(r =0.00075+0.00058) (Table 1), showing the high haplotype diversity and low nucleotide diversity. The
correlation between genetic diversity and longitude and latitude of sampling locations showed that the
haplotype diversity (r = 0.29) and nucleotide diversity (r = 0.31) of L. spadiceus populations tend to rise
with latitude but did not change significantly with longitude (r = 0.08 and 0.04, respectively) (Figure 3).

3.2 Genetic structure and differentiation

The molecular evolution model with the gamma shape parameter (HKY+I+G) was found to be the best
substitution model for the COI and Cytb gene datasets by the jModelTest. From this result, a Bl tree was
built to determine phylogenetic relationship across populations (Figure S1). The BI tree was dispersed with
haplotypes from each population and lacked well-supported groups. Neither significant genealogy branches
nor haplotype clusters could be identified in relation to the sampling locations.

Network analysis and the phylogenetic tree showed similar results. The connection between several haplo-
types resembled a star, with certain prominent haplotypes like Hap_1, Hap_2, Hap_4, and Hap_22 (Figure
2). Unnoticeable clades in the network diagram of reticulations do not correlate with sampling locations,
suggesting a substantial gene flow among populations and recent population expansion. It was found that
relationships between populations were not linked to geological networks, but instead to the haplotypes that
were present in each population. According to these results, there was no obvious phylogeographical pattern
of L. spadiceus in the South China Sea.

The degree of genetic variation between populations was evaluated usingF g pairwise comparisons. TheF
st values were typically low and even negative, as shown in Table 2, only the F' 4 values between LZ
population and other populations were higher and significant (P < 0.05). The genetic distance between and
within populations was at the same level, with little differentiation (Table 2). The range under investigation
had no significant genetic structure. Hierarchical AMOVA analysis revealed that genetic variation in all
populations existed within populations, while only a small proportion of genetic variation could be attributed
to differences between populations (Table 3).

3.3 Demographic history

A unimodal distribution was observed in the mismatch distribution analysis (Figure 4a), which was consistent



with the expected distribution under a sudden expansion model (Rg = 0.0536, P> 0.05, Table 4). It is also
possible that populations had undergone expansion in the past (as indicated by the star-like networks). The
sum of the squared deviation (SSD) showed that there was no significant deviation from the growth and
expansion model (P> 0.05). The Tajima’s D and Fu's F' s tests ofL. spadiceus were significantly negative
(Tajima’s D = -1.905, P < 0.05; Fu’s F' s = -10.543, P< 0.01, Table 4). Typically, such values indicated
thatL. spadiceus may have experienced population expansion.

Bayesian skyline plots supported demographic scenarios explaining the recent population expansion ofL.
spadiceus (Figure 4b). The population experienced a significant increase, followed by a period of demographic
stability. The calculated population expansion time is approximately from 0.025 Mya to 0.010 Mya during
the Late Pleistocene (Figure 4b).

4 DISCUSSION
4.1 Genetic diversity

Haplotype diversity (H 4) and nucleotide diversity (r) are two important indicators to measure genetic diver-
sity, and mrepresents the proportion of each haplotype in the populations, which can reveal the polymorphism
of mtDNA in the populations more accurately (Chen et al., 2022). Grant & Bowen (1998) concluded that H
4 was higher than 0.5 and © was greater than 0.005, which indicated higher species diversity. This study
revealed high levels of haplotype and low levels of nucleotide diversity, which is common among some marine
fish species (Avise et al., 1987; Zhang et al., 2006).

High genetic diversity plays a crucial role in the exploitation and restoration of fishery resources (DeWoody et
al., 2021). Assessing genetic diversity is an effective approach the adaptability and survival ability of species
in response to environmental changes (Schmitt and Hewitt, 2004), which is essential for species management
and conservation. The fish of L. spadiceus is an economic species and has been caught for a long time.
Compared with other marine fishes in the same sea area, L. spadiceus had a lower nucleotide diversity (Yi
et al., 2021; Niu et al., 2019; Xu et al., 2021), reflecting that the L. spadiceus population in the South China
Sea has a fragile genetic diversity and requires conservation as well as a sustainable development planning
from fishery management.

4.2 Genetic structure and differentiation

Genetic distance is a crucial factor in determining the genetic relationship between species (Mather et al.,
2017). Shaklee et al (1982) proposed a classification of fish genetic distance at the population level (0.05),
species level (0.30), and genus level (0.90). In this study, it was found that the genetic distance between
populations were small, indicating a close genetic relationship between these populations. According to the
coalescent theory (Crandall & Templeton, 1993), more diverse populations have longer coalescence times
and larger coalescent effective population sizes than less diverse populations (assuming the same mutation
rate). Therefore, the ancestral haplotype was the most widely distributed. In the COI and Cyt b gene
datasets, Hap_1 and Hap_2 were found to be the dominant haplotypes (Figure 2), and may be the origin of
L. spadiceus .

In the phylogenetic analysis, the haplotypes of eight populations were randomly distributed. The haplotype
network and phylogenetic tree also showed no clear pedigree structure corresponding to geographical location.
This pattern suggests that the species went through a bottleneck event followed by a population expansion
(Grant & Bowen, 1998). The dispersal of larvae with ocean currents is an important cause of the limited
genetic differentiation of marine fishes that have a geographically large distribution range (Strathmann et
al., 2002). In this study, L. spadiceus were caught in the spring and autumn, during this time, the China
Coastal Current and the South China Sea Warm Current flowed northward into the East China Sea (Figure
1) (Yang et al., 2008; Wang et al., 2015). Previous studies have reported that extensive gene exchange occurs
over a wide geographical range in marine fishes (Grant & Bowen, 1998; Niu et al., 2019; Yi et al., 2021).F'
st is a significant measure in evaluating genetic diversity among populations, as emphasized by Allendorf
(1983). A higher F 4 value suggests a greater level of genetic differentiation. According to Wright (1951)



classification, F' 4 value of 0 7 0.05 suggests no differentiation, 0.05 ~ 0.15 suggests little differentiation,
0.15 7 0.25 suggests moderate differentiation, and F g value greater than 0.25 suggests significant genetic
differentiation. TheF 4 between the BH and LZ population was the highest value among all populations
(Table 2), indicating the greatest genetic differentiation is between these populations, other populations were
lower.

4.3 Demographic history

This study utilized the Tajima’s D , Fu'sF g tests, and mismatch analysis to suggest that a population
expansion event of the L. spadiceus population may have occurred from 0.025 Mya to 0.010 Mya in the Late
Pleistocene. L. spadiceus is mainly distributed less 50 m depth, and spawns in coastal habitats and shallow
shorelines. Therefore, the L. spadiceus distribution is closely related to historical sea level fluctuations.
When sea level was 120 m lower than the present level during the last glacial maximum of the Pleistocene,
the northern South China Sea included Beibu Gulf, which was part of the South China continent, Hainan
Island, and Taiwan Island were connected to mainland China. The entire South China Sea was separated
from the Indian Ocean to form a semi-closed basin (Wang, 1990). The survival range of marine fish decreased
sharply; therefore, the L. spadiceus population may have moved and survived in one or more glacial refuges
during this period, such as the semi-closed South China Sea. In the Late Pleistocene, the glaciation began
to disappear and L. spadiceusmight have experienced rapid population expansion when favorable conditions
occurred.

Many studies have demonstrated a weak genetic differentiation between the geographical populations of
surface marine fish that can migrate long distances or swim. This can be attributed to the free dispersal of
floating eggs, fish larvae, juveniles, and adults, as well as the absence of significant geographical obstacles
in the open ocean environment. Consequently, gene exchange occurs extensively and widely among these
marine fish populations (Canfield et al., 2022; Hewitt, 2000; Palumbi, 1994). However, it should be noted
that L. spadiceus , being a benthic fish, does not exhibit a long-distance migration behavior according to
its life history. Therefore, the observed panmixia among populations may be attributed to their early life
habits. The active diffusion of fish larvae and juveniles as well as marine environmental factors, such as ocean
circulation and climate change in the Late Pleistocene, have played crucial roles in shaping the systematic
geographical pattern and population genetic structure of L. spadiceus .

4.4 The choice of mtDINA.

Surprisingly, despite the popularity of mtDNA as a marker in evolutionary studies, this assumption only
relies on a handful of comparisons involving mostly vertebrate’s species (Nabholz et al., 2009). Depending on
species, mtDNA mutation rate was much higher or lower than nuclear DNA (nuDNA) rate. For example, it
is not always clonal, far from neutrally evolving and certainly not clock-like, and the ratio of mitochondrial
to nuclear mutation rate varies widely among animals (Allio et al., 2017; Galtier et al., 2009). Despite these
long-acknowledged concerns, similar results were obtained in several studies that have employed mtDNA
and nuDNA to investigate genetic structuring and demographic history in populations of marine fishes
(Machado-Schiaffino et al., 2009; Vinas et al., 2010; Adams et al., 2006; Mccusker & Bentzen, 2010; Yang et
al., 2022).

5 CONCLUSIONS

In this study, we present the first exploration of the genetic structure of L. spadiceus in the SCS. The
mtDNA sequence analysis of specimens from the SCS revealed no significant genetic differentiation among
sampling sites, with low F ¢ values indicating genetic homogeneity, which probably reflected widespread
and recent historical interconnections during the post-glaciation. Hainan Island and Leizhou Peninsula
had no effect on gene flow of L. spadiceus in the SCS. In its demographic history, it experienced a low
effective population size during the Quaternary period that increased sharply after the last glacial maximum
(LGM). The phylogeographic pattern of L. spadiceus may be attributed to past population expansion and
long-distance larval dispersal facilitated by present-day ocean currents. Given the maternally inherited
characteristics of mtDNA, which cannot accurately provide the overall population structure. To gain a



better understanding of the population structure of L. spadiceus , further investigation using more precise
nuclear genetic markers like microsatellites and single nucleotide polymorphisms is needed. These markers
would help determine more accurate and refined management units, which can then inform the development
of an effective management policy.
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