Water vapor spectroscopy and thermodynamics constrain Earth’s tropopause temperature

Brett A McKim1, Nadir Jeevanjee2, Geoffrey K Vallis1, and Neil T Lewis1

1University of Exeter
2Geophysical Fluid Dynamics Laboratory

February 27, 2024

Abstract

As Earth warms, the tropopause is expected to rise, but predictions of its temperature change are less certain. One theory ties tropopause temperature to outgoing longwave radiation (OLR), but this contradicts simulations that exhibit a Fixed Tropopause Temperature (FiTT) even as OLR increases. Another theory ties tropopause temperature to upper tropospheric moisture, but is not precise enough to make quantitative predictions. Here, we argue that tropopause temperature, defined by where radiative cooling becomes negligible, is set by water vapor’s maximum spectroscopic absorption and Clausius-Clapeyron scaling. This “thermospectric constraint” makes quantitative predictions for tropopause temperature that are borne out in single column and general circulation model experiments where the spectroscopy is modified and the tropopause changes in response. This constraint underpins the FiTT hypothesis, shows how tropopause temperature can decouple from OLR, suggests a way to relate the temperatures of anvil clouds and the tropopause, and shows how spectroscopy manifests in Earth’s general circulation.
Water vapor spectroscopy and thermodynamics constrain Earth’s tropopause temperature

Brett A. McKim1, Nadir Jeevanjee2, Geoffrey K. Vallis1, Neil T. Lewis1

1Department of Mathematics and Statistics, University of Exeter, Exeter, UK
2Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA

Key Points:

- We hypothesize that moisture and spectroscopy constrain the radiative tropopause temperature
- This prediction bears out quantitatively in both single column and general circulation model experiments
- Our derivation and results underpin the Fixed Tropopause Temperature (FiTT) hypothesis

Corresponding author: Brett A. McKim, brettmckim@gmail.com
Abstract

As Earth warms, the tropopause is expected to rise, but predictions of its temperature change are less certain. One theory ties tropopause temperature to outgoing longwave radiation (OLR), but this contradicts simulations that exhibit a Fixed Tropopause Temperature (FiTT) even as OLR increases. Another theory ties tropopause temperature to upper tropospheric moisture, but is not precise enough to make quantitative predictions. Here, we argue that tropopause temperature, defined by where radiative cooling becomes negligible, is set by water vapor’s maximum spectroscopic absorption and Clausius-Clapeyron scaling. This “thermospectric constraint” makes quantitative predictions for tropopause temperature that are borne out in single column and general circulation model experiments where the spectroscopy is modified and the tropopause changes in response. This constraint underpins the FiTT hypothesis, shows how tropopause temperature can decouple from OLR, suggests a way to relate the temperatures of anvil clouds and the tropopause, and shows how spectroscopy manifests in Earth’s general circulation.

Plain Language Summary

The tropopause separates the troposphere from the stratosphere, but theories disagree on the mechanisms that determine its temperature. We argue that the tropopause occurs where water vapor becomes so sparse that it can no longer emit radiation to space. The temperature this occurs at is set by how sensitive water vapor is to temperature and how effective it is in blocking and emitting radiation. Our theory leads to precise predictions of tropopause temperature and its change with surface warming. We verify our theory’s mechanism by varying the effectiveness of water vapor absorption in climate models and find the tropopause temperature to change consistently with our theory’s predictions. Our results suggest a role for wavelength-dependent radiation physics in constraining the large scale motions of Earth’s atmosphere.

1 Introduction

The tropopause separates the overturning troposphere from a more idle stratosphere. Understanding the mechanisms setting tropopause temperature and height remains a fundamental and important unsolved problem in climate science (Phillips, 1956) — fundamental because it depends on how two branches of climate, dynamics and radiation, interact (Schneider, 2008; Vallis, 2017); important because the tropopause is a boundary condition in hurricane intensity (Emanuel, 2006; Emanuel et al., 2013), convectively available potential energy (Romps, 2016), CO₂ forcing (Jeevanjee et al., 2021), the water vapor feedback (Meraner et al., 2013; Koll et al., 2023; Feng et al., 2023), stratospheric water vapor (Mote et al., 1996), and ozone destruction (Match & Gerber, 2022).

The dynamically active troposphere is thought to extend upwards until the radiative equilibrium temperature profile of the stratosphere becomes stable to convection and eddies (Held, 1982; Thuburn & Craig, 2000), a condition known as the radiative constraint that defines a radiative tropopause as the lowest level at which the atmosphere attains radiative equilibrium. We focus on this radiative definition, but note that the tropopause can also be diagnosed with a lapse-rate criterion, and the two measures will often but not always be similar (Highwood & Hoskins, 1998), a point we return to later.

One way to understand the radiative tropopause temperature is in terms of top-of-atmosphere energy balance (Held, 1982; Thuburn & Craig, 2000; Vallis et al., 2015; Vallis, 2017). In this theory, gray radiative transfer (independent of wavenumber) and an optically thin stratosphere and upper troposphere are often assumed for conceptual simplicity. This lets tropopause temperature (T_{tp}) be regarded as a skin-like temperature (Pierrehumbert, 2010) dictated by the outgoing longwave radiation (OLR):

$$T_{tp} = (\text{OLR}/2\sigma)^{1/4} \quad \text{(OLR constraint),}$$

\text{(1)}
where σ is the Stefan-Boltzmann constant. Note, though, that the source of the outgoing radiation still lies within the troposphere. This suggests a direct coupling between T_{tp} and OLR and makes no direct reference to the properties of Earth’s greenhouse gasses. It predicts an unchanging tropopause temperature with CO$_2$-driven global warming, which is generally consistent with comprehensive climate models (Vallis et al., 2015; Hu & Vallis, 2019). It also suggests a sensitivity of T_{tp} to warming agents that increase OLR (such as an increase in insolation).

However, a fixed tropopause temperature (FiTT) has been shown in simulations of warming without fixed OLR (Seeley et al., 2019), which may be at odds with the OLR constraint. The expectation of a FiTT independent of the warming agent originates from an entirely different branch of research focused on the fixed temperature of anvil clouds in response to surface warming (Hartmann & Larson, 2002). In this theory, water vapor, the primary source of radiative cooling in the troposphere (Manabe & Strickler, 1964), is thought to control T_{tp}. Hartmann and Larson (2002); Harrop and Hartmann (2012) showed that tropical convection is tied to water vapor-driven radiative cooling. Moisture declines exponentially with temperature, until there is so little water vapor that it can no longer radiatively cool, thereby limiting the vertical extent of convection. These results were generalized and shown to apply to extratropical high clouds (Thompson et al., 2017, 2019), and Seeley et al. (2019) suggested that a similar hypothesis may be even more apt for the radiative tropopause. As evidence of this potential connection, Seidel and Yang (2022) showed that anvil clouds and the tropopause covary with surface warming.

If this is all true, then the temperature dependence of water vapor and its radiative cooling imposes a moist thermodynamic constraint on the tropopause. This is consistent with observations and models (Thompson et al., 2017, 2019) and helps explain the FiTT response to surface warming and its relation to Fixed Anvil Temperatures (FAT) (Hartmann & Larson, 2002; Seeley et al., 2019; Seidel & Yang, 2022). However, it makes no reference to OLR and it remains unclear what sets the temperature at which water vapor is unable to radiatively cool. The moist constraint cannot predict T_{tp}, and thus the FiTT hypothesis lacks a quantitative basis.

These limitations and contradictions may be resolved by noting that OLR is coupled to moist thermodynamics (Simpson, 1928; Nakajima et al., 1992; Koll & Cronin, 2018; Jeevanjee et al., 2021), and that spectral (wavenumber-dependent) theories of radiation can yield quantitative insights into this coupling (Feng et al., 2023; Koll et al., 2023). This approach led to a moist radiative theory for anvil cloud temperatures (Jeevanjee & Fueglistaler, 2020b) and we will follow suit to derive a more precise theory of the radiative tropopause temperature and of FiTT. Like Held (1982); Thuburn and Craig (2000), we study the radiative tropopause (henceforth “the tropopause”), but we will inspect the lapse rate tropopause and the role of dynamical constraints (Stone & Carlson, 1979; Held, 1982; Schneider, 2004, 2008; Schneider & O’Gorman, 2008; O’Gorman, 2011; Zurita-Gotor & Vallis, 2011; Vallis, 2017) later on. Stratospheric dynamics and ozone affect tropopause structure (Highwood & Hoskins, 1998; Thuburn & Craig, 2000, 2002; Fueglistaler et al., 2009; Birner, 2010; Lin et al., 2017; Dacie et al., 2019) and their inclusion is necessary to capture the full complexity of the tropopause response to climate change (Randel & Jensen, 2013). However, here we focus on more basic mechanisms that should be embedded in most climate models.

2 Formulating the thermospectric constraint

Qualitative overview

Understanding clear-sky radiative cooling is key to constraining the tropopause. The cooling profile is controlled by the wavenumber-dependence of water vapor spectroscopy (Jeevanjee & Fueglistaler, 2020b). At each temperature (or height), there are only a few
wavenumbers that cool (Jeevanjee & Fueglistaler, 2020a, 2020b), with colder temperatures (higher heights) cooling at wavenumbers with stronger spectroscopic absorption. We demonstrate this in a moist-adiabatic single column model at 300 K with line-by-line radiative transfer, PyRADS (Koll & Cronin, 2018). Plotting the spectrally-resolved cooling reveals that at any given height, most cooling is contained within a roughly 200 cm$^{-1}$ width band whose contours mimic the V-shape of water vapor spectroscopy (Figure 1a,c).

Following this logic, water vapor’s maximum spectroscopic absorption strength around 150 cm$^{-1}$ (Figure 1a) suggests there is a minimum temperature (maximum height) to which water vapor can radiatively cool (Figure 1c). We argue that the combination of water vapor spectroscopy and Clausius-Clapeyron scaling constrains tropopause temperature. This thermospectroscopic constraint refines the moist constraint with a more fundamental explanation for where and why water vapor’s radiative cooling declines in the upper troposphere. It refines the OLR constraint into a spectral emission constraint that relates particular features of the radiative cooling profile to their corresponding emission temperatures.

Making the constraint quantitative

Small amounts of upper tropospheric water vapor can cool because of its strong radiative absorption in the rotational band (Figure 1a and Clough et al., 1992). Consider water vapor’s optical depth:

$$\tau_{H2O}(\nu, z) = \int_z^\infty \kappa_{H2O}(\nu) \frac{p}{p_{ref}} \rho_{H2O} dz',$$

(2)

where $\kappa_{H2O}(\nu)$ is the spectroscopic absorption strength of water vapor (m2 kg$^{-1}$) at wavenumber ν (cm$^{-1}$), p/p_{ref} accounts for pressure broadening at wavenumbers more than about 0.1 cm$^{-1}$ away from line centers (Fu, 2006), p is the pressure, $p_{ref} = 500$ hPa is a reference pressure, and ρ_{H2O} is the density of water vapor. Infrared emission from water vapor peaks around $\tau_{H2O} \approx 1$ (Jeevanjee & Fueglistaler, 2020a; Jeevanjee, 2023), which implies an inverse relationship between κ_{H2O} and the integral of ρ_{H2O}. κ_{H2O} varies by many orders of magnitude across the infrared (Figure 1a), so many atmospheric levels emit to space (Figure 1c,d). However, a maximum in κ_{H2O} implies a minimum ρ_{H2O} and therefore a minimum temperature of the atmosphere that can effectively cool to space.

To formulate this statement quantitatively, we assume that all emission occurs at $\tau_{H2O} = 1$, which defines an emitting temperature T_{em} at wavenumber ν by the relation

$$\tau_{H2O}(\nu, T_{em}) = 1.$$

(3)

It is more accurate to invert this equation numerically, but more informative to do so analytically, as shown in Jeevanjee and Fueglistaler (2020b); Jeevanjee (2023). We reproduce some of their steps for clarity.

The variable of integration in optical depth can be changed from height to temperature, and though water vapor spectroscopy varies due to pressure broadening, it varies much less than water vapor density does across the troposphere, so it can be pulled out of the integral. Optical depth is then proportional to water vapor path, which can be computed analytically (Koll & Cronin, 2018), resulting in a simplified expression:

$$\tau_{H2O}(\nu, T) \approx \kappa_{H2O} \frac{p}{p_{ref}} M_v RH \exp \left(- \frac{L}{R_v T} \right),$$

(4)

where M_v is a characteristic column water vapor mass (kg m$^{-2}$) and $M_v RH \exp(-L/R_v T)$ is the column mass of water vapor above the isotherm with temperature T. Setting $\tau_{H2O} = 1$ and inverting it results in the emission temperatures as a function of absorption coefficients:
Figure 1. The max absorption strength of water vapor spectroscopic absorption is hypothesized to constrain Earth’s tropopause. (a) Water vapor absorption strength as a function of wavenumber. (b) The rotational branch (150 to 1000 cm$^{-1}$) of absorption strength as a normalized histogram (plotted vertically), with units of ln \(\kappa_{H_2O} \). (c) Spectrally-resolved radiative cooling from a single column model with line-by-line radiative transfer, PyRADS. (d) Spectrally-integrated radiative cooling. We make a rough estimate of the maximum absorption coefficient as \(\kappa_{\text{max}} \sim 10^3 - 10^4 \text{ m}^2\text{kg}^{-1} \), which we hypothesize relates to the tropopause. \(\kappa_{\text{kink}} = 40 \text{ m}^2\text{kg}^{-1} \) refers to where the density of lines begins to decline rapidly, which has been hypothesized to relate to anvil clouds (Jeevanjee & Fueglistaler, 2020b). Spectral data plotted at a resolution of 0.1 cm$^{-1}$ using PyRADS (Koll & Cronin, 2018).

Figure 2. The thermospectric constraint, Equation 5 and 6, can quantitatively capture the change in tropopause temperature (\(T_{tp} \)). (a) Isca’s single column model control simulation’s temperature profile. (b) Control simulation’s radiative cooling profile. (c) The surface temperature is varied and RH kept fixed at 0.7. Simulations (dots), theory (solid lines). (d) The relative humidity is varied and \(T_s \) fixed at 290 K. (e) The absorption coefficients of water vapor are scaled uniformly and \(T_s \) and RH fixed at 290 K and 0.7, respectively. Water vapor and CO$\text{$_2$}$ (280 ppmv) are the only greenhouse gases present in these simulations.
where T^* is a characteristic temperature for water vapor, W is the Lambert-W function, T_{ref} is a characteristic temperature of the troposphere, $D = 1.5$ is a scaling factor that accounts for the two stream approximation in radiative transfer theory, $R_d = 287$ J kg$^{-1}$ K$^{-1}$ is the specific gas constant for dry air, $\Gamma = 7$ K km$^{-1}$ is the globally-averaged lapse rate of the troposphere in the general circulation model used later on (Figure S1b), and g is the gravitational acceleration (see Table 1 in Methods for values and meanings of the variables and constants).

The thermospectric constraint posits that tropopause temperature T_{tp} is the emission temperature determined by a combination of Clausius-Clapeyron scaling (as embodied by RH and M_v) and the maximum absorption coefficient of water vapor, κ_{max}. That is, $T_{\text{tp}} = T_{\text{em}}(\kappa_{\text{max}})$. (Thermospectric constraint) (6)

The presence of thousands of absorption lines across the infrared (Figure 1a) makes it difficult to select an appropriate value of κ_{max}. It helps that the strength of spectrally integrated radiative cooling is roughly proportional to the density of absorption lines at a given strength (Figure 1b,d and Jeevanjee & Fueglistaler, 2020b). For values of $\kappa_{\text{H}_2\text{O}} \in (10^{-4}, 10^4)$ m2 kg$^{-1}$, which correspond to tropospheric emission and a typical value of -2 K day$^{-1}$ of radiative cooling (Jeevanjee & Fueglistaler, 2020b), the density of absorption lines in the rotational band (150 to 1000 cm$^{-1}$) has a characteristic value of $0.07 \ln \kappa_{\text{H}_2\text{O}}$ (Figure 1b). The vibrational-rotational band (1000 to 1500 cm$^{-1}$) is not as important because its Planck emission is about 1/6 of the rotational band’s emission (Jeevanjee & Fueglistaler, 2020b).

The proportionality between the density of lines and the strength of cooling provides a heuristic way to determine κ_{max}: look for where the density of lines drops between a tenth and a hundredth of its density for tropospheric emission, as this would roughly correspond to where cooling drops to between a tenth and a hundredth of its tropospheric value (thereby achieving radiative equilibrium) (Figure 1b,d). Other factors influence the strength of cooling, such as the change in optical depth with height and the strength of the Planck function at a given wavenumber and temperature, but (Jeevanjee & Fueglistaler, 2020b) showed that these cannot explain the declining strength of cooling in the upper troposphere.

We plot the density of absorption lines in the rotational band in Figure 1b. The density drops to between a tenth and a hundredth of its typical value at $\kappa_{\text{H}_2\text{O}} \in (4 \cdot 10^3, 4 \cdot 10^4)$ m2 kg$^{-1}$. Taking the geometric average of the upper and lower bounds, we arrive at our estimate of $\kappa_{\text{max}} \approx 13000$ m2 kg$^{-1}$. Plugging into Equation 6, our prediction for the tropopause temperature is $T_{\text{tp}} \approx 180$ K.

3 Testing the thermospectric constraint

To test the thermospectric constraint (Equation 6), we run simulations using a clear-sky single column model (SCM) configuration of the Isca modeling framework (Vallis et al., 2018). The SCM is configured with the correlated-k radiative transfer code RRTM (Mlawer et al., 1997), and a simplified representation of moist convection (the simple Betts-Miller code of Frierson, 2007 and O’Gorman & Schneider, 2008). Configuring the SCM using Isca lets us compare to general circulation model (GCM) simulations with identical column-wise physics later in the paper. Further description of our model set-up can be found in the Supporting Information.

To begin, we consider an SCM control run with a prescribed surface temperature of $T_s = 290$ K, relative humidity RH= 0.7, and CO$_2$ concentration of 280 ppmv. The diagnosed
Figure 3. Water vapor spectroscopy affects the radiative and lapse rate tropopauses. (a) Zonal-mean temperature profile of the control Isca aquaplanet simulation. (b) Zonal-mean radiative cooling profile of the control. (c) Zonal-mean mass flux profile of the control. (d-g) Water vapor absorption coefficients are increased geometrically by \([1/2, 1, 2]\) and the resulting changes in radiative- and lapse rate-tropopause temperature and height are recorded. The lack of ozone in these simulations accounts for the high (25 km) lapse rate tropopause.
tropopause temperature obtained in this simulation (the lowest level to which radiative
equilibrium is achieved, which we identify as -0.05 K day^{-1} to avoid sensitivity issues
related to the cooling profile's asymptotic approach to 0 K day$^{-1}$, see Figure 2a,b and
Supporting Information), is 184 K, close to our prediction.

The maximum absorption coefficient of water vapour, κ_{max}, can also be considered a
free parameter to match the predicted tropopause temperature with the value diagnosed
from a climate model. Tuning κ_{max} results in a value of 7000 m2 kg$^{-1}$, which is within our
identified range for κ_{max} based on the density of absorption lines. This tuned value is used
henceforth and will not be retuned, except where explicitly scaled. Regarding this climate as
our base state, we can test the thermospectric constraint by varying the prescribed surface
temperature, column relative humidity, and absorption coefficients of water vapor in the
SCM and see how well theory compares.

Surface temperature

As surface temperature increases, the thermospectric constraint (Equation 6) predicts
a small but nonzero warming of the tropopause of about $\Delta T_{tp}/\Delta T_s = 1/5$ (Figure 2c, solid
line). The slight warming is a second order effect from pressure broadening (Koll et al.,
2023; Feng et al., 2023) which can be understood as follows. The tropopause temperature
is fixed, to first order, which implies a rising tropopause as surface temperature increases.
As pressure decreases, the effective water vapor absorption coefficients ($\kappa_{H_2O} \cdot p/p_{ref}$) also
decreases, which implies a larger ρ_{H_2O} is needed to achieve $\tau_{H_2O} = 1$, and thus a slightly
warmer tropopause temperature. A simple calculation shows that the change in water
vapor emission temperatures (including at the tropopause) should be about 1/4 to 1/5 of
the warming at the surface (Equation B4 of Jeevanjee, 2023 and Equation 46 of Koll et al.,
2023).

In an SCM experiment where surface temperature is increased (Figure 2c, dots), the
tropopause warms almost exactly as predicted. The relatively fixed tropopause temperature
(FITTT) has been noted before (Seeley et al., 2019) and explained qualitatively by Thompson
et al. (2019) with the thermodynamic constraint. However, the thermospectric constraint
provides a quantitative understanding of how T_{tp} should change with warming. The pressure
broadening explanation differs from Hu and Vallis (2019), who explains the slight warming
as a consequence of increased longwave radiation from outside the water vapor window.

Relative humidity

Variations in column relative humidity (RH) may influence T_{tp}. A larger RH implies a
smaller saturation water vapor density $\rho_{H_2O}^{sat}$ to reach $\tau_{H_2O} = 1$, and thus a cooler tempera-
ture. We vary RH in the SCM but keep surface temperature fixed and find the tropopause
cools as RH increases (Figure 2d), in excellent agreement with predictions from inputting
RH into the thermospectric constraint (Equation 5).

Water vapor absorption

Modifying the ρ_{H_2O} passed to the radiation code of a climate model alters the tempera-
ture of anvil clouds and the tropopause (Harrop & Hartmann, 2012; Thompson et al., 2019;
Spaulding-Astudillo & Mitchell, 2023). The thermospectric constraint suggests that modi-
fying κ_{H_2O} should have a similar effect. A geometrically larger κ_{max} implies a geometrically
smaller minimum ρ_{H_2O} to achieve $\tau_{H_2O} = 1$ and hence an arithmetically colder T_{tp} due to
Clausius-Clapeyron scaling: $d\ln \rho_{H_2O}/dT|_{T_{tp}} = L/(R_s T_{tp}^2) = 16\% \text{ K}^{-1}$ or roughly 4 K of
cooling to halve ρ_{H_2O}. These predictions are borne out quantitatively by the simulations,
where T_{tp} cools arithmetically as κ_{max} is scaled geometrically over many octaves while T_s
and RH are fixed, at a rate of roughly 4 K per doubling (Figure 2e). This is the most direct
test of the thermospectric constraint and it confirms spectroscopy’s key role in constraining T_{tp}.

4 From spectroscopy to the general circulation

The previous tests were done in a single column model, but the tropopause is a feature of Earth’s general circulation and will be influenced by other factors (Thuburn & Craig, 2000; Birner, 2010). We test whether modifying κ_{H_2O} influences T_{tp} and z_{tp} (tropopause height) in a general circulation model configured as an idealized aquaplanet with a standard fixed sea surface temperature distribution (Neale & Hoskins, 2000):

$$T_s(\phi) = \begin{cases} 300(1 - \sin^2(3\phi/2)) \text{ K}, & \text{for } -\pi/3 < \phi < \pi/3 \\ 273 \text{ K}, & \text{otherwise} \end{cases}$$

where ϕ is the latitude. The GCM is configured to use the same column-wise physics routines (e.g., RRTM radiative transfer, simplified Betts-Miller moist convection) as the SCM. See the Supporting Information for further details. When analysing the GCM, we diagnose the radiative tropopause with a -0.2 K day$^{-1}$ threshold instead of the -0.05 K day$^{-1}$ used for the SCM. The updated threshold more closely aligns with relevant dynamical features such as the mass flux profile (Figure 3c) while still using a threshold value \ll typical tropospheric cooling (Figure 3b).

Spectroscopic control of the tropopause

We vary κ_{H_2O} geometrically and find the tropopause cools and rises across all latitudes, again at $\approx 4 - 5$ K and $0.5 - 1$ km per doubling of κ_{H_2O} (Figure 3d,e). This cooling confirms the quantitative predictions of thermospectric constraint (Figure 2e) in a more comprehensive and Earth-like setting. The spectroscopic control on the radiative tropopause has implications for the general circulation because infrared cooling constrains the residual motion of the atmosphere, the amplitude of tropospheric wave breaking, and the depth of its diabatic mixing (Thompson et al., 2017, 2019).

T_{tp} varies by only 5 K across latitude in these simulations, consistent with FiTT and the idea of a fairly insensitive radiative tropopause temperature to surface temperature and the large-scale circulation. However, radiative tropopause $height$ is not uniform due to its strong dependence on surface temperature and vertically averaged lapse rate (Γ), $z_{tp} \approx (T_{tp} - T_0)/\Gamma$. It has a top-hat meridional structure because T_0 varies from equator to poles and because Γ varies as the dominant control on stratification changes from moist convection in the tropics to baroclinic eddies in the extratropics (Stone & Carlson, 1979; Held, 1982; Schneider, 2008; Vallis, 2017).

This dynamical control extends to the lapse-rate tropopause, diagnosed here as where the lapse rate exceeds -5 K km$^{-1}$. It has a much more pronounced top-hat structure in both its height and temperature (Figure 3f,g). FiTT does not apply to all definitions of the tropopause because each definition respects different physical constraints (Highwood & Hoskins, 1998; Fueglistaler et al., 2009; Birner, 2010; Hu & Vallis, 2019). The lapse rate tropopause, for instance, depends on the profile of stratification, which is primarily determined by dynamics (Schneider, 2008). Nevertheless, the lapse rate tropopause still cools and rises as κ_{H_2O} is increased (Figure 3f,g), particularly in the tropics, hinting at a broader role of spectroscopy in the interaction between upper tropospheric radiative cooling, dynamics, and stratification which future work could make more precise.

Other controls of the tropopause

Meridional variations in radiative tropopause temperature may be due to surface temperature, which varies between 300 K and 273 K from equator to poles and can change...
Figure 4. Moisture is essential to capturing a fixed tropopause temperature and spectral radiative transfer decouples tropopause temperature from outgoing longwave radiation. (a) Outgoing longwave radiation (OLR) of Isca single column model with various types of radiative transfer. (b) Tropopause temperature for the same simulations. (c) Predicted tropopause temperature from the OLR constraint (Equation 1). (d-f) The radiative cooling profile plotted in temperature coordinates for $T_s = 270, 280, 290, 300, 310$ K for each model setup. Each profile has been normalized by its maximum tropospheric value and is plotted starting at the lifting condensation level for clarity. See Supporting Information for details.

T_{tp} with pressure-broadening effects. It may also be due to tropospheric relative humidity, which varies from 20 to 70 % (Figure S1a). The SCM and Equation 5 shows varying column relative humidity by a similar amount changes T_{tp} by about 5 K (Figure 2d). The lapse rate (Figure S1b) could also change T_{tp}; changing Γ from 4 K km$^{-1}$ to 7 K km$^{-1}$ in Equation 5 changes T_{tp} by 3 K.

Column-wise physics and water vapor may not be the only source of variations in T_{tp}. Stratospheric dynamics may influence z_{tp} and T_{tp} by altering the location of zero radiative cooling (Thuburn & Craig, 2000; Birner, 2010; Hu & Vallis, 2019). CO$_2$-driven radiative cooling, which primarily emanates from the stratosphere (Jeevanjee & Fueglistaler, 2020b), may also drive changes in T_{tp}. Future work could address these questions and lead to a more comprehensive theory, but our goal here is to provide a first order picture of moist thermodynamics interact with spectroscopy to set T_{tp}.

5 Reconciling different constraints

Previous theories of tropopause temperature have either emphasized outgoing radiation (Held, 1982; Thuburn & Craig, 2000; Vallis et al., 2015) or moist thermodynamics and upper tropospheric radiative cooling (Hartmann & Larson, 2002; Thompson et al., 2017). Combining moisture with a spectral perspective of radiative cooling can make more precise predictions for T_{tp} and FiTT (Figure 2c). Now we combine the OLR constraint (Equation 1) with moisture to make better predictions of FiTT, and consider how adding bands to gray
radiative transfer theory morphs the OLR constraint into an upper tropospheric radiative emission constraint.

The OLR constraint was derived with gray radiative transfer uncoupled to moisture (Held, 1982; Thuburn & Craig, 2000; Vallis et al., 2015). This “dry” constraint predicts a FiTT with respect to CO$_2$-driven global warming because OLR remains fixed (Vallis et al., 2015). By this logic, a warming that changes OLR would change T_{tp}, which stands in contrast to simulations that exhibit a FiTT even as OLR increases (Seeley et al., 2019; Seidel & Yang, 2022). For both gray and spectral atmospheres, the amount of OLR increase for a prescribed surface warming depends on the presence of radiatively active moisture and its optical thickness (Simpson, 1928; Nakajima et al., 1992; Ingram, 2010; Koll & Cronin, 2018; Jeevanjee et al., 2021; Feng et al., 2023; Stevens & Kluft, 2023; Koll et al., 2023). Changes in T_{tp} may be similarly constrained.

We test the role of moisture and choice of radiative transfer in controlling OLR and T_{tp} by varying surface temperature in different configurations of Isca’s SCM: a model with gray radiation uncoupled to moisture, similar to Frierson et al. (2006); with gray radiation coupled to moisture, similar to Byrne and O’Gorman (2013); and with spectral radiation coupled to moisture, as already described. In these experiments, OLR and T_{tp} change much more in the dry gray model than the moist gray and spectral models (Figure 4a,b).

In dry simulations, the greenhouse gas is assumed to be well mixed and so optical depth is a single valued function of pressure, $\tau = \tau(p)$. As T_s increases, isobars warm and radiative cooling at $\tau = 1$ emanates from a warmer layer of atmosphere that can emit more radiation to space (Figure 4d). In contrast, moisture constrains the optical depth to be a single valued function of temperature, $\tau = \tau(T)$ (in the absence of pressure broadening). As T_s increases, radiative cooling at $\tau = 1$ emanates from nearly the same temperature (Figure 4e,f and Figure S1a of Seeley et al., 2019) and thus OLR is constrained to increase less than in the dry case. (Radiative cooling can increase for other reasons, see, e.g., Jeevanjee & Romps, 2018, but less so if there is moisture.) Therefore, the OLR constraint, when combined with a notion of how moisture constrains changes in OLR, is more consistent with FiTT for a wider variety of warming scenarios such as in Seeley et al. (2019); Seidel and Yang (2022).

However, this explanation still does not address a motivating question of this study: How can T_{tp} decouple from OLR (compare Figure 4b,c)? The answer lies in the role of additional bands of radiative transfer. Hu and Vallis (2019) showed that adding a window band decouples the radiative equilibrium temperature of the planet, T_{re}, from total OLR and couples it instead to outgoing radiation from the optically thick band ($\text{OLR}_{\text{thick}}$):

$$T_{re} = \left[\frac{\tau_{\text{thick}} + \frac{1}{2\sigma} \text{OLR}_{\text{thick}}} {2\sigma} \right]^{1/4}.$$

(8)

The window band becomes optically thin at the surface, so its emission does not contribute to radiative balance at the stratosphere (Hu & Vallis, 2019). If a third, even thicker band were introduced, then this logic implies that the thickest band’s emission would determine the radiative balance at the stratosphere and constrain T_{re}, rather than the emission from the thinner bands. If we take the spectral limit of an infinite number of bands that vary by orders of magnitude in their optical depth, which is the case for Earth’s atmosphere, then T_{re} would be determined primarily by the optically thickest band and constrained by its spectral emission. T_{re} (and hence T_{tp}) would be related to the brightness temperature of that spectral emission. This is essentially what we have calculated in the thermospectric constraint (Equations 5 and 6), though framed in a different way. The OLR constraint is only strictly true for a gray atmosphere, and the thermospectric constraint is the generalization of that idea to a spectral, moist atmosphere. Hence, T_{tp} can decouple from OLR, as seen in simulations of FiTT (Figure 4c and Seeley et al., 2019; Seidel & Yang, 2022).
6 Discussion

Summary

Spectral radiative transfer decouples Earth’s radiative tropopause temperature from the total outgoing radiation and constrains it instead to where water vapor becomes optically thin across all wavenumbers and stops radiative cooling. This is set by water vapor’s maximum spectroscopic absorption and Clausius-Clapeyron scaling. The thermospectric constraint implies a relatively fixed radiative tropopause temperature (FiTT) with warming because isopleths of water vapor path follow isotherms. However, pressure broadening modifies the strength of spectroscopic absorption as the tropopause rises with surface warming, causing it to warm slightly. FiTT also constrains the meridional distribution of the radiative tropopause, but not the lapse rate tropopause, which is more strongly controlled by dynamics than by radiation. The thermospectric constraint does not rule out a role for processes such as the Brewer-Dobson circulation (which is relatively weak in an aquaplanet, but can affect the tropopause height; Thuburn & Craig, 2000; Birner, 2010; Hu & Vallis, 2019) and ozone (which is not present in our simulations but can affect stratospheric temperature; Thuburn & Craig, 2000, 2002; Lin et al., 2017; Dacie et al., 2019), but it does suggest a previously unnoticed mechanism grounded in robust physics is important in controlling tropopause temperature.

Anvil clouds and the tropopause

The temperature of anvil clouds and the tropopause respond similarly to surface warming (Seidel & Yang, 2022), despite their ≈ 5 km difference in height (Seeley et al., 2019). The thermospectric constraint offers an explanation. Anvil clouds and the tropopause share a thermodynamic control by water vapor, which is why they respond similarly to warming, but they depend on distinct features of water vapor spectroscopy, so they occur at different temperatures. The radiative tropopause occurs where radiative cooling goes to zero, which is controlled by the maximum spectroscopic absorption (κ_{max} ≈ 13000 m^2 kg^{-1}):

T_{tp} = T_{em}(κ_{max}) ≈ 180 K. Anvil clouds occur near the max vertical derivative of radiative cooling (Hartmann & Larson, 2002), which is controlled by the sharp decline in water vapor’s emission line density at κ_{kink} = 40 m^2 kg^{-1}: T_{anvil} = T_{em}(κ_{kink}) ≈ 214 K (Jeevanjee & Fueglistaler, 2020b). These thermodynamic and spectroscopic ingredients are embedded in most climate models, which could be why the relationship between anvil clouds and the tropopause are robust with respect to modeling configuration (Seidel & Yang, 2022).

A role for gray radiative transfer in studying climate?

Water vapor’s thermodynamic and radiative properties have distinct but equally profound influences on Earth’s climate (Held & Soden, 2006; Stevens & Bony, 2013), but are gray models of radiative transfer fit for understanding these influences? Gray climate models can capture the interplay of latent heat release and the general circulation (Frierson et al., 2006; Schneider et al., 2010; Vallis, 2020), some of the interaction between radiation and moisture necessary for water vapor feedbacks (Byrne & O’Gorman, 2013) and the runaway greenhouse effect (Nakajima et al., 1992), and can offer a qualitative understanding of Earth’s greenhouse effect (Pierrehumbert, 2010).

However, many circulation responses to warming depend sensitively on the radiative response to warming (Kang et al., 2009; Voigt & Shaw, 2015; Ceppi & Hartmann, 2016; Tan et al., 2019), which stresses the need for more nuanced understanding of radiation. For the problems where a quantitative answer is desired, such as the forcing from CO₂ (Jeevanjee et al., 2021; He et al., 2023), water vapor feedback (Koll et al., 2023; Feng et al., 2023), and equilibrium climate sensitivity (Jeevanjee, 2023; Stevens & Kluft, 2023); or for the problems involving vertical gradients in radiative cooling, such as the temperature of anvil clouds (Hartmann & Larson, 2002; Jeevanjee & Fueglistaler, 2020b), radiation’s wavenum-
ber dependence matters. Spectral theories promise to be the more powerful approach to identifying, studying, and potentially resolving them.

7 Open Research

All scripts used to support the creation and analysis of climate modeling data will be made available in a Github repository upon acceptance.

8 Author contributions

B.A.M, G.K.V., and N.J. designed research; B.A.M performed research. B.A.M, G.K.V., and N.J. interpreted results and analyzed data; B.A.M wrote the first draft of the paper; N.L. created the single column model implementation in Isca.

Acknowledgments

This work was funded by CEMPS at the University of Exeter. GKV also acknowledges support from NERC under the CIRCULATES grant NE/T006285/1. We declare no known conflicts of interest.

References

Water vapor spectroscopy and thermodynamics constrain Earth’s tropopause temperature

Brett A. McKim1, Nadir Jeevanjee2, Geoffrey K. Vallis1, Neil T. Lewis1

1Department of Mathematics and Statistics, University of Exeter, Exeter, UK
2Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA

Key Points:
\begin{itemize}
\item We hypothesize that moisture and spectroscopy constrain the radiative tropopause temperature
\item This prediction bears out quantitatively in both single column and general circulation model experiments
\item Our derivation and results underpin the Fixed Tropopause Temperature (FiTT) hypothesis
\end{itemize}

Corresponding author: Brett A. McKim, brettmckim@gmail.com
Abstract
As Earth warms, the tropopause is expected to rise, but predictions of its temperature change are less certain. One theory ties tropopause temperature to outgoing longwave radiation (OLR), but this contradicts simulations that exhibit a Fixed Tropopause Temperature (FiTT) even as OLR increases. Another theory ties tropopause temperature to upper tropospheric moisture, but is not precise enough to make quantitative predictions. Here, we argue that tropopause temperature, defined by where radiative cooling becomes negligible, is set by water vapor’s maximum spectroscopic absorption and Clausius-Clapeyron scaling. This “thermospectric constraint” makes quantitative predictions for tropopause temperature that are borne out in single column and general circulation model experiments where the spectroscopy is modified and the tropopause changes in response. This constraint underpins the FiTT hypothesis, shows how tropopause temperature can decouple from OLR, suggests a way to relate the temperatures of anvil clouds and the tropopause, and shows how spectroscopy manifests in Earth’s general circulation.

Plain Language Summary
The tropopause separates the troposphere from the stratosphere, but theories disagree on the mechanisms that determine its temperature. We argue that the tropopause occurs where water vapor becomes so sparse that it can no longer emit radiation to space. The temperature this occurs at is set by how sensitive water vapor is to temperature and how effective it is in blocking and emitting radiation. Our theory leads to precise predictions of tropopause temperature and its change with surface warming. We verify our theory’s mechanism by varying the effectiveness of water vapor absorption in climate models and find the tropopause temperature to change consistently with our theory’s predictions. Our results suggest a role for wavelength-dependent radiation physics in constraining the large scale motions of Earth’s atmosphere.

1 Introduction
The tropopause separates the overturning troposphere from a more idle stratosphere. Understanding the mechanisms setting tropopause temperature and height remains a fundamental and important unsolved problem in climate science (Phillips, 1956) — fundamental because it depends on how two branches of climate, dynamics and radiation, interact (Schneider, 2008; Vallis, 2017); important because the tropopause is a boundary condition in hurricane intensity (Emanuel, 2006; Emanuel et al., 2013), convectively available potential energy (Romps, 2016), CO₂ forcing (Jeevanjee et al., 2021), the water vapor feedback (Meroner et al., 2013; Koll et al., 2023; Feng et al., 2023), stratospheric water vapor (Mote et al., 1996), and ozone destruction (Match & Gerber, 2022).

The dynamically active troposphere is thought to extend upwards until the radiative equilibrium temperature profile of the stratosphere becomes stable to convection and eddies (Held, 1982; Thuburn & Craig, 2000), a condition known as the radiative constraint that defines a radiative tropopause as the lowest level at which the atmosphere attains radiative equilibrium. We focus on this radiative definition, but note that the tropopause can also be diagnosed with a lapse-rate criterion, and the two measures will often but not always be similar (Highwood & Hoskins, 1998), a point we return to later.

One way to understand the radiative tropopause temperature is in terms of top-of-atmosphere energy balance (Held, 1982; Thuburn & Craig, 2000; Vallis et al., 2015; Vallis, 2017). In this theory, gray radiative transfer (independent of wavenumber) and an optically thin stratosphere and upper troposphere are often assumed for conceptual simplicity. This lets tropopause temperature (\(T_{\text{tp}}\)) be regarded as a skin-like temperature (Pierrehumbert, 2010) dictated by the outgoing longwave radiation (OLR):

\[
T_{\text{tp}} = (\text{OLR}/2\sigma)^{1/4} \quad (\text{OLR constraint}),
\]
where σ is the Stefan-Boltzmann constant. Note, though, that the source of the outgoing radiation still lies within the troposphere. This suggests a direct coupling between T_{tp} and OLR and makes no direct reference to the properties of Earth’s greenhouse gases. It predicts an unchanging tropopause temperature with CO$_2$-driven global warming, which is generally consistent with comprehensive climate models (Vallis et al., 2015; Hu & Vallis, 2019). It also suggests a sensitivity of T_{tp} to warming agents that increase OLR (such as an increase in insolation).

However, a fixed tropopause temperature (FiTT) has been shown in simulations of warming without fixed OLR (Seeley et al., 2019), which may be at odds with the OLR constraint. The expectation of a FiTT independent of the warming agent originates from an entirely different branch of research focused on the fixed temperature of anvil clouds in response to surface warming (Hartmann & Larson, 2002). In this theory, water vapor, the primary source of radiative cooling in the troposphere (Manabe & Strickler, 1964), is thought to control T_{tp}. Hartmann and Larson (2002); Harrop and Hartmann (2012) showed that tropical convection is tied to water vapor-driven radiative cooling. Moisture declines exponentially with temperature, until there is so little water vapor that it can no longer radiatively cool, thereby limiting the vertical extent of convection. These results were generalized and shown to apply to extratropical high clouds (Thompson et al., 2017, 2019), and Seeley et al. (2019) suggested that a similar hypothesis may be even more apt for the radiative tropopause. As evidence of this potential connection, Seidel and Yang (2022) showed that anvil clouds and the tropopause covary with surface warming.

If this is all true, then the temperature dependence of water vapor and its radiative cooling imposes a moist thermodynamic constraint on the tropopause. This is consistent with observations and models (Thompson et al., 2017, 2019) and helps explain the FiTT response to surface warming and its relation to Fixed Anvil Temperatures (FAT) (Hartmann & Larson, 2002; Seeley et al., 2019; Seidel & Yang, 2022). However, it makes no reference to OLR and it remains unclear what sets the temperature at which water vapor is unable to radiatively cool. The moist constraint cannot predict T_{tp}, and thus the FiTT hypothesis lacks a quantitative basis.

These limitations and contradictions may be resolved by noting that OLR is coupled to moist thermodynamics (Simpson, 1928; Nakajima et al., 1992; Koll & Cronin, 2018; Jeevanjee et al., 2021), and that spectral (wavenumber-dependent) theories of radiation can yield quantitative insights into this coupling (Feng et al., 2023; Koll et al., 2023). This approach led to a moist radiative theory for anvil cloud temperatures (Jeevanjee & Fueglistaler, 2020b) and we will follow suit to derive a more precise theory of the radiative tropopause temperature and of FiTT. Like Held (1982); Thuburn and Craig (2000), we study the radiative tropopause (henceforth “the tropopause”), but we will inspect the lapse rate tropopause and the role of dynamical constraints (Stone & Carlson, 1979; Held, 1982; Schneider, 2004, 2008; Schneider & O’Gorman, 2008; O’Gorman, 2011; Zurita-Gotor & Vallis, 2011; Vallis, 2017) later on. Stratospheric dynamics and ozone affect tropopause structure (Highwood & Hoskins, 1998; Thuburn & Craig, 2000, 2002; Fueglistaler et al., 2009; Birner, 2010; Lin et al., 2017; Dacie et al., 2019) and their inclusion is necessary to capture the full complexity of the tropopause response to climate change (Randel & Jensen, 2013). However, here we focus on more basic mechanisms that should be embedded in most climate models.

2 Formulating the thermospheric constraint

Qualitative overview

Understanding clear-sky radiative cooling is key to constraining the tropopause. The cooling profile is controlled by the wavenumber-dependence of water vapor spectroscopy (Jeevanjee & Fueglistaler, 2020b). At each temperature (or height), there are only a few
wavenumbers that cool (Jeevanjee & Fueglistaler, 2020a, 2020b), with colder temperatures (higher heights) cooling at wavenumbers with stronger spectroscopic absorption. We demonstrate this in a moist-adiabatic single column model at 300 K with line-by-line radiative transfer, PyRADS (Koll & Cronin, 2018). Plotting the spectrally-resolved cooling reveals that at any given height, most cooling is contained within a roughly 200 cm$^{-1}$ width band whose contours mimic the V-shape of water vapor spectroscopy (Figure 1a,c).

Following this logic, water vapor’s maximum spectroscopic absorption strength around 150 cm$^{-1}$ (Figure 1a) suggests there is a minimum temperature (maximum height) to which water vapor can radiatively cool (Figure 1c). We argue that the combination of water vapor spectroscopy and Clausius-Clapeyron scaling constrains tropopause temperature. This thermospectroscopic constraint refines the moist constraint with a more fundamental explanation for where and why water vapor’s radiative cooling declines in the upper troposphere. It refines the OLR constraint into a spectral emission constraint that relates particular features of the radiative cooling profile to their corresponding emission temperatures.

Making the constraint quantitative

Small amounts of upper tropospheric water vapor can cool because of its strong radiative absorption in the rotational band (Figure 1a and Clough et al., 1992). Consider water vapor’s optical depth:

$$
\tau_{H_2O}(\nu, z) = \int_{z}^{\infty} \kappa_{H_2O}(\nu) \frac{p}{p_{ref}} \rho_{H_2O} dz',
$$

where $\kappa_{H_2O}(\nu)$ is the spectroscopic absorption strength of water vapor (m2 kg$^{-1}$) at wavenumber ν (cm$^{-1}$), p/p_{ref} accounts for pressure broadening at wavenumbers more than about 0.1 cm$^{-1}$ away from line centers (Fu, 2006), p is the pressure, $p_{ref} = 500$ hPa is a reference pressure, and ρ_{H_2O} is the density of water vapor. Infrared emission from water vapor peaks around τ_{H_2O} \approx 1 (Jeevanjee & Fueglistaler, 2020a; Jeevanjee, 2023), which implies an inverse relationship between κ_{H_2O} and the integral of ρ_{H_2O}. κ_{H_2O} varies by many orders of magnitude across the infrared (Figure 1a), so many atmospheric levels emit to space (Figure 1c,d). However, a maximum in κ_{H_2O} implies a minimum ρ_{H_2O} and therefore a minimum temperature of the atmosphere that can effectively cool to space.

To formulate this statement quantitatively, we assume that all emission occurs at $\tau_{H_2O} = 1$, which defines an emitting temperature T_{em} at wavenumber ν by the relation

$$
\tau_{H_2O}(\nu, T_{em}) = 1.
$$

It is more accurate to invert this equation numerically, but more informative to do so analytically, as shown in Jeevanjee and Fueglistaler (2020b); Jeevanjee (2023). We reproduce some of their steps for clarity.

The variable of integration in optical depth can be changed from height to temperature, and though water vapor spectroscopy varies due to pressure broadening, it varies much less than water vapor density does across the troposphere, so it can be pulled out of the integral. Optical depth is then proportional to water vapor path, which can be computed analytically (Koll & Cronin, 2018), resulting in a simplified expression:

$$
\tau_{H_2O}(\kappa_{H_2O}, T) \approx \kappa_{H_2O} \frac{p}{p_{ref}} M_v RH \exp \left(- \frac{L}{R_v T} \right),
$$

where M_v is a characteristic column water vapor mass (kg m$^{-2}$) and $M_v RH \exp(-L/R_v T)$ is the column mass of water vapor above the isotherm with temperature T. Setting $\tau_{H_2O} = 1$ and inverting it results in the emission temperatures as a function of absorption coefficients:
Figure 1. The max absorption strength of water vapor spectroscopic absorption is hypothesized to constrain Earth’s tropopause. (a) Water vapor absorption strength as a function of wavenumber. (b) The rotational branch (150 to 1000 cm$^{-1}$) of absorption strength as a normalized histogram (plotted vertically), with units of lnκ_{H_2O}. (c) Spectrally-resolved radiative cooling from a single column model with line-by-line radiative transfer, PyRADS. (d) Spectrally-integrated radiative cooling. We make a rough estimate of the maximum absorption coefficient as $\kappa_{\text{max}} \sim 10^3 - 10^4$ m2kg$^{-1}$, which we hypothesize relates to the tropopause. $\kappa_{\text{link}} = 40$ m2 kg$^{-1}$ refers to where the density of lines begins to decline rapidly, which has been hypothesized to relate to anvil clouds (Jeevanjee & Fueglistaler, 2020b). Spectral data plotted at a resolution of 0.1 cm$^{-1}$ using PyRADS (Koll & Cronin, 2018).

Figure 2. The thermospectric constraint, Equation 5 and 6, can quantitatively capture the change in tropopause temperature (T_p). (a) Isca’s single column model control simulation’s temperature profile. (b) Control simulation’s radiative cooling profile. (c) The surface temperature is varied and RH kept fixed at 0.7. Simulations (dots), theory (solid lines). (d) The relative humidity is varied and T_s fixed at 290 K. (e) The absorption coefficients of water vapor are scaled uniformly and T_s and RH fixed at 290 K and 0.7, respectively. Water vapor and CO$_2$ (280 ppmv) are the only greenhouse gases present in these simulations.
where \(T^* \) is a characteristic temperature for water vapor, \(W \) is the Lambert-W function, \(T_{\text{ref}} \) is a characteristic temperature of the troposphere, \(D = 1.5 \) is a scaling factor that accounts for the two-stream approximation in radiative transfer theory, \(R_H = 287 \) J kg\(^{-1}\) K\(^{-1}\) is the specific gas constant for dry air, \(T = 7 \) K km\(^{-1}\) is the globally-averaged lapse rate of the troposphere in the general circulation model used later on (Figure S1b), and \(g \) is the gravitational acceleration (see Table 1 in Methods for values and meanings of the variables and constants).

The thermospectric constraint posits that tropopause temperature \(T_{\text{tp}} \) is the emission temperature determined by a combination of Clausius-Clapeyron scaling (as embodied by \(\text{RH} \) and \(M_v \)) and the maximum absorption coefficient of water vapor, \(\kappa_{\text{max}} \). That is,

\[
T_{\text{tp}} = T_{\text{em}}(\kappa_{\text{max}}). \quad \text{(Thermospectric constraint)}
\]

The presence of thousands of absorption lines across the infrared (Figure 1a) makes it difficult to select an appropriate value of \(\kappa_{\text{max}} \). It helps that the strength of spectrally integrated radiative cooling is roughly proportional to the density of absorption lines at a given strength (Figure 1b, d and Jeevanjee & Fueglistaler, 2020b). For values of \(\kappa_{\text{H}_2\text{O}} \in (10^{-4}, 10^{-1}) \) m\(^2\) kg\(^{-1}\), which correspond to tropospheric emission and a typical value of \(-2\) K day\(^{-1}\) of radiative cooling (Jeevanjee & Fueglistaler, 2020b), the density of absorption lines in the rotational band (150 to 1000 cm\(^{-1}\)) has a characteristic value of \(0.07 \ln \kappa_{\text{H}_2\text{O}} \) (Figure 1b). The vibrational-rotational band (1000 to 1500 cm\(^{-1}\)) is not as important because its Planck emission is about 1/6 of the rotational band’s emission (Jeevanjee & Fueglistaler, 2020b).

The proportionality between the density of lines and the strength of cooling provides a heuristic way to determine \(\kappa_{\text{max}} \): look for where the density of lines drops between a tenth and a hundredth of its density for tropospheric emission, as this would roughly correspond to where cooling drops to between a tenth and a hundredth of its tropospheric value (thereby achieving radiative equilibrium) (Figure 1b, d). Other factors influence the strength of cooling, such as the change in optical depth with height and the strength of the Planck function at a given wavenumber and temperature, but (Jeevanjee & Fueglistaler, 2020b) showed that these cannot explain the declining strength of cooling in the upper troposphere.

We plot the density of absorption lines in the rotational band in Figure 1b. The density drops to between a tenth and a hundredth of its typical value at \(\kappa_{\text{H}_2\text{O}} \in (4 \cdot 10^3, 4 \cdot 10^4) \) m\(^2\) kg\(^{-1}\). Taking the geometric average of the upper and lower bounds, we arrive at our estimate of \(\kappa_{\text{max}} \approx 13000 \) m\(^2\) kg\(^{-1}\). Plugging into Equation 6, our prediction for the tropopause temperature is \(T_{\text{tp}} \approx 180 \) K.

3 Testing the thermospectric constraint

To test the thermospectric constraint (Equation 6), we run simulations using a clear-sky single column model (SCM) configuration of the Isca modeling framework (Valis et al., 2018). The SCM is configured with the correlated-k radiative transfer code RRTM (Mlawer et al., 1997), and a simplified representation of moist convection (the simple Betts-Miller code of Frierson, 2007 and O’Gorman & Schneider, 2008). Configuring the SCM using Isca lets us compare to general circulation model (GCM) simulations with identical column-wise physics later in the paper. Further description of our model set-up can be found in the Supporting Information.

To begin, we consider an SCM control run with a prescribed surface temperature of \(T_s = 290 \) K, relative humidity \(\text{RH} = 0.7 \), and \(\text{CO}_2 \) concentration of 280 ppmv. The diagnosed
Figure 3. Water vapor spectroscopy affects the radiative and lapse rate tropopauses. (a) Zonal-mean temperature profile of the control Isca aquaplanet simulation. (b) Zonal-mean radiative cooling profile of the control. (c) Zonal-mean mass flux profile of the control. (d-g) Water vapor absorption coefficients are increased geometrically by [1/2, 1, 2] and the resulting changes in radiative- and lapse rate-tropopause temperature and height are recorded. The lack of ozone in these simulations accounts for the high (25 km) lapse rate tropopause.
tropopause temperature obtained in this simulation (the lowest level to which radiative
equilibrium is achieved, which we identify as -0.05 K day$^{-1}$ to avoid sensitivity issues
related to the cooling profile’s asymptotic approach to 0 K day$^{-1}$, see Figure 2a,b and
Supporting Information), is 184 K, close to our prediction.

The maximum absorption coefficient of water vapour, κ_{max}, can also be considered a
free parameter to match the predicted tropopause temperature with the value diagnosed
from a climate model. Tuning κ_{max} results in a value of 7000 m2 kg$^{-1}$, which is within our
identified range for κ_{max} based on the density of absorption lines. This tuned value is used
henceforth and will not be retuned, except where explicitly scaled. Regarding this climate as
our base state, we can test the thermospectric constraint by varying the prescribed surface
temperature, column relative humidity, and absorption coefficients of water vapor in the
SCM and see how well theory compares.

Surface temperature

As surface temperature increases, the thermospectric constraint (Equation 6) predicts
a small but nonzero warming of the tropopause of about $\Delta T_{\text{tp}}/\Delta T_s = 1/5$ (Figure 2c, solid
line). The slight warming is a second order effect from pressure broadening (Koll et al.,
2023; Feng et al., 2023) which can be understood as follows. The tropopause temperature
is fixed, to first order, which implies a rising tropopause as surface temperature increases.
As pressure decreases, the effective water vapor absorption coefficients ($\kappa_{\text{H}_2\text{O}} \cdot p/p_{\text{ref}}$) also
decreases, which implies a larger $\rho_{\text{H}_2\text{O}}$ is needed to achieve $\tau_{\text{H}_2\text{O}} = 1$, and thus a slightly
warmer tropopause temperature. A simple calculation shows that the change in water
vapor emission temperatures (including at the tropopause) should be about $1/4$ to $1/5$ of
the warming at the surface (Equation B4 of Jeevanjee, 2023 and Equation 46 of Koll et al.,
2023).

In an SCM experiment where surface temperature is increased (Figure 2c, dots), the
tropopause warms almost exactly as predicted. The relatively fixed tropopause temperature
(FiTT) has been noted before (Seeley et al., 2019) and explained qualitatively by Thompson
et al. (2019) with the thermodynamic constraint. However, the thermospectric constraint
provides a quantitative understanding of how T_{tp} should change with warming. The pressure
broadening explanation differs from Hu and Vallis (2019), who explains the slight warming
as a consequence of increased longwave radiation from outside the water vapor window.

Relative humidity

Variations in column relative humidity (RH) may influence T_{tp}. A larger RH implies a
smaller saturation water vapor density $\rho_{\text{H}_2\text{O}}^{\text{sat}}$ to reach $\tau_{\text{H}_2\text{O}} = 1$, and thus a cooler tempera-
ture. We vary RH in the SCM but keep surface temperature fixed and find the tropopause
cools as RH increases (Figure 2d), in excellent agreement with predictions from inputting
RH into the thermospectric constraint (Equation 5).

Water vapor absorption

Modifying the $\rho_{\text{H}_2\text{O}}$ passed to the radiation code of a climate model alters the tempera-
ture of anvil clouds and the tropopause (Harrop & Hartmann, 2012; Thompson et al., 2019;
Spaulding-Astudillo & Mitchell, 2023). The thermospectric constraint suggests that modi-
fying $\kappa_{\text{H}_2\text{O}}$ should have a similar effect. A geometrically larger κ_{max} implies a geometrically
smaller minimum $\rho_{\text{H}_2\text{O}}$ to achieve $\tau_{\text{H}_2\text{O}} = 1$ and hence an arithmetically colder T_{tp} due to
Clausius-Clapeyron scaling: $d\ln \rho_{\text{H}_2\text{O}}/dT|_{T_{\text{tp}}} = L/(R_h T_{\text{tp}}^2) = 16\%$ K$^{-1}$ or roughly 4 K of
cooling to halve $\rho_{\text{H}_2\text{O}}$. These predictions are borne out quantitatively by the simulations,
where T_{tp} cools arithmetically as κ_{max} is scaled geometrically over many octaves while T_s
and RH are fixed, at a rate of roughly 4 K per doubling (Figure 2e). This is the most direct
test of the thermospectric constraint and it confirms spectroscopy’s key role in constraining T_{tp}.

4 From spectroscopy to the general circulation

The previous tests were done in a single column model, but the tropopause is a feature of Earth’s general circulation and will be influenced by other factors (Thuburn & Craig, 2000; Birner, 2010). We test whether modifying κH_2O influences T_{tp} and z_{tp} (tropopause height) in a general circulation model configured as an idealized aquaplanet with a standard fixed sea surface temperature distribution (Neale & Hoskins, 2000):

$$T_s(\phi) = \begin{cases} 300(1 - \sin^2(3\phi/2)) \text{ K}, & \text{for } -\pi/3 < \phi < \pi/3 \\ 273 \text{ K}, & \text{otherwise}, \end{cases}$$

(7)

where ϕ is the latitude. The GCM is configured to use the same column-wise physics routines (e.g., RRTM radiative transfer, simplified Betts-Miller moist convection) as the SCM. See the Supporting Information for further details. When analysing the GCM, we diagnose the radiative tropopause with a -0.2 K day$^{-1}$ threshold instead of the -0.05 K day$^{-1}$ used for the SCM. The updated threshold more closely aligns with relevant dynamical features such as the mass flux profile (Figure 3c) while still using a threshold value \ll typical tropospheric cooling (Figure 3b).

Spectroscopic control of the tropopause

We vary κH_2O geometrically and find the tropopause cools and rises across all latitudes, again at $\approx 4 - 5$ K and $0.5 - 1$ km per doubling of κH_2O (Figure 3d,e). This cooling confirms the quantitative predictions of thermospectric constraint (Figure 2e) in a more comprehensive and Earth-like setting. The spectroscopic control on the radiative tropopause has implications for the general circulation because infrared cooling constrains the residual motion of the atmosphere, the amplitude of tropospheric wave breaking, and the depth of its diabatic mixing (Thompson et al., 2017, 2019).

T_{tp} varies by only 5 K across latitude in these simulations, consistent with FiTT and the idea of a fairly insensitive radiative tropopause temperature to surface temperature and the large-scale circulation. However, radiative tropopause height is not uniform due to its strong dependence on surface temperature and vertically averaged lapse rate (Γ), $z_{tp} \approx (T_{tp} - T_e)/\Gamma$. It has a top-hat meridional structure because T_e varies from equator to poles and because Γ varies as the dominant control on stratification changes from moist convection in the tropics to baroclinic eddies in the extratropics (Stone & Carlson, 1979; Held, 1982; Schneider, 2008; Vallis, 2017).

This dynamical control extends to the lapse-rate tropopause, diagnosed here as where the lapse rate exceeds -5 K km$^{-1}$. It has a much more pronounced top-hat structure in both its height and temperature (Figure 3f,g). FiTT does not apply to all definitions of the tropopause because each definition respects different physical constraints (Highwood & Hoskins, 1998; Fueglistaler et al., 2009; Birner, 2010; Hu & Vallis, 2019). The lapse rate tropopause, for instance, depends on the profile of stratification, which is primarily determined by dynamics (Schneider, 2008). Nevertheless, the lapse rate tropopause still cools and rises as κH_2O is increased (Figure 3f,g), particularly in the tropics, hinting at a broader role of spectroscopy in the interaction between upper tropospheric radiative cooling, dynamics, and stratification which future work could make more precise.

Other controls of the tropopause

Meridional variations in radiative tropopause temperature may be due to surface temperature, which varies between 300 K and 273 K from equator to poles and can change...
Figure 4. Moisture is essential to capturing a fixed tropopause temperature and spectral radiative transfer decouples tropopause temperature from outgoing longwave radiation. (a) Outgoing longwave radiation (OLR) of Isca single column model with various types of radiative transfer. (b) Tropopause temperature for the same simulations. (c) Predicted tropopause temperature from the OLR constraint (Equation 1). (d-f) The radiative cooling profile plotted in temperature coordinates for $T_s = 270, 280, 290, 300, 310$ K for each model setup. Each profile has been normalized by its maximum tropospheric value and is plotted starting at the lifting condensation level for clarity. See Supporting Information for details.

T_{tp} with pressure-broadening effects. It may also be due to tropospheric relative humidity, which varies from 20 to 70% (Figure S1a). The SCM and Equation 5 shows varying column relative humidity by a similar amount changes T_{tp} by about 5 K (Figure 2d). The lapse rate (Figure S1b) could also change T_{tp}; changing Γ from 4 K km$^{-1}$ to 7 K km$^{-1}$ in Equation 5 changes T_{tp} by 3 K.

Column-wise physics and water vapor may not be the only source of variations in T_{tp}. Stratospheric dynamics may influence z_{tp} and T_{tp} by altering the location of zero radiative cooling (Thuburn & Craig, 2000; Birner, 2010; Hu & Vallis, 2019). CO$_2$-driven radiative cooling, which primarily emanates from the stratosphere (Jeevanjee & Fueglistaler, 2020b), may also drive changes in T_{tp}. Future work could address these questions and lead to a more comprehensive theory, but our goal here is to provide a first order picture of moist thermodynamics interact with spectroscopy to set T_{tp}.

5 Reconciling different constraints

Previous theories of tropopause temperature have either emphasized outgoing radiation (Held, 1982; Thuburn & Craig, 2000; Vallis et al., 2015) or moist thermodynamics and upper tropospheric radiative cooling (Hartmann & Larson, 2002; Thompson et al., 2017). Combining moisture with a spectral perspective of radiative cooling can make more precise predictions for T_{tp} and FiTT (Figure 2c). Now we combine the OLR constraint (Equation 1) with moisture to make better predictions of FiTT, and consider how adding bands to gray
radiative transfer theory morphs the OLR constraint into an upper tropospheric radiative emission constraint.

The OLR constraint was derived with gray radiative transfer uncoupled to moisture (Held, 1982; Thuburn & Craig, 2000; Vallis et al., 2015). This “dry” constraint predicts a FiTT with respect to CO$_2$-driven global warming because OLR remains fixed (Vallis et al., 2015). By this logic, a warming that changes OLR would change T_{tp}, which stands in contrast to simulations that exhibit a FiTT even as OLR increases (Seeley et al., 2019; Seidel & Yang, 2022). For both gray and spectral atmospheres, the amount of OLR increase for a prescribed surface warming depends on the presence of radiatively active moisture and its optical thickness (Simpson, 1928; Nakajima et al., 1992; Ingram, 2010; Koll & Cronin, 2018; Jeevanjee et al., 2021; Feng et al., 2023; Stevens & Kluft, 2023; Koll et al., 2023). Changes in T_{tp} may be similarly constrained.

We test the role of moisture and choice of radiative transfer in controlling OLR and T_{tp} by varying surface temperature in different configurations of Isca’s SCM: a model with gray radiation uncoupled to moisture, similar to Frierson et al. (2006); with gray radiation coupled to moisture, similar to Byrne and O’Gorman (2013); and with spectral radiation coupled to moisture, as already described. In these experiments, OLR and T_{tp} change much more in the dry gray model than the moist gray and spectral models (Figure 4a,b).

In dry simulations, the greenhouse gas is assumed to be well mixed and so optical depth is a single valued function of pressure, $\tau = \tau(p)$. As T_s increases, isobars warm and radiative cooling at $\tau = 1$ emanates from a warmer layer of atmosphere that can emit more radiation to space (Figure 4d). In contrast, moisture constrains the optical depth to be a single valued function of temperature, $\tau = \tau(T)$ (in the absence of pressure broadening). As T_s increases, radiative cooling at $\tau = 1$ emanates from nearly the same temperature (Figure 4e,f and Figure S1a of Seeley et al., 2019) and thus OLR is constrained to increase less than in the dry case. (Radiative cooling can increase for other reasons, see, e.g., Jeevanjee & Romps, 2018, but less so if there is moisture.) Therefore, the OLR constraint, when combined with a notion of how moisture constrains changes in OLR, is more consistent with FiTT for a wider variety of warming scenarios such as in Seeley et al. (2019); Seidel and Yang (2022).

However, this explanation still does not address a motivating question of this study: How can T_{tp} decouple from OLR (compare Figure 4b,c)? The answer lies in the role of additional bands of radiative transfer. Hu and Vallis (2019) showed that adding a window band decouples the radiative equilibrium temperature of the planet, T_{re}, from total OLR and couples it instead to outgoing radiation from the optically thick band (OLR_{thick}):

$$T_{re} = \left[\frac{\tau_{thick} + \frac{1}{2\sigma}OLR_{thick}}{2\sigma} \right]^{1/4}.$$

The window band becomes optically thin at the surface, so its emission does not contribute to radiative balance at the stratosphere (Hu & Vallis, 2019). If a third, even thicker band were introduced, then this logic implies that the thickest band’s emission would determine the radiative balance at the stratosphere and constrain T_{re}, rather than the emission from the thinner bands. If we take the spectral limit of an infinite number of bands that vary by orders of magnitude in their optical depth, which is the case for Earth’s atmosphere, then T_{re} would be determined primarily by the optically thickest band and constrained by its spectral emission. T_{re} (and hence T_{tp}) would be related to the brightness temperature of that spectral emission. This is essentially what we have calculated in the thermospectric constraint (Equations 5 and 6), though framed in a different way. The OLR constraint is only strictly true for a gray atmosphere, and the thermospectric constraint is the generalization of that idea to a spectral, moist atmosphere. Hence, T_{tp} can decouple from OLR, as seen in simulations of FiTT (Figure 4c and Seeley et al., 2019; Seidel & Yang, 2022).
6 Discussion

Summary

Spectral radiative transfer decouples Earth’s radiative tropopause temperature from the total outgoing radiation and constrains it instead to where water vapor becomes optically thin across all wavenumbers and stops radiative cooling. This is set by water vapor’s maximum spectroscopic absorption and Clausius-Clapeyron scaling. The thermospectric constraint implies a relatively fixed radiative tropopause temperature (FiTT) with warming because isopleths of water vapor path follows isotherms. However, pressure broadening modifies the strength of spectroscopic absorption as the tropopause rises with surface warming, causing it to warm slightly. FiTT also constrains the meridional distribution of the radiative tropopause, but not the lapse rate tropopause, which is more strongly controlled by dynamics than by radiation. The thermospectric constraint does not rule out a role for processes such as the Brewer-Dobson circulation (which is relatively weak in an aquaplanet, but can affect the tropopause height; Thuburn & Craig, 2000; Birner, 2010; Hu & Vallis, 2019) and ozone (which is not present in our simulations but can affect stratospheric temperature; Thuburn & Craig, 2000, 2002; Lin et al., 2017; Dacie et al., 2019), but it does suggest a previously unnoticed mechanism grounded in robust physics is important in controlling tropopause temperature.

Anvil clouds and the tropopause

The temperature of anvil clouds and the tropopause respond similarly to surface warming (Seidel & Yang, 2022), despite their ≈ 5 km difference in height (Seeley et al., 2019). The thermospectric constraint offers an explanation. Anvil clouds and the tropopause share a thermodynamic control by water vapor, which is why they respond similarly to warming, but they depend on distinct features of water vapor spectroscopy, so they occur at different temperatures. The radiative tropopause occurs where radiative cooling goes to zero, which is controlled by the maximum spectroscopic absorption ($\kappa_{\text{max}} \approx 13000 \text{ m}^2 \text{ kg}^{-1}$): $T_{\text{tp}} = T_{\text{em}}(\kappa_{\text{max}}) \approx 180 \text{ K}$. Anvil clouds occur near the max vertical derivative of radiative cooling (Hartmann & Larson, 2002), which is controlled by the sharp decline in water vapor’s emission line density at $\kappa_{\text{kink}} = 40 \text{ m}^2 \text{ kg}^{-1}$: $T_{\text{anvil}} = T_{\text{em}}(\kappa_{\text{kink}}) \approx 214 \text{ K}$ (Jeevanjee & Fueglistaler, 2020b). These thermodynamic and spectroscopic ingredients are embedded in most climate models, which could be why the relationship between anvil clouds and the tropopause are robust with respect to modeling configuration (Seidel & Yang, 2022).

A role for gray radiative transfer in studying climate?

Water vapor’s thermodynamic and radiative properties have distinct but equally profound influences on Earth’s climate (Held & Soden, 2006; Stevens & Bony, 2013), but are gray models of radiative transfer fit for understanding these influences? Gray climate models can capture the interplay of latent heat release and the general circulation (Frierson et al., 2006; Schneider et al., 2010; Vallis, 2020), some of the interaction between radiation and moisture necessary for water vapor feedbacks (Byrne & O’Gorman, 2013) and the runaway greenhouse effect (Nakajima et al., 1992), and can offer a qualitative understanding of Earth’s greenhouse effect (Pierrehumbert, 2010).

However, many circulation responses to warming depend sensitively on the radiative response to warming (Kang et al., 2009; Voigt & Shaw, 2015; Ceppi & Hartmann, 2016; Tan et al., 2019), which stresses the need for more nuanced understanding of radiation. For the problems where a quantitative answer is desired, such as the forcing from CO$_2$ (Jeevanjee et al., 2021; He et al., 2023), water vapor feedback (Koll et al., 2023; Feng et al., 2023), and equilibrium climate sensitivity (Jeevanjee, 2023; Stevens & Kluft, 2023); or for the problems involving vertical gradients in radiative cooling, such as the temperature of anvil clouds (Hartmann & Larson, 2002; Jeevanjee & Fueglistaler, 2020b), radiation’s wavenum-
bar dependence matters. Spectral theories promise to be the more powerful approach to identifying, studying, and potentially resolving them.

7 Open Research

All scripts used to support the creation and analysis of climate modeling data will be made available in a Github repository upon acceptance.

8 Author contributions

B.A.M, G.K.V., and N.J. designed research; B.A.M. performed research. B.A.M, G.K.V., and N.J. interpreted results and analyzed data; B.A.M wrote the first draft of the paper; N.L. created the single column model implementation in Isca.

Acknowledgments

This work was funded by CEMPS at the University of Exeter. GKV also acknowledges support from NERC under the CIRCULATES grant NE/T006285/1. We declare no known conflicts of interest.

References

Supporting Information for "Water vapor spectroscopy and thermodynamics constrain Earth’s tropopause temperature"

Brett A. McKim¹, Nadir Jeevanjee², Geoffrey K. Vallis¹, Neil Lewis¹

¹University of Exeter, Stocker Rd, EX4 4PY Exeter, UK
²Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA

Additional Figures

Methods

Isca Framework

For all simulations, we use Isca, a modeling framework that makes it easy to vary between configurations (Vallis et al., 2018). We use Isca configured as a clear-sky general circulation model (GCM) and a clear-sky single column model (SCM). There is no sea ice, land, or topography. The GCM and SCM configurations use the same column-wise physics routines (e.g., radiative transfer, convective adjustment).

In the GCM, we run at T42 resolution with 40 vertical levels, distributed according to $\sigma = \exp[-7(0.25\tilde{z} + 0.75\tilde{z}^7)]$, where \tilde{z} is evenly spaced on the unit interval. This distribution produces levels that are roughly evenly spaced in the troposphere, and spaced

February 6, 2024, 3:50pm
more closely in the stratosphere. We use a slab mixed-layer ocean with a standard specified meridional profile of sea surface temperatures (Neale & Hoskins, 2000):

\[
T_s(\phi) = \begin{cases}
300(1 - \sin^2(3\phi/2)) \text{ K}, & \text{for } -\pi/3 < \phi < \pi/3 \\
273 \text{ K}, & \text{otherwise,}
\end{cases}
\]

where \(\phi \) is the latitude.

In the SCM, we run at 80 vertical levels, necessarily omit the dynamical core, and constrain stratospheric water vapor so that it cannot increase with height. We prescribe surface temperature in increments of 10 K by setting the mixed-layer temperature and then setting its depth to \(10^9 \text{ m} \).

In both models, we use the simple Betts-Miller convection scheme (Frierson, 2007; O’Gorman & Schneider, 2008), which drives the free troposphere to a prescribed relative humidity of 70%. Large scale condensation is included to prevent supersaturation, following (Frierson et al., 2006), and all condensed water returns immediately to the surface. Boundary layer turbulence is parameterized using a \(k \)-profile scheme similar to Troen and Mahrt (1986), and diffusion coefficients are obtained from Monin-Obukhov similarity theory (in the column model, this computation uses a prescribed surface wind of \(5 \text{ m s}^{-1} \)). In the SCM, we set the boundary layer depth to the lifting condensation level. For consistency, we also use this method to determine the boundary layer depth in the GCM.

In both the GCM and the SCM, we compute radiative transfer primarily with RRTM (Mlawer et al., 1997). The incoming solar radiation meridional profile resembles Earth’s seasonally-averaged profile with a Second Legendre Polynomial. The surface albedo is set to 0.2. CO\(_2\) and water vapor are the only greenhouse gasses (unless specified otherwise).
In the SCM, we also run experiments with gray radiative transfer configured to resemble the setup of (Frierson et al., 2006), in which water vapor has no effect on radiative fluxes. That is, the gray optical depth is

\[
\tau = \tau_0 \left[f_\ell \left(\frac{p}{p_s} \right) + (1 - f_\ell) \left(\frac{p}{p_s} \right)^4 \right],
\]

where \(\tau_0 = 6 \) is the surface optical depth and \(f_\ell = 0.1 \) is a constant. See (Frierson et al., 2006) and the Isca documentation (https://execlim.github.io/Isca/index.html) for details. Atmospheric shortwave absorption is turned off, the surface albedo is still set to 0.2 and the stellar constant is set to 342.5 Wm\(^2\) unless stated otherwise.

When water vapor is coupled to the gray radiative transfer scheme, our approach resembles (Byrne & O’Gorman, 2013). That is, the optical depth is calculated as a function of specific humidity \(q \) (kg kg\(^{-1}\)),

\[
\frac{d\tau}{d\sigma} = bq,
\]

where \(b = 1997.9 \) and \(\sigma = p/p_0 \), the pressure normalized by a constant (10\(^5\) Pa). See (Byrne & O’Gorman, 2013; Vallis et al., 2018) for details.

Diagnosing the tropopause

The radiative tropopause is diagnosed as the lowest layer of atmosphere where radiative cooling goes to zero. In the absence of radiative heating from ozone, the radiative cooling profile asymptotes to zero in the upper troposphere and so a threshold of \(-0.05\) K day\(^{-1}\) is used for the SCM and \(-0.2\) K day\(^{-1}\) for the GCM. To make the diagnostic less sensitive to model’s vertical resolution, the vertical profile is linearly interpolated from 40 (GCM) or 80 (SCM) levels to 800.
The lapse rate tropopause is diagnosed as where the lapse rate exceeds -5 K km^{-1}. Again, the vertical profile is linearly interpolated.

Water vapor spectroscopy

We use PyRADS, a validated line-by-line column model (Koll & Cronin, 2018), to plot the spectral line absorption coefficients of water vapor. These data are sourced from the HITRAN 2016 database (Gordon et al., 2017), with a Lorenz line profile assumed for all lines. Data is plotted with 0.1 cm^{-1} spectral resolution.

Table of constants and their values

See Table S1.

References

Spectroscopy and Radiative Transfer, 203, 3-69. (HITRAN2016 Special Issue) doi: https://doi.org/10.1016/j.jqsrt.2017.06.038

February 6, 2024, 3:50pm
Figure S1. Zonal-mean profiles from control Isca aquaplanet simulation. (a) Relative humidity. (b) Lapse rate. The dashed line indicates the radiative tropopause. The globally averaged tropospheric lapse rate is 7 K km$^{-1}$, defined here as the region between the average lifting condensation level (≈ 950 hPa) and the average tropopause height (≈ 150 hPa).

February 6, 2024, 3:50pm
Table S1. *Definition of symbols used.* See main text for details on computing κ_{max}. See Jeevanjee and Fueglistaler (2020) for more details and derivations of many of these quantities.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>Description</th>
<th>Value/Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν</td>
<td>Variable</td>
<td>Wavenumber</td>
<td>cm$^{-1}$</td>
</tr>
<tr>
<td>$\tau_{\text{H}_2\text{O}}$</td>
<td>Variable</td>
<td>Optical depth of water vapor at a given wavenumber</td>
<td>—</td>
</tr>
<tr>
<td>$\kappa_{\text{H}_2\text{O}}$</td>
<td>Variable</td>
<td>Spectroscopic absorption of water vapor at a given wavenumber</td>
<td>m2 kg$^{-1}$</td>
</tr>
<tr>
<td>$\rho_{\text{H}_2\text{O}}$</td>
<td>Variable</td>
<td>Density of water vapor</td>
<td>kg m$^{-3}$</td>
</tr>
<tr>
<td>p_{ref}</td>
<td>Constant</td>
<td>Reference atmospheric pressure</td>
<td>500 hPa</td>
</tr>
<tr>
<td>T_{em}</td>
<td>Variable</td>
<td>Emission temperature at a given wavenumber</td>
<td>K</td>
</tr>
<tr>
<td>T^*</td>
<td>Constant</td>
<td>Characteristic temperature of water vapor</td>
<td>$LR_d\Gamma/(gR_v) \approx 635$ K</td>
</tr>
<tr>
<td>T_{ref}</td>
<td>Variable</td>
<td>Characteristic tropospheric temperature</td>
<td>260 K</td>
</tr>
<tr>
<td>T_{tp}</td>
<td>Variable</td>
<td>Tropopause temperature</td>
<td>K</td>
</tr>
<tr>
<td>M_{ν}^{ref}</td>
<td>Constant</td>
<td>Characteristic column water vapor mass</td>
<td>$T_{\text{ref}}p_v^\infty/(\Gamma L) \approx 6 \cdot 10^9$ kg m$^{-2}$</td>
</tr>
<tr>
<td>p_v^∞</td>
<td>Constant</td>
<td>Reference value for the saturation vapor pressure</td>
<td>$2.5 \cdot 10^{11}$ Pa</td>
</tr>
<tr>
<td>κ_{max}</td>
<td>Constant</td>
<td>Maximum absorption of water vapor</td>
<td>≈ 13000 m2 kg$^{-1}$</td>
</tr>
<tr>
<td>OLR</td>
<td>Variable</td>
<td>Outgoing longwave radiation</td>
<td>W m$^{-2}$</td>
</tr>
</tbody>
</table>