The DAS experiment using MIT telecommunication dark fibers

Hilary Chang¹ and Nori Nakata¹

¹Affiliation not available

April 16, 2024
The DAS experiment using MIT telecommunication dark fibers

Hilary Chang
PhD Candidate, EAPS
In collaboration with Nori Nakata
May 25, 2022
Telecom cable as seismic antenna

• With Distributed Acoustic Sensing (DAS): Measuring strain rate.

• Applications
 • Traffic monitoring
 • Shallow/deep structure
 • Subsurface properties changes monitoring

Stanford (Lindsey et al., 2020) Goldstone (Yu et al., 2019)
Content

• The DAS experiment overview
• What is in the data?
• Bonus:
 • Collocated active geophone survey
• Analysis in progress
The dark-fiber underlying the MIT campus

Cable length ~ 2 km (1.2 mile)
The dark-fiber underlying the MIT campus

- Buried at 2—5 ft depth underground
- Bundled in layers of polyethylene and plastic tubing.
- Suspended when passing main buildings.
On-campus DAS demonstration with Silixa

1. Tutorial in the classroom.

2. Setting up in the telecommunication cable hub at Building 24.
Real-time monitoring

https://drive.google.com/file/d/1L8ZcDbf9SHfFfHENttMm_K92NNT7gVhZ/view
Locate the DAS channels on the map

- Using tap test during quite time
What is in the data?

• 5 days of continuous data

Corresponding locations identified by tap test
What is in the data?

- 5 days of continuous data

Weekend

Construction operations

Trains?
Dominant frequency band 0.1–30 Hz

• Evolution of spectra (strain rate)

The Briggs Field

The Kresge construction site

Mass Ave
Construction operations

The Kresge construction site

1000 m/s
Traffic and train tracks

Vassar Street

Vehicles along Vassar street

Small train passing
Target teleseismic earthquakes in the 5 days.

NE.BCX seismic station

M7.3 in Japan

M5.0 in Mid-Atlantic

NE.BCX: 6 km away from MIT

BCX seismic station recordings
Earthquake arrived at busy time is buried behind local noises.

• M 7.3 in Japan

BCX station
Particle Velocity

DAS strain
Stacked along Vassar street (~300 channels)

Lunch time of nearby construction site
Earthquake arrived at quite time have better chance to be identified.

- M5.0 Mid-Atlantic

BCX station

Particle Velocity

DAS strain

Stacked all NE-SW oriented cable sections (~1400 channels)

Phase-weighted stacking

\[s(t) = \frac{1}{N} \sum_{j=1}^{N} x(t)_j c(t)_j \]
Potential for subsurface monitoring

• Using interferometry to extract signals.

230 m/s
At 2—4 Hz

Vassar st
Briggs field
Dorm 3
Collect co-located active geophone data

• Hammer source
Geophone data can be used as constraints

Geophone

Surface wave
200 m/s

Shear wave?
900 m/s

Agree with previous DAS observations.

DAS

Vibration due to poor coupling.
Analysis in progress

• Receiver functions
 • Explore different processing strategy to enhance teleseismic signal.

• Subsurface properties analyzing/monitoring
 • Using local sources (source distributions?).
 • Compare with geophone data.

• Traffic monitoring.
Acknowledgements to

- John Morgante for selecting cable, providing map, and showing me the exact cable locations; also Errol Morrison for accessing the cable.
- Agatha Podrasky and Thomas Coleman for experiment demonstration.
- Josh Kastorf for helping with funding, contracting, equipment handling, and other administration details.
- Nori Nakata, Douglas Miller, Laurent Demanet, William Frank, and Yunyue Elita Li for providing useful suggestions.
- Denzel Segbefia, Congcong Yuan, Jared Bryan for participating in the active field survey.
- Ulrich Mok, Matej Pec, and Tom Herring for letting me borrow their equipment.
- Ekaterina Bolotskaya for teaching me how to use the geophone.
- SEG student chapter members (Aarti Dwivedi, Sarah Greer, Ekaterina Bolotskaya) for providing feedback to the plan.
- All the participants at the tutorial.