Mars Soil Temperature and Thermal Properties from InSight HP^3 Data

Tilman Spohn¹, Christian Krause², Matthew Golombeck³, Nils T Mueller⁴, Matthias Grott⁵, Joerg Knollenberg⁵, Ana-Catalina Plesa⁶, Doris Breuer⁶, Paul Morgan⁷, Valentin T. Bickel⁸, William Bruce Banerdt⁹, and Suzanne E Smrekar³

¹Institute of Planetary Research
²DLR Institute of Space Systems
³Jet Propulsion Laboratory
⁴German Aerospace Center (DLR), Institute of Planetary Research
⁵DLR Institute for Planetary Research
⁶German Aerospace Center
⁷Colorado School of Mines
⁸University of Bern
⁹Jet Propulsion Laboratory, California Institute of Technology

April 16, 2024

Abstract

Temperature is of primary importance for many physical properties in the Martian soil. We measured diurnal and annual soil (and surface) temperature variations using the NASA InSight Mars mission’s HP3 radiometer and thermal probe. At the depth of the probe of 0.5 - 36 cm, an average temperature of 217.5K was found varying by 5.3 - 6.7 K during a sol and by 13.2K during the seasons. The damping of the surface temperature variations in the soil were used to derive a thermal diffusivity of 2.30±0.03×10^{-8} m^2/s for the depth range of the diurnal wave - thermal skin depth 2.5±0.04 cm - and 3.74±0.61×10^{-8} m^2/s for that of the annual wave, with a thermal skin depth of 84±10 cm. The temperatures measured are conducive to the deliquescece of thin films of brines in the soil. These are of astrobiological interest and may explain the formation of the observed cemented duricrust.
Mars Soil Temperature and Thermal Properties from InSight HP3 Data

T. Spohn1, N. Müller1, J. Knollenberg1, M. Grott1, M. P. Golombek2, A.-C. Plesa1, V. T. Bickel3, P. Morgan1, C. Krause5, D. Breuer1, S. E. Smrekar2, W. B. Banerdt2

1Institute of Planetary Research, German Aerospace Center DLR, Rutherfordstrasse 2, 12489 Berlin, Germany
2Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, Ca 91109, USA
3Center for Space and Habitability, University of Bern, Gesellschaftsstrasse 6, 3012 Bern, Switzerland
4Colorado Geological Survey, Colorado School of Mines, 1801 19th St., Golden, Co 80401, USA
5MUSC Space Operations and Astronaut Training, German Aerospace Center DLR, Linder Höhe, 51147 Köln, Germany

Key Points:

• We measured the temperature and its diurnal and annual variations in the top 40cm of the Martian soil at the InSight landing site
• The soil temperature allows the formation of thin films of brine; its deliquesence may explain the formation of the observed duricrust
• The soil thermal diffusivity was calculated from the diurnal and annual surface and soil temperature variations and increases with depth

$^*_{\text{Current address: 1854 Clayton Ave. Pittsburg, Pa 15214, USA}}$

Corresponding author: Tilman Spohn, tilman.spohn@dlr.de
Abstract

Temperature is of primary importance for many physical properties in the Martian soil. We measured diurnal and annual soil (and surface) temperature variations using the NASA InSight Mars mission’s HP^3 radiometer and thermal probe. At the depth of the probe of 0.5 - 36 cm, an average temperature of 217.5 K was found varying by 5.3 - 6.7 K during a sol and by 13.2 K during the seasons. The damping of the surface temperature variations in the soil were used to derive a thermal diffusivity of $2.30 \pm 0.03 \times 10^{-8} \text{ m}^2/\text{s}$ for the depth range of the diurnal wave - thermal skin depth $2.5 \pm 0.04 \text{ cm}$ - and $3.74 \pm 0.61 \times 10^{-8} \text{ m}^2/\text{s}$ for that of the annual wave, with a thermal skin depth of $84 \pm 10 \text{ cm}$. The temperatures measured are conducive to the deliquesence of thin films of brines in the soil. These are of astrobiological interest and may explain the formation of the observed cemented duricrust.

Plain Language Summary

Temperature is of primary importance for many physical properties of the Martian soil as it determines how rapidly physical processes and chemical reactions will proceed, including the transport of heat and materials. Temperature is of particular interest to astrobiology, informing the habitability of the soil and whether water or brine may exist on which microorganisms could live. We measured the temperature in the soil during several Martian days and over a Martian year using the NASA InSight Mars mission’s Heat Flow and Physical Properties Package. Over the depth extent of its thermal probe of about 40 cm, an average temperature of -56°C was measured, varying by 5 to 7 degrees during the day - only a tenth of the daily surface temperature variation - and by 13 degrees during the seasons. The temperature is subfreezing for water but allows the formation of thin films of salty brine for 10 h or more during a Martian day. The solidification of the brine could have caused cementation of the soil and explain the observed few tens of cm thick duricrust, a layer of consolidated, cohesive sand, which is thought to have hampered the penetration to greater depth of the mission’s thermal probe.

1 Introduction

The temperature in the Martian soil has been estimated but is mostly unknown. Orbiter and surface lander and rover missions have measured the surface temperature and thermal inertia but the temperature in the soil at more than millimeters depth has
never before been measured. (Compare the near-surface soil temperatures measured by
the Phoenix TECP instrument using a 15 mm long spike sensor, e.g., Zent et al. (2010).)
Soil temperature is of primary importance for the values of physical properties such as
elasticity, seismic velocity, thermal conductivity and heat capacity, which are temper-
ature dependent (e.g., Morgan et al., 2018). Its value and the manner in which it varies
in time and space determines the rates and directions of soil physical processes and of
energy and mass exchange with deeper layers and the atmosphere (e.g., Hillel, 2001). More-
over, temperature governs the rates of chemical reactions that take place in the soil, in-
cluding biological processes and is of particular interest to astrobiology (e.g., Jones et
al., 2011) and future human exploration (e.g., Rapp, 2023). For life to flourish in the sub-
surface, temperature needs to be above the freezing point of water or the eutectic tem-
perature of brine that may be contained in the soil and used as essential solvents by or-
ganisms (e.g., Cockell, 2014).

Soil temperature varies in time and space driven mostly by changes at the surface
and the transport of heat in the soil by solid state heat conduction, heat advection through
gas transport and latent heat exchange upon e.g., freezing and thawing. Heat transport
in the Martian soil has been modelled by e.g., Grott et al. (2007) but because of the com-
plex transport processes in the soil and the temperature dependence of material param-
eters, modeling of the thermal regime is a formidable task. Here, we report the first mea-
surement of soil temperature at a depth of up to 36cm using the Nasa InSight Mars mis-
ion’s Heat Flow and Physical Properties Package HP3. Even though we measured soil
temperature only at one location on Mars close to the equator, the data can serve as a
valuable reference for future modeling and to inform astrobiological considerations and
simulation experiments (e.g., Boston et al., 2009). By comparing the amplitude and phase
of the sub-surface with the surface temperature we calculated the thermal diffusivity of
the soil.

The HP3 package was originally planned to measure the planetary surface heat flow
and the thermal and mechanical properties of the Martian soil up to 5 m depth (Spohn
et al., 2018). The mission has been described in e.g., Banerdt et al. (2020); the landing
site and its Geology have been described in Golombek et al. (2020). The lander is located
at 4.502°N, 135.623°E at an elevation of -2,613.43 m with respect to the geoid in what
has been informally named Homestead Hollow in Elysium Planitia in the Early Hespe-
rian Transition unit (Golombek et al., 2020).
Temperature sensors printed on a 5m long Kapton™ tether would have been brought to the target depth of 3–5m by a small penetrator, nicknamed the mole. The 40cm long mole which requires friction on its hull to balance remaining recoil from its internal hammer mechanism did not penetrate to the targeted depth. The root cause of the failure - as was determined through an extensive, almost one Martian year long campaign described in detail in Spohn, Hudson, Witte, et al. (2022) and Spohn, Hudson, Marteau, et al. (2022) - was a lack of friction in an unexpectedly thick cohesive - possibly cemented - duricrust. During the recovery campaign, the mole penetrated to a final tip-depth of about 36 cm with an inclination to vertical of 30°, bringing the mole’s back-end about 1 cm below the surface. Penetration was aided by friction applied to the mole with the scoop at the end of the robotic Instrument Deployment Arm (Trebi-Ollennu et al., 2018) and by direct support to its back-cap.

The penetration record was used to infer a layering of the soil and its thermo-mechanical properties (Spohn, Hudson, Marteau, et al., 2022). Accordingly (compare Fig. 1), a 7–20 cm thick duricrust underlies a 1–2 cm dust layer. Underneath the duricrust is a 10–23 cm thick sand layer followed by a gravel/sand mixture. The duricrust has a penetration resistance of 0.3–0.7 MPa, while the gravel layer (> 30 cm depth) a resistance of 4.9 ± 0.4 MPa. Using the mole’s thermal sensors and internal heaters, the average soil temperature, thermal conductivity and the soil density were measured. The average value of the thermal conductivity was found to be 0.039 W/m K (Grott et al., 2021) varying by ± 5% over the seasons (solar longitude between 8° and 210°) and with atmosphere pressure (Grott et al., 2023). The conductivity likely increases from 0.014 W/m K to 0.034 W/m K through the topmost sand/dust layer, keeping the latter value in the duricrust and the sand layer underneath and then increasing to 0.064 W/m K in the sand/gravel layer (Spohn, Hudson, Marteau, et al., 2022). The density decreases from 1200 kg/m³ in the sand/dust layer to 950–1100 kg/m³ in the duricrust, then increases to 1300–1500 kg/m³ in the sand layer underneath and further to 1600 kg/m³ in the sand/gravel layer.

Prior to each thermal conductivity measurement, the soil temperature was recorded for 48h. The diurnal and seasonal variations of the soil temperature are reported in this paper. The data are complemented by housekeeping (H/K) temperature data taken inside the mole at the motor block at times when the HP3 instrument was powered on. A comparison with the surface temperature allows the calculation of the thermal diffusivity and a more precise estimate of the depth to the mole in the soil. The sensors have
been described in Spohn et al. (2018) and more specifically in the Supporting Information Text S1.

Figure 1. a) Sketch of the mole in the soil and of the soil layering. b) The mole pit filled with soil and compressed with the scoop of the robotic Instrument Deployment Arm (IDA) after sol 754, the sol of the final penetration test. A solar day (sol) on Mars is 24 Mars hours of 61.65 min. The sols are counted starting with the landing of InSight on sol 0.

2 Results

The first 48h diurnal soil temperature measurement using the TEM-A thermal sensors on the fully buried mole was taken on sol 680, shortly after burial (Spohn, Hudson, Marteau, et al., 2022) on sol 673 but before the soil was tamped on sols 686 and 734 with the robotic arm as in Fig. 1b. On Sol 754, the mole motor was operated to see whether the mole would penetrate further on its own after being buried and the soil consolidated. When it failed to clearly penetrate further during a 506 hammer strokes long campaign - the final "Free Mole Test" - the attempts to bring the mole to greater depth were aban-
doned because the diminishing resources were needed for other instruments on the mission. The TEM-A measurement on sol 795 was the first measurement after the Free Mole Test hammering. This hammering may have contributed to a further settling and compaction of the pit fill. The six 48h TEM-A measurements thereafter were all done in the same configuration.

Fig. 2 top panel shows the soil temperature as a function of local true solar time LTST and for sols 681–1202. The temperature curves are largely parallel except for sol 681. The situation in the soil before the Free Mole Test and the final tamping of the sand scraped into the pit may have contributed to the anomaly. The small rate of increase of temperature after noon of sol 681 was likely caused by the shadow of the scoop which was just above the mole at the time. Moreover, InSight ICC images and camera data (https://mars.nasa.gov/insight/multimedia/raw-images, see also Lemmon et al. (2015)) suggest that it was a particularly dusty sol at Homestead Hollow.

Fig. 2 bottom panel shows the diurnally averaged TEM-A and mole motor housekeeping (H/K) temperature values as a function of time in sols starting with sol 681 and extending to sol 1245, the last sol on which HP data were taken. The H/K temperatures are consistent with the TEM-A values. In addition, we plot the average of the diurnal peak values of the surface temperature measured by the RAD sensor (Spohn et al., 2018; Mueller et al., 2020) at surface spot2 (compare Supporting Information Text S1). Spot2 is located opposite to the location of the mole with respect to the lander and is centred at a distance of about 4 m from the center of the lander. The surface temperature was recorded during the second InSight Mars year at 6:00 and 13:00 LTST, covering the daily maximum and minimum values. The values plotted in Fig. 2 are the average values between the two. We further plot the 24h-averaged surface temperature for 8 sols for which data were taken together with an estimate of the average surface temperature calculated from the 6:00 and 13:00 LTST values and using a relation between the 24h-averaged temperature and the average between the peak-to-peak values derived from the data of InSight year 1. Both curves differ notably by 8 K in the winter and by 13 K during the summer. The difference is due to the non-symmetry of the variation of the surface temperature during a sol (compare Fig. S3 in the Supporting Information).

Temperature in the soil varied by 5.3 K during a sol for the coldest sol sampled, sol 871, to 6.7 K for the warmest sol, sol 1202. Over the seasons, TEM-A 24h-averaged
Figure 2. Top: Soil temperature as measured by the TEM-A sensor as a function of local true solar time (LTST) on the sols indicated. The uncertainty of the temperature measured with TEM-A is estimated to be 0.1 K (Grott et al., 2019). Bottom: Surface and TEM-A and motor H/K temperatures versus time in Martian solar days (sol). The blue line gives the surface temperature averaged using radiometer readings at 6:00 and 13:00 LTST. Their uncertainty is estimated to be 2 K (Mueller et al., 2020). The grey dots give the available 24h-averaged surface temperatures. Their uncertainty is about 3K, given the uncertainty of up to 6K of temperature measurements in the late afternoon. The dashed grey line gives an estimate of the 24h-averaged temperature using the diurnal minimum and maximum temperatures of year 2 (blue line) and a mapping derived from 24h averages and peak-to-peak averages from year 1. The green crosses give the soil temperature measured by TEM-A from the top panel and averaged over one sol. The red line gives the mole motor H/K temperature, averaged using readings at 6:00 and 13:00 LTST with an uncertainty of 1 K. FMT indicates the sol (754) at which the Free Mole Test occurred. Additionally marked are the Northern hemisphere seasons and the solar longitude.
temperatures varied by 9 K from 216.8 K at sol 871 to 225.8 K at sol 1202. Note that
the TEM-A measurements missed the temperature low around sol 980 (211.8 K at sol
981, Fig. 2 bottom) suggesting a temperature difference through the Martian year of 13.3 K.
The annual average temperature calculated from the TEM-A recordings and the H/K
data is 217.5 K. These compare with an annual average surface temperature of 221.6 K.

The damping of the diurnal and annual surface temperature variation and the phase
shift with increasing depth can be used to estimate the thermal diffusivity and the depth
to the back-end of the mole. Note that the latter was not well known before but was es-
timated to be 1-2 cm from camera data (Spohn, Hudson, Marteau, et al., 2022). We briefly
describe our calculation here. More detail can be found in the Supporting Information
Text S2.

It is well known (e.g., Carslaw & Jaeger, 1959) that the peak-to-peak temperature
oscillation in a half-space heated periodically at the surface decreases with $e^{\frac{-z}{\delta}}$, where
z is depth and where $\delta = \sqrt{\frac{\kappa P}{\pi}}$ is the thermal skin depth, with P the period of the
forcing temperature variation. Averaged over the depth interval sampled by the mole,
we get for the peak-to-peak variation ΔT

$$\Delta T = \frac{1}{z_1 - z_0} \int_{z_0}^{z_1} \Delta T(z = 0)e^{-z/\delta} dz$$ \hspace{1cm} (1)

where z_0 is the depth to the mole back-end and z_1 the depth to the mole tip. The phase
lag Φ of the temperature variation increases with depth according to z/δ. Because the
temperature signal decreases exponentially along the mole, we calculate the average value
of the phase lag by taking a weighted average over the depth extent of the mole:

$$\bar{\Phi} = \frac{1}{\delta} \left[\int_{z_0}^{z_1} z e^{-(z-z_0)/\delta} dz \right] \int_{z_0}^{z_1} e^{-(z-z_0)/\delta} dz$$ \hspace{1cm} (2)

The diurnal and annual thermal skin depths, respectively, are given by:

$$\delta_d = \sqrt{\frac{\kappa P_d}{\pi}}$$ \hspace{1cm} (3)
$$\delta_a = \sqrt{\frac{\kappa P_a}{\pi}}$$ \hspace{1cm} (4)

where P_d is a sol and P_a a Martian year in seconds.
For the diurnal wave, we use the six TEM-A 24h recordings available for sols 796 - 1202 as shown in Fig. 2. (We do not use the sol 681 TEM-A recording because it is quite anomalous, as was discussed further above.) We compare these with 24h surface temperature recordings from the HP3 radiometer RAD. Unfortunately, these were not taken on the same sols as the TEM-A recordings. Therefore, we use the next available sol with 24h RAD data. These are sol 1075 for sol 1069 and sol 1175 for sol 1157. For sols 796, 825, 872 and 1202, we use data from a close-by sol with similar solar longitude of the previous Martian year. These are sol 120 (for 796), sol 138 (825), sol 190 (872) and sol 511 (1202). Although InSight year 2 on Mars was overall cooler by a few Kelvin than year 1, the diurnal temperature variations were very similar. Fig. 3 shows the solutions to Eqns. 1 and 2 in terms of z_0 and κ after de-trending for - albeit small - dependencies of the measured amplitude ratio and phase lag on the surface temperature and of the phase lag on the mismatch between the sols used. Accordingly, the top-most piece of the mole is at a depth of 5.07 ± 0.25 mm and the thermal diffusivity is 2.30 ± 0.03×10$^{-8}$ m2s$^{-1}$. Considering the radius of the mole of 13.5 mm and its inclination towards vertical of 30 ± 0.2°, the center of the back-cap is at a depth of 11.8 ± 0.3 mm. The thermal skin depth is found to be 25 ± 0.4 mm and the wavelength 160 mm. The uncertainties of the measurements are detailed in the Supporting Information Text S2.

The data for the annual wave are significantly noisier than the diurnal wave recordings, which should partly be a consequence of the weather on Mars. A total of 1.81 Martian years (1231 sols) of surface temperatures are available but only 565 sols (0.85a) of buried mole data and only 459 sols (0.69a) after the Free Mole Test with the final hammering (compare Fig. 2). For the first year, surface temperatures were recorded over 24h at a coverage varying between 2 and 5700 recordings per sol. For the second year, data were regularly taken at 6:00 and 13:00 LTST to cover the daily minimum and maximum temperatures but only a few high time-resolution recordings could be afforded. Therefore, we use the 6:00 and 13:00 LTST recordings for the analysis (see Piqueux et al. (2021) for further advantages of using the RAD peak temperature values for thermophysical considerations). As a caveat we note that because of asymmetry in the daily surface temperature variation (compare Fig. S3 in the Supporting Information), the 24h temperature average and the average between the temperature extremes differed between 8 K during the cold season and 13 K during the warmest times. At mole depth, the temperature variation is significantly more symmetric and the difference between the 24h av-
Figure 3. Thermal diffusivity versus depth to the back-end of the mole as calculated from the attenuation and the phase shift of the diurnal wave measured by the TEM-A sensor of the HP3 mole and the HP3 radiometer. The measurement uncertainties, the mean value and its standard error are indicated. The data points are marked by the combination of the sols used in the analysis.

The difference in temperature between the hottest day on the Martian surface and the coldest based on averaging the daily maximum and minimum temperatures was found to be 16.3K with an estimated uncertainty of 1K. At mole depth, 6 sols of high quality 24h TEM-A data are available, complemented by re-calibrated housekeeping data of the mole motor temperature taken at 6:00 and 13:00 LTST. The annual temperature variation at depth was found to be 13.2K, again with an estimated uncertainty of 1K. We estimate the phase shift between the surface and mole signal from a Fourier analysis of the signal. The analysis resulted in an estimate of the phase lag of 20.9 sols with an es-
estimated uncertainty of ± 2 sols, an estimate somewhat more conservative than the discretization uncertainty of ± 1.3 sols. This should accommodate for the contribution of the uncertainty in the amplitude to the uncertainty in the phase difference.

Attempts to use both the phase lag and the amplitude ratio to estimate κ and z_0 as with the diurnal wave have proven to be impractical as the relative uncertainty for z_0 turned out to be several 100% in that case. Instead, we used the value of the depth to the mole determined from the diurnal wave and its uncertainty to estimate κ using the amplitude ratio and the phase lag separately. From the amplitude ratio we found κ to be $3.68 \pm 1.1 \times 10^{-8}$ W/m2 and $3.80 \pm 0.51 \times 10^{-8}$ W/m2 from the phase lag. Taking the average value of the two, we calculate a thermal skin depth of 84 ± 10 cm and a wavelength of 5.3 m.

3 Discussion and Conclusions

We have recorded the soil temperature measured by sensors on the HP3 mole as a function of time during 7 sols as well as during 4/5 of a Martian year. By comparing the mole temperature with the surface temperature we find a depth to the center of the mole back-end of 1.2 cm using the diurnal thermal wave. The thermal diffusivity was found to be $2.30 \pm 0.09 \times 10^{-8}$ m2/s. Using the annual wave data we find a thermal diffusivity of $3.74 \pm 0.61 \times 10^{-8}$ m2/s, suggesting that the thermal diffusivity increases with depth. Independent estimates of the thickness of the layer above the back-end of the mole from camera data taken during burial and tamping suggest a 1-2 cm (Spohn, Hudson, Marteau, et al., 2022) thick layer of sand/dust above the mole. The average thermal conductivity reported by Grott et al. (2021) is $k = 0.039 \pm 0.002$ W/m K and the density 1211^{+149}_{-113} kg/m3. Assuming a heat capacity c as given by Morgan et al. (2018) of 630J/kg K, a thermal diffusivity $\kappa = k/pc$ of $5.1\pm0.8\times10^{-8}$ m2/s (not counting the error in the heat capacity) is calculated. While the diurnal wave can be considered to sample the top few cm of the regolith where the thermal conductivity is likely to be smaller than in the layer below (Spohn, Hudson, Marteau, et al., 2022; Mueller et al., 2021; Piqueux et al., 2021), the annual wave and the TEM-A thermal conductivity measurement should cover a similar depth range, albeit with the annual wave penetrating several mole lengths deeper. While the thermal diffusivity values differ, it is fair to say that their 1-σ confidence ranges overlap. We further note that the present value is close to the pre-mission estimate by Morgan et al. (2018).
A representative average value of the temperature is 217.5 K with diurnal variations of 5 to 7K and seasonal variations of 13K, respectively. The question arises for which depth or depth range the estimation should be considered representative, noting that temperature generally varies with depth in the Martian soil. The measurements of the TEM-A sensors give values averaged over at least the depth extent of the sensor foils, if not over the depth extent of the entire mole. The thermal conductivity of the mole is more than 10 times larger than that of the soil suggesting that the mole is close to isothermal. Given that a TEM-A foil is 31.5cm long and that the tilt of the mole is 30°, their depth extent will be 27.3cm. With a depth to the back-end of the mole in its final configuration of 1.2cm and a mole length of 40 cm, the mole tip is at a depth of 36 cm. Since the H/K sensor is at 17.3cm distance from the back-end, it is at a depth of 16.2cm below the datum while the mid-point of the TEM-A foil is at 17.2cm depth. The center of the mole is at a depth of 19.2cm.

Another way to approach the problem is by considering the damping of the daily and annual thermal waves and finding the depth at which the recorded temperature and its diurnal and annual variation may be expected. By considering the exponential decrease of the peak-to-peak temperature variation we find for an amplitude ratio of 0.06 for the diurnal wave a representative depth of 7cm. For the annual wave with an amplitude ratio of 0.81 a representative depth of 17 cm results. Assuming a Martian surface heat flow of 20 mW/m² (Plesa et al., 2018; Khan et al., 2021; Drilleau et al., 2022) and a thermal conductivity of 0.03-0.04 W/m K, consistent with the present value of κ and Grott et al. (2021), a thermal gradient of 0.5-0.7K/m results, suggesting a temperature difference between the two representative depths quoted above of less than 0.1K, smaller than the uncertainty range of even the high quality TEM-A data. We can use the gradient to estimate the temperature increase through the top 5m of the regolith to obtain 3K and a bottom temperature of 220.5K.

The average temperature value of 217.5K is 1 - 2K above the values given by Grott et al. (2007), lending support to the validity of this type of thermal models. These authors have assumed thermal diffusivity values between 1 and 2×10^{-8} m²/s and 2×10^{-8} m²/s and used the NASA/MSFC Mars GRAM model (Haberle et al., 1993) for the surface temperature. It is about 55 K below the melting temperature of pure ice I and 45 K below the triple point of the "average Mars salinity water" of Jones et al. (2011). It is about 20 K above the H₂O-Ca(ClO₄)₂ eutectic and above the sublimation temperature.
of ice at Martian atmosphere pressure. This confirms the notion that the Martian soil at Homestead Hollow should be desiccated as is to be expected for low latitude regions on Mars (e.g., Clifford et al., 2010). In general, estimates of the depth to and the thickness of the cryosphere may need revision though, given that our estimates of the thermal diffusivity are about a factor of two lower than assumed for the near surface regolith from previous studies (e.g., Clifford et al., 2010). Replacing their thermal conductivity value of 0.06 W/m K with the one calculated here results in an estimated depth to the bottom of the cryosphere smaller by 150m, or by 5%.

Jones et al. (2011) discuss a phase space for liquid water on Mars to evaluate the astrobiological potential of the planet. As an upper estimate of the surface temperature on Mars they use a value of 305K based on observations of the Opportunity rover at Meridiani Planum. We note that similar values of surface temperature have been observed by HP3 RAD - for instance 295K on sol 1202 - but that night temperatures have then fallen to values around 200K and that the temperature in the soil stayed well below the freezing temperature of water even in the afternoon (compare Fig. 2).

Deliquescence of brines in thin films may be more realistic and has been suggested for the Phoenix landing site (e.g., Chevrier et al., 2009; Remné et al., 2009). For deliquescence to occur, the temperature must be above the eutectic of the brine and the humidity above the deliquescence relative humidity (e.g., Nuding et al., 2014). Pál and Kereszturi (2020) have discussed the potential for deliquescence of three brines including calcium perchlorate at Elysium Planitia, the wider region of the InSight landing site. They find about 2h long intervals of favourable conditions for the formation of calcium perchlorate brines in the evening between 21:00 and 23:00 LTST in early spring. We note that the conditions in the soil at a depth of about 10cm (and beyond) would be driven by the humidity as the temperature should be continuously above the eutectic of the calcium perchlorate brine of around 200K (Nuding et al., 2014). Judging from the model of Pál and Kereszturi (2020), the brine could exist for about 10h, a conclusion similar to the finding of Nuding et al. (2014) for the Phoenix landing site albeit for a depth of 3cm, there. At 3cm depth, the time window for deliquescence at Homestead Hollow should be shorter as the temperature should fall below the eutectic at around 6:00 LTST.

Efflorescence of salt from the supersolidus brine may well have caused the formation of the about 20cm thick duricrust that hampered the mole progress as reported in
Chemical measurements of soils and alteration rinds of rocks argue for low water/rock ratio alteration due to acidic weathering via interactions of atmospheric water vapor and soils to produce chlorine and sulfur rich salts that cement near surface soils and duricrusts on Mars (Banin et al., 1992; Haskin et al., 2005; Hurowitz et al., 2006, 2007).

4 Open Research

Calibrated HP3 radiometer and TEM-A data are archived in NASA’s Planetary Data System (InSight HP3 Science Team, 2021). The specifically selected data, the housekeeping sensor data and the Excel workbooks used to evaluate the data have been made publicly available at Spohn (2024).

Acknowledgments

The design, building of and research into the HP3 has been supported by the German Aerospace Center DLR, by NASA, the ÖAW, and the Polish Academy of Science. A portion of the work was supported by the InSight Project at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

This is InSight contribution number 337.

References

doi: https://doi.org/10.1029/2009JE003462

doi: https://doi.org/10.1029/2023GL102975

Grott, M., Spohn, T., Knollenberg, J., Krause, C., Scharringhausen, M., Wipper-

(2009). Possible physical and thermodynamical evidence for liquid water at the

Spohn, T. (2024). *Mars Soil Temperature and Thermal Diffusivity from InSight HP3*
Data Workbook [Dataset, Software]. FigShare.Collection. doi: 10.6084/m9.figshare.25099754

Spohn, T., Grott, M., Smrekar, S. E., Knollenberg, J., Hudson, T. L., Krause, C.,
... Banerdt, W. B. (2018, Aug 02). The Heat Flow and Physical Proper-
ties Package (HP3) for the InSight mission. *Space Science Reviews, 214*(5),
96. Retrieved from https://doi.org/10.1007/s11214-018-0531-4 doi:
10.1007/s11214-018-0531-4

Spohn, T., Hudson, T. L., Marteau, E., Golombek, M., Grott, M., Wippermann, T.,
... Banerdt, W. B. (2022). The InSight HP3 penetrator (Mole) on Mars: Soil
properties derived from the penetration attempts and related activities. *Space
Science Reviews, 218*. doi: https://doi.org/10.1007/s11214-022-00941-z

Spohn, T., Hudson, T. L., Witte, L., Wippermann, T., Wisniewski, L., Kedziora, B.,
... Grygorczuk, J. (2022). The InSight-HP3 Mole on Mars: Lessons learned
from attempts to penetrate to depth in the Martian soil. *Advances in Space
Research, 69*, 3140-3163. doi: https://doi.org/10.1016/j.asr.2022.02.009

Trebi-Ollennu, A., Kim, W., Ali, K., Khan, O., Sorice, C., Bailey, P., ... Lin, J.

Zent, A. P., Hecht, M. H., Cobos, D. R., Wood, S. E., Hudson, T. L., Milkovich,
S. M., ... Mellon, M. T. (2010). Initial results from the thermal and electrical
conductivity probe (TECP) on Phoenix. *Journal of Geophysical Research:
Mars Soil Temperature and Thermal Properties from InSight HP3 Data

T. Spohn1, N. Müller1, J. Knollenberg1, M. Grott1, M. P. Golombek2, A.-C. Plesa1, V. T. Bickel3, P. Morgan4, C. Krause5, D. Breuer1, S. E. Smrekar2, W. B. Banerdt2*

1Institute of Planetary Research, German Aerospace Center DLR, Rutherfordstrasse 2, 12489 Berlin, Germany
2Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, Ca 91109, USA
3Center for Space and Habitability, University of Bern, Gesellschaftsstrasse 6, 3012 Bern, Switzerland
4Colorado Geological Survey, Colorado School of Mines, 1801 19th St., Golden, Co 80401, USA
5MUSC Space Operations and Astronaut Training, German Aerospace Center DLR, Linder Höhe, 51147 Köln, Germany

Key Points:

• We measured the temperature and its diurnal and annual variations in the top 40cm of the Martian soil at the InSight landing site
• The soil temperature allows the formation of thin films of brine; its deliquesence may explain the formation of the observed duricrust
• The soil thermal diffusivity was calculated from the diurnal and annual surface and soil temperature variations and increases with depth

*current address: 1854 Clayton Ave. Pittsburg, Pa 15214, USA

Corresponding author: Tilman Spohn, tilman.spohn@dlr.de
Abstract

Temperature is of primary importance for many physical properties in the Martian soil. We measured diurnal and annual soil (and surface) temperature variations using the NASA InSight Mars mission’s HP3 radiometer and thermal probe. At the depth of the probe of 0.5 - 36 cm, an average temperature of 217.5 K was found varying by 5.3 - 6.7 K during a sol and by 13.2 K during the seasons. The damping of the surface temperature variations in the soil were used to derive a thermal diffusivity of $2.30 \pm 0.03 \times 10^{-8}$ m2/s for the depth range of the diurnal wave - thermal skin depth 2.5 ± 0.04 cm - and $3.74 \pm 0.61 \times 10^{-8}$ m2/s for that of the annual wave, with a thermal skin depth of 84 ± 10 cm. The temperatures measured are conducive to the deliquesce of thin films of brines in the soil. These are of astrobiological interest and may explain the formation of the observed cemented duricrust.

Plain Language Summary

Temperature is of primary importance for many physical properties of the Martian soil as it determines how rapidly physical processes and chemical reactions will proceed, including the transport of heat and materials. Temperature is of particular interest to astrobiology, informing the habitability of the soil and whether water or brine may exist on which microorganisms could live. We measured the temperature in the soil during several Martian days and over a Martian year using the NASA InSight Mars mission’s Heat Flow and Physical Properties Package. Over the depth extent of its thermal probe of about 40 cm, an average temperature of -56°C was measured, varying by 5 to 7 degrees during the day - only a tenth of the daily surface temperature variation - and by 13 degrees during the seasons. The temperature is subfreezing for water but allows the formation of thin films of salty brine for 10h or more during a Martian day. The solidification of the brine could have caused cementation of the soil and explain the observed few tens of cm thick duricrust, a layer of consolidated, cohesive sand, which is thought to have hampered the penetration to greater depth of the mission’s thermal probe.

1 Introduction

The temperature in the Martian soil has been estimated but is mostly unknown. Orbiter and surface lander and rover missions have measured the surface temperature and thermal inertia but the temperature in the soil at more than millimeters depth has
never before been measured. (Compare the near-surface soil temperatures measured by
the Phoenix TECP instrument using a 15 mm long spike sensor, e.g., Zent et al. (2010).)

Soil temperature is of primary importance for the values of physical properties such as
elasticity, seismic velocity, thermal conductivity and heat capacity, which are temper-

ature dependent (e.g., Morgan et al., 2018). Its value and the manner in which it varies
in time and space determines the rates and directions of soil physical processes and of
energy and mass exchange with deeper layers and the atmosphere (e.g., Hillel, 2001). More-

over, temperature governs the rates of chemical reactions that take place in the soil, in-
cluding biological processes and is of particular interest to astrobiology (e.g., Jones et
al., 2011) and future human exploration (e.g., Rapp, 2023). For life to flourish in the sub-
surface, temperature needs to be above the freezing point of water or the eutectic tem-
perature of brine that may be contained in the soil and used as essential solvents by or-
ganisms (e.g., Cockell, 2014).

Soil temperature varies in time and space driven mostly by changes at the surface
and the transport of heat in the soil by solid state heat conduction, heat advection through
gas transport and latent heat exchange upon e.g., freezing and thawing. Heat transport
in the Martian soil has been modelled by e.g., Grott et al. (2007) but because of the com-
plex transport processes in the soil and the temperature dependence of material param-
eters, modeling of the thermal regime is a formidable task. Here, we report the first mea-
surement of soil temperature at a depth of up to 36cm using the Nasa InSight Mars mis-

sion’s Heat Flow and Physical Properties Package HP³. Even though we measured soil
temperature only at one location on Mars close to the equator, the data can serve as a
valuable reference for future modeling and to inform astrobiological considerations and
simulation experiments (e.g., Boston et al., 2009). By comparing the amplitude and phase
of the sub-surface with the surface temperature we calculated the thermal diffusivity of
the soil.

The HP³ package was originally planned to measure the planetary surface heat flow
and the thermal and mechanical properties of the Martian soil up to 5 m depth (Spohn
et al., 2018). The mission has been described in e.g., Banerdt et al. (2020); the landing
site and its Geology have been described in Golombek et al. (2020). The lander is located
at 4.502°N, 135.623°E at an elevation of -2,613.43 m with respect to the geoid in what
has been informally named Homestead Hollow in Elysium Planitia in the Early Hespe-
rian Transition unit (Golombek et al., 2020).
Temperature sensors printed on a 5m long Kapton™ tether would have been brought to the target depth of 3–5m by a small penetrator, nicknamed the mole. The 40cm long mole which requires friction on its hull to balance remaining recoil from its internal hammer mechanism did not penetrate to the targeted depth. The root cause of the failure - as was determined through an extensive, almost one Martian year long campaign described in detail in Spohn, Hudson, Witte, et al. (2022) and Spohn, Hudson, Marteau, et al. (2022) - was a lack of friction in an unexpectedly thick cohesive - possibly cemented - duricrust. During the recovery campaign, the mole penetrated to a final tip-depth of about 36 cm with an inclination to vertical of 30°, bringing the mole’s back-end about 1 cm below the surface. Penetration was aided by friction applied to the mole with the scoop at the end of the robotic Instrument Deployment Arm (Trebi-Ollennu et al., 2018) and by direct support to its back-cap.

The penetration record was used to infer a layering of the soil and its thermo-mechanical properties (Spohn, Hudson, Marteau, et al., 2022). Accordingly (compare Fig. 1), a 7–20 cm thick duricrust underlies a 1–2 cm dust layer. Underneath the duricrust is a 10–23 cm thick sand layer followed by a gravel/sand mixture. The duricrust has a penetration resistance of 0.3–0.7 MPa, while the gravel layer (> 30 cm depth) a resistance of 4.9 ± 0.4 MPa. Using the mole’s thermal sensors and internal heaters, the average soil temperature, thermal conductivity and the soil density were measured. The average value of the thermal conductivity was found to be 0.039 W/m K (Grott et al., 2021) varying by ± 5 % over the seasons (solar longitude between 8° and 210°) and with atmosphere pressure (Grott et al., 2023). The conductivity likely increases from 0.014 W/m K to 0.034 W/m K through the topmost sand/dust layer, keeping the latter value in the duricrust and the sand layer underneath and then increasing to 0.064 W/m K in the sand/gravel layer (Spohn, Hudson, Marteau, et al., 2022). The density decreases from 1200 kg/m³ in the sand/dust layer to 950–1100 kg/m³ in the duricrust, then increases to 1300–1500 kg/m³ in the sand layer underneath and further to 1600 kg/m³ in the sand/gravel layer.

Prior to each thermal conductivity measurement, the soil temperature was recorded for 48h. The diurnal and seasonal variations of the soil temperature are reported in this paper. The data are complemented by housekeeping (H/K) temperature data taken inside the mole at the motor block at times when the HP³ instrument was powered on. A comparison with the surface temperature allows the calculation of the thermal diffusivity and a more precise estimate of the depth to the mole in the soil. The sensors have
been described in Spohn et al. (2018) and more specifically in the Supporting Information Text S1.

Figure 1. a) Sketch of the mole in the soil and of the soil layering. b) The mole pit filled with soil and compressed with the scoop of the robotic Instrument Deployment Arm (IDA) after sol 754, the sol of the final penetration test. A solar day (sol) on Mars is 24 Mars hours of 61.65 min. The sols are counted starting with the landing of InSight on sol 0.

2 Results

The first 48h diurnal soil temperature measurement using the TEM-A thermal sensors on the fully buried mole was taken on sol 680, shortly after buriage (Spohn, Hudson, Marteau, et al., 2022) on sol 673 but before the soil was tamped on sols 686 and 734 with the robotic arm as in Fig. 1b. On Sol 754, the mole motor was operated to see whether the mole would penetrate further on its own after being buried and the soil consolidated. When it failed to clearly penetrate further during a 506 hammer strokes long campaign - the final ”Free Mole Test” - the attempts to bring the mole to greater depth were aban-
doned because the diminishing resources were needed for other instruments on the mission. The TEM-A measurement on sol 795 was the first measurement after the Free Mole Test hammering. This hammering may have contributed to a further settling and compaction of the pit fill. The six 48h TEM-A measurements thereafter were all done in the same configuration.

Fig. 2 top panel shows the soil temperature as a function of local true solar time LTST and for sols 681–1202. The temperature curves are largely parallel except for sol 681. The situation in the soil before the Free Mole Test and the final tamping of the sand scraped into the pit may have contributed to the anomaly. The small rate of increase of temperature after noon of sol 681 was likely caused by the shadow of the scoop which was just above the mole at the time. Moreover, InSight ICC images and camera data (https://mars.nasa.gov/insight/multimedia/raw-images, see also Lemmon et al. (2015)) suggest that it was a particularly dusty sol at Homestead Hollow.

Fig. 2 bottom panel shows the diurnally averaged TEM-A and mole motor housekeeping (H/K) temperature values as a function of time in sols starting with sol 681 and extending to sol 1245, the last sol on which HP³ data were taken. The H/K temperatures are consistent with the TEM-A values. In addition, we plot the average of the diurnal peak values of the surface temperature measured by the RAD sensor (Spohn et al., 2018; Mueller et al., 2020) at surface spot2 (compare Supporting Information Text S1). Spot2 is located opposite to the location of the mole with respect to the lander and is centred at a distance of about 4 m from the center of the lander. The surface temperature was recorded during the second InSight Mars year at 6:00 and 13:00 LTST, covering the daily maximum and minimum values. The values plotted in Fig. 2 are the average values between the two. We further plot the 24h-averaged surface temperature for 8 sols for which data were taken together with an estimate of the average surface temperature calculated from the 6:00 and 13:00 LTST values and using a relation between the 24h-averaged temperature and the average between the peak-to-peak values derived from the data of InSight year 1. Both curves differ notably by 8 K in the winter and by 13 K during the summer. The difference is due to the non-symmetry of the variation of the surface temperature during a sol (compare Fig. S3 in the Supporting Information).

Temperature in the soil varied by 5.3 K during a sol for the coldest sol sampled, sol 871, to 6.7 K for the warmest sol, sol 1202. Over the seasons, TEM-A 24h-averaged
Figure 2. Top: Soil temperature as measured by the TEM-A sensor as a function of local true solar time (LTST) on the sols indicated. The uncertainty of the temperature measured with TEM-A is estimated to be 0.1 K (Grott et al., 2019). Bottom: Surface and TEM-A and motor H/K temperatures versus time in Martian solar days (sol). The blue line gives the surface temperature averaged using radiometer readings at 6:00 and 13:00 LTST. Their uncertainty is estimated to be 2 K (Mueller et al., 2020). The grey dots give the available 24h-averaged surface temperatures. Their uncertainty is about 3K, given the uncertainty of up to 6K of temperature measurements in the late afternoon. The dashed grey line gives an estimate of the 24h-averaged temperature using the diurnal minimum and maximum temperatures of year 2 (blue line) and a mapping derived from 24h averages and peak-to-peak averages from year 1. The green crosses give the soil temperature measured by TEM-A from the top panel and averaged over one sol. The red line gives the mole motor H/K temperature, averaged using readings at 6:00 and 13:00 LTST with an uncertainty of 1 K. FMT indicates the sol (754) at which the Free Mole Test occurred. Additionally marked are the Northern hemisphere seasons and the solar longitude.
temperatures varied by 9 K from 216.8 K at sol 871 to 225.8 K at sol 1202. Note that the TEM-A measurements missed the temperature low around sol 980 (211.8 K at sol 981, Fig. 2 bottom) suggesting a temperature difference through the Martian year of 13.3 K. The annual average temperature calculated from the TEM-A recordings and the H/K data is 217.5 K. These compare with an annual average surface temperature of 221.6 K.

The damping of the diurnal and annual surface temperature variation and the phase shift with increasing depth can be used to estimate the thermal diffusivity and the depth to the back-end of the mole. Note that the latter was not well known before but was estimated to be 1-2 cm from camera data (Spohn, Hudson, Marteau, et al., 2022). We briefly describe our calculation here. More detail can be found in the Supporting Information Text S2.

It is well known (e.g., Carslaw & Jaeger, 1959) that the peak-to-peak temperature oscillation in a half-space heated periodically at the surface decreases with $e^{\frac{z}{\delta}}$, where z is depth and where $\delta = \sqrt{\frac{\kappa P}{\pi}}$ is the thermal skin depth, with P the period of the forcing temperature variation. Averaged over the depth interval sampled by the mole, we get for the peak-to-peak variation ΔT

$$\Delta T = \frac{1}{z_1 - z_0} \int_{z_0}^{z_1} \Delta T(z = 0)e^{-z/\delta}dz$$ \hspace{1cm} (1)$$

where z_0 is the depth to the mole back-end and z_1 the depth to the mole tip. The phase lag Φ of the temperature variation increases with depth according to z/δ. Because the temperature signal decreases exponentially along the mole, we calculate the average value of the phase lag by taking a weighted average over the depth extent of the mole:

$$\Phi = \frac{\int_{z_0}^{z_1} z e^{-(z-z_0)/\delta} dz}{\int_{z_0}^{z_1} e^{-(z-z_0)/\delta}dz}$$ \hspace{1cm} (2)$$

The diurnal and annual thermal skin depths, respectively, are given by:

$$\delta_d = \sqrt{\frac{\kappa P_d}{\pi}}$$ \hspace{1cm} (3)$$

$$\delta_a = \sqrt{\frac{\kappa P_a}{\pi}}$$ \hspace{1cm} (4)$$

where P_d is a sol and P_a a Martian year in seconds.
For the diurnal wave, we use the six TEM-A 24h recordings available for sols 796 - 1202 as shown in Fig. 2. (We do not use the sol 681 TEM-A recording because it is quite anomalous, as was discussed further above.) We compare these with 24h surface temperature recordings from the HP3 radiometer RAD. Unfortunately, these were not taken on the same sols as the TEM-A recordings. Therefore, we use the next available sol with 24h RAD data. These are sol 1075 for sol 1069 and sol 1175 for sol 1157. For sols 796, 825, 872 and 1202, we use data from a close-by sol with similar solar longitude of the previous Martian year. These are sol 120 (for 796), sol 138 (825), sol 190 (872) and sol 511 (1202). Although InSight year 2 on Mars was overall cooler by a few Kelvin than year 1, the diurnal temperature variations were very similar. Fig. 3 shows the solutions to Eqs. 1 and 2 in terms of z_0 and κ after de-trending for - albeit small - dependences of the measured amplitude ratio and phase lag on the surface temperature and of the phase lag on the mismatch between the sols used. Accordingly, the top-most piece of the mole is at a depth of 5.07 ± 0.25 mm and the thermal diffusivity is $2.30 \pm 0.03 \times 10^{-8}$ m2 s$^{-1}$. Considering the radius of the mole of 13.5 mm and its inclination towards vertical of $30 \pm 0.2^\circ$, the center of the back-cap is at a depth of 11.8 ± 0.3 mm. The thermal skin depth is found to be 25 ± 0.4 mm and the wavelength 160 mm. The uncertainties of the measurements are detailed in the Supporting Information Text S2.

The data for the annual wave are significantly noisier than the diurnal wave recordings, which should partly be a consequence of the weather on Mars. A total of 1.81 Martian years (1231 sols) of surface temperatures are available but only 565 sols (0.85a) of buried mole data and only 459 sols (0.69a) after the Free Mole Test with the final hammering (compare Fig. 2). For the first year, surface temperatures were recorded over 24h at a coverage varying between 2 and 5700 recordings per sol. For the second year, data were regularly taken at 6:00 and 13:00 LTST to cover the daily minimum and maximum temperatures but only a few high time-resolution recordings could be afforded. Therefore, we use the 6:00 and 13:00 LTST recordings for the analysis (see Piqueux et al. (2021) for further advantages of using the RAD peak temperature values for thermophysical considerations). As a caveat we note that because of asymmetry in the daily surface temperature variation (compare Fig. S3 in the Supporting Information), the 24h temperature average and the average between the temperature extremes differed between 8 K during the cold season and 13 K during the warmest times. At mole depth, the temperature variation is significantly more symmetric and the difference between the 24h av-
Figure 3. Thermal diffusivity versus depth to the back-end of the mole as calculated from the attenuation and the phase shift of the diurnal wave measured by the TEM-A sensor of the HP3 mole and the HP3 radiometer. The measurement uncertainties, the mean value and its standard error are indicated. The data points are marked by the combination of the sols used in the analysis.

The difference in temperature between the hottest day on the Martian surface and the coldest based on averaging the daily maximum and minimum temperatures was found to be 16.3K with an estimated uncertainty of 1K. At mole depth, 6 sols of high quality 24h TEM-A data are available, complemented by re-calibrated housekeeping data of the mole motor temperature taken at 6:00 and 13:00 LTST. The annual temperature variation at depth was found to be 13.2K, again with an estimated uncertainty of 1K. We estimate the phase shift between the surface and mole signal from a Fourier analysis of the signal. The analysis resulted in an estimate of the phase lag of 20.9 sols with an es-
estimated uncertainty of ± 2 sols, an estimate somewhat more conservative than the discretization uncertainty of ± 1.3 sols. This should accommodate for the contribution of the uncertainty in the amplitude to the uncertainty in the phase difference.

Attempts to use both the phase lag and the amplitude ratio to estimate κ and z_0 as with the diurnal wave have proven to be impractical as the relative uncertainty for z_0 turned out to be several 100% in that case. Instead, we used the value of the depth to the mole determined from the diurnal wave and its uncertainty to estimate κ using the amplitude ratio and the phase lag separately. From the amplitude ratio we found κ to be $3.68 \pm 1.1 \times 10^{-8}$ W/m2 and $3.80 \pm 0.51 \times 10^{-8}$ W/m2 from the phase lag. Taking the average value of the two, we calculate a thermal skin depth of 84 ± 10 cm and a wavelength of 5.3 m.

3 Discussion and Conclusions

We have recorded the soil temperature measured by sensors on the HP3 mole as a function of time during 7 sols as well as during 4/5 of a Martian year. By comparing the mole temperature with the surface temperature we find a depth to the center of the mole back-end of 1.2 cm using the diurnal thermal wave. The thermal diffusivity was found to be $2.30 \pm 0.09 \times 10^{-8}$ m2/s. Using the annual wave data we find a thermal diffusivity of $3.74 \pm 0.61 \times 10^{-8}$ m2/s, suggesting that the thermal diffusivity increases with depth. Independent estimates of the thickness of the layer above the back-end of the mole from camera data taken during burial and tamping suggest a 1-2 cm (Spohn, Hudson, Marteau, et al., 2022) thick layer of sand/dust above the mole. The average thermal conductivity reported by Grott et al. (2021) is $k = 0.039 \pm 0.002$ W/m K and the density 1211^{+149}_{-113} kg/m3. Assuming a heat capacity c as given by Morgan et al. (2018) of 630 J/kg K, a thermal diffusivity $\kappa = k/pc$ of $5.1 \pm 0.8 \times 10^{-8}$ m2/s (not counting the error in the heat capacity) is calculated. While the diurnal wave can be considered to sample the top few cm of the regolith where the thermal conductivity is likely to be smaller than in the layer below (Spohn, Hudson, Marteau, et al., 2022; Mueller et al., 2021; Piqueux et al., 2021), the annual wave and the TEM-A thermal conductivity measurement should cover a similar depth range, albeit with the annual wave penetrating several mole lengths deeper. While the thermal diffusivity values differ, it is fair to say that their 1-σ confidence ranges overlap. We further note that the present value is close to the pre-mission estimate by Morgan et al. (2018).
A representative average value of the temperature is 217.5 K with diurnal variations of 5 to 7 K and seasonal variations of 13 K, respectively. The question arises for which depth or depth range the estimation should be considered representative, noting that temperature generally varies with depth in the Martian soil. The measurements of the TEM-A sensors give values averaged over at least the depth extent of the sensor foils, if not over the depth extent of the entire mole. The thermal conductivity of the mole is more than 10 times larger than that of the soil suggesting that the mole is close to isothermal. Given that a TEM-A foil is 31.5 cm long and that the tilt of the mole is 30°, their depth extent will be 27.3 cm. With a depth to the back-end of the mole in its final configuration of 1.2 cm and a mole length of 40 cm, the mole tip is at a depth of 36 cm. Since the H/K sensor is at 17.3 cm distance from the back-end, it is at a depth of 16.2 cm below the datum while the mid-point of the TEM-A foil is at 17.2 cm depth. The center of the mole is at a depth of 19.2 cm.

Another way to approach the problem is by considering the damping of the daily and annual thermal waves and finding the depth at which the recorded temperature and its diurnal and annual variation may be expected. By considering the exponential decrease of the peak-to-peak temperature variation we find for an amplitude ratio of 0.06 for the diurnal wave a representative depth of 7 cm. For the annual wave with an amplitude ratio of 0.81 a representative depth of 17 cm results. Assuming a Martian surface heat flow of 20 mW/m² (Plesa et al., 2018; Khan et al., 2021; Drilleau et al., 2022) and a thermal conductivity of 0.03-0.04 W/m K, consistent with the present value of κ and Grott et al. (2021), a thermal gradient of 0.5-0.7 K/m results, suggesting a temperature difference between the two representative depths quoted above of less than 0.1 K, smaller than the uncertainty range of even the high quality TEM-A data. We can use the gradient to estimate the temperature increase through the top 5 m of the regolith to obtain 3 K and a bottom temperature of 220.5 K.

The average temperature value of 217.5 K is 1 - 2 K above the values given by Grott et al. (2007), lending support to the validity of this type of thermal models. These authors have assumed thermal diffusivity values between 1 and 2 × 10⁻⁸ m²/s and 2 × 10⁻⁸ m²/s and used the NASA/MSFC Mars GRAM model (Haberle et al., 1993) for the surface temperature. It is about 55 K below the melting temperature of pure ice I and 45 K below the triple point of the "average Mars salinity water" of Jones et al. (2011). It is about 20 K above the H₂O-Ca(ClO₄)₂ eutectic and above the sublimation temperature.
of ice at Martian atmosphere pressure. This confirms the notion that the Martian soil at Homestead Hollow should be desiccated as is to be expected for low latitude regions on Mars (e.g., Clifford et al., 2010). In general, estimates of the depth to and the thickness of the cryosphere may need revision though, given that our estimates of the thermal diffusivity are about a factor of two lower than assumed for the near surface regolith from previous studies (e.g., Clifford et al., 2010). Replacing their thermal conductivity value of 0.06 W/m K with the one calculated here results in an estimated depth to the bottom of the cryosphere smaller by 150m, or by 5%.

Jones et al. (2011) discuss a phase space for liquid water on Mars to evaluate the astrobiological potential of the planet. As an upper estimate of the surface temperature on Mars they use a value of 305K based on observations of the Opportunity rover at Meridiani Planum. We note that similar values of surface temperature have been observed by HP3 RAD - for instance 295K on sol 1202 - but that night temperatures have then fallen to values around 200K and that the temperature in the soil stayed well below the freezing temperature of water even in the afternoon (compare Fig. 2).

Deliquescence of brines in thin films may be more realistic and has been suggested for the Phoenix landing site (e.g., Chevrier et al., 2009; Remné et al., 2009). For deliquescence to occur, the temperature must be above the eutectic of the brine and the humidity above the deliquescence relative humidity (e.g., Nuding et al., 2014). Pál and Kereszturi (2020) have discussed the potential for deliquescence of three brines including calcium perchlorate at Elysium Planitia, the wider region of the InSight landing site. They find about 2h long intervals of favourable conditions for the formation of calcium perchlorate brines in the evening between 21:00 and 23:00 LTST in early spring. We note that the conditions in the soil at a depth of about 10cm (and beyond) would be driven by the humidity as the temperature should be continuously above the eutectic of the calcium perchlorate brine of around 200K (Nuding et al., 2014). Judging from the model of Pál and Kereszturi (2020), the brine could exist for about 10h, a conclusion similar to the finding of Nuding et al. (2014) for the Phoenix landing site albeit for a depth of 3cm, there. At 3cm depth, the time window for deliquescence at Homestead Hollow should be shorter as the temperature should fall below the eutectic at around 6:00 LTST.

Efflorescence of salt from the supersolidus brine may well have caused the formation of the about 20cm thick duricrust that hampered the mole progress as reported in
Spohn, Hudson, Witte, et al. (2022) and Spohn, Hudson, Marteau, et al. (2022). Chemical measurements of soils and alteration rinds of rocks argue for low water/rock ratio alteration due to acidic weathering via interactions of atmospheric water vapor and soils to produce chlorine and sulfur rich salts that cement near surface soils and duricrusts on Mars (Banin et al., 1992; Haskin et al., 2005; Hurowitz et al., 2006, 2007).

4 Open Research

Calibrated HP3 radiometer and TEM-A data are archived in NASA’s Planetary Data System (InSight HP3 Science Team, 2021). The specifically selected data, the housekeeping sensor data and the Excel workbooks used to evaluate the data have been made publicly available at Spohn (2024).

Acknowledgments

The design, building of and research into the HP3 has been supported by the German Aerospace Center DLR, by NASA, the ÖAW, and the Polish Academy of Science. A portion of the work was supported by the InSight Project at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

This is InSight contribution number 337.

References

Grott, M., Spohn, T., Knollenberg, J., Krause, C., Scharringhausen, M., Wipper-

Rennó, N. O., Bos, B. J., Catling, D., Clark, B. C., Drube, L., Fisher, D., ... others
(2009). Possible physical and thermodynamical evidence for liquid water at the

Spohn, T. (2024). *Mars Soil Temperature and Thermal Diffusivity from InSight HP³*
Data Workbook [Dataset, Software]. FigShare.Collection. doi: 10.6084/m9
.figshare.25099754

Spohn, T., Grott, M., Smrekar, S. E., Knollenberg, J., Hudson, T. L., Krause, C.,
10.1007/s11214-018-0531-4

Spohn, T., Hudson, T. L., Marteau, E., Golombek, M., Grott, M., Wippermann, T.,
... Banerdt, W. B. (2022). The InSight HP³ penetrator (Mole) on Mars: Soil properties derived from the penetration attempts and related activities. *Space Science Reviews, 218.* doi: https://doi.org/10.1007/s11214-022-00941-z

Spohn, T., Hudson, T. L., Witte, L., Wippermann, T., Wisniewski, L., Kedziora, B.,
... Grygorczuk, J. (2022). The InSight-HP³ Mole on Mars: Lessons learned from attempts to penetrate to depth in the Martian soil. *Advances in Space Research, 69,* 3140-3163. doi: https://doi.org/10.1016/j.asr.2022.02.009

Trebi-Ollennu, A., Kim, W., Ali, K., Khan, O., Sorice, C., Bailey, P., ... Lin, J.

Zent, A. P., Hecht, M. H., Cobos, D. R., Wood, S. E., Hudson, T. L., Milkovich,

–18–
Supporting Information for

Mars Soil Temperature and Thermal Properties from InSight HP3 Data

T. Spohn¹, N. Müller¹, J. Knollenberg¹, M. Grott¹, M. P. Golombek², A.-C. Plesa¹, V. T. Bickel³, P. Morgan⁴, C. Krause⁵, D. Breuer¹, S. E. Smrekar², W. B. Banerdt².*

¹Institute of Planetary Research, German Aerospace Center DLR, Rutherfordstrasse 2, 12489 Berlin, Germany.
²Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, 91109, California, USA.
³Center for Space and Habitability, University of Bern, Gesellschaftsstrasse 6, Bern, 3012, Switzerland.
⁴Colorado Geological Survey, Colorado School of Mines, 1801 19th St., Golden, 80401, Colorado, USA.
⁵MUSC Space Operations and Astronaut Training, German Aerospace Center DLR, Linder Höhe, Köln, 51147, Germany.

Contents of this file

Text S1 to S2
Figures S1 to S4

*Present address: 1854 Clayton Ave., Pittsburg, 15214, Pennsylvania, USA
Introduction

This file contains two pieces of text S1 and S2 with embedded figures S1-S4 to supplement the information given in the main paper. Text S1 gives a detailed description of the HP3 sensors on the thermal probe – the mole – and the radiometer used to measure the temperatures reported in the paper. S2 describes in detail how the surface and sub-surface temperatures were used to calculate the thermal diffusivity and the depth to the mole from the diurnal and annual thermal waves.

Text S1.

Thermal Sensors

For measuring soil temperature, we use the two TEM-A sensors on the HP3 thermal probe – the mole (compare Fig. S1) - that were originally designed to measure the thermal conductivity (Spohn et al., 2018; Grott et al., 2019, 2021, 2023) with a modified line heat source method. The TEM-A sensors consist of thin copper wires densely printed on Kapton™ foil shells (compare Fig. S2). The shells are glued with Scotchweld™ 2216 onto the mole hull and protected against abrasion by a cover foil. The surface area of a TEM-A sensor is 12,000 mm2, the copper wires have a width of 142.5 µm, and the spacing between tracks is 150 µm. The resistance of the wires is temperature dependent with a temperature coefficient of resistance of 0.00415 K$^{-1}$. The resistance is measured using the Kelvin 4-wire technique. The difference between the two TEM-A foil temperatures was <0.1 K.

The sensor can be heated by applying a predetermined power that is kept constant during a thermal conductivity measurement while the resistance is measured and converted to temperature. The rate of temperature increase after a transitory period can then be inverted to give the thermal conductivity (e.g., Grott et al., 2019, 2021). Prior to a thermal conductivity measurement and before the heater power was switched on, the soil temperature was recorded for two half and a full Martian sol. A solar day (sol) on Mars is 24 Mars hours of 61.65 minutes or 88775 seconds. The sols are counted starting with the landing of InSight on sol 0. We use the recordings of the full sol for the present paper.

In addition to the TEM-A data, we use temperature measurements of a housekeeping (H/K) sensor glued to the back of the mole motor (compare Fig. S1). The sensor together with a separate dedicated heater were designed to control the mole motor temperature and keep the motor in its specified operations range. The motor temperature was continuously recorded while the instrument was switched on in the first year on Mars. The dwindling resources in the second Martian year motivated a reduction in operation time to two times per sol for a total of 94 sols, at 6:00 LTST (Local True Solar Time) and at 13:00 LTST.
Figure S1. View of the internals of the HP3 mole showing the extent of a TEM-A sensor foil (orange) and where it is located. The TEM-A foils are mounted 27 mm above the back end of the mole and extend for 315 mm. In addition, the location of the mole motor H/K temperature sensor is shown, 173 mm above the back end. The mole has a total length of 400 mm, a diameter of 27 mm, and a mass of 860 g.

The mole motor temperature sensor is a P1K0.232.6W.B.010 commercial, pre-wired RTD Platinum Sensor that meets the ECSS-Q-ST-60C Class 2 requirements. The operating temperature ranges from -200 °C to +600 °C. Its nominal resistance is 1000 Ohm at 0 °C and its dimensions are 2.3 mm x 2 mm x 1.3 mm (L x W x H). Its tolerance class is F0.3. The sensor is run in two-wire configuration (as compared with a four-wire configuration for the TEM-A sensors). Accordingly, the temperature dependence of the electrical wiring running to the sensor contributes to the error. The sensor was glued to the motor before integration to warrant a good thermal coupling. The motor H/K temperature sensor is located about halfway along the length of the two TEM-A foils but off-center, close to one of the two. This break in symmetry had no obvious effect on the temperature measurements.

The calibration of the TEM-A sensor in the range between 198.15 and 328.15 °C has been described in Grott et al (2019). The measurement uncertainty was found to be 30 mK at the 1σ level at the time of calibration. The sensors did drift by up to 0.25 K under thermal stress during 257 cycles between 183.15 and 298.15 °C and 26 cycles between 153.15 and 348.15 °C. While temperature drift uncertainty is a minor contribution to the total thermal conductivity uncertainty budget, it dominates the uncertainty budget for measuring the absolute soil temperature which is about 0.1 K.
Figure S2. Layout of the wiring on a TEM-A sensor foil. The foils are 315 mm long and are mounted 27 mm below the back end of the mole. The copper wires have a width of 142.5 µm, and the spacing between tracks is 150 µm.

The H/K sensor was calibrated at the DLR Institute of Planetary Research during thermal vacuum tests of the HP³ Proto-Flight-Model-2. The calibration was documented in HP³Insight-DLR-TR-0907, “SSA PFM-2 Thermal Vacuum Test Report”. The uncertainty of the H/K sensor readings was estimated to be 2 K (2σ level) under realistic operational conditions. The H/K sensors have been re-calibrated for this paper using the recordings of the TEM-A and the TEM-P sensors on the science tether (Spohn et al., 2018) and assuming that the harness running to the electronic box above the surface were of the same temperature as the TEM-P sensors.

The HP³ radiometer RAD has been described in Spohn et al (2018) and its calibration in Müller et al. (2020). It is mounted underneath the lander deck facing south, opposite to where the HP³ mole is located. HP³ RAD has six thermopile sensors observing two spots on the surface. Field of view (FOV) 1 is closer to the lander and FOV 2 about 4m away from the center of the lander. Because the lander shadow and its thermal environment perturb the observation at FOV 1, FOV 2 is used here. Of the three sensors per FOV covering different bandwidths, we use the broadband 8-14 µm sensor. The latter is least affected by systematic calibration issues as reported in Müller et al (2020). The brightness temperature is converted to temperature using an emissivity of 0.98 ± 0.2 (Morgan et al., 2018). The uncertainty of the temperature varies through the sol with the environment temperature. Overall, it was estimated to be 3 K for the 24h average. With 3 K for the 6:00 LTST and 1.5 K for the 13:00 LTST measurements, the uncertainty of the average of these two is 2 K. This estimate also applies to the difference between the two as used for the diffusivity derived from the diurnal wave. Since a significant part of the uncertainty is
non-random but systematic, temperature differences as needed for the calculation of the thermal diffusivity from the annual wave should be subject to an uncertainty of <1 K.

Text S2.

Thermal Diffusivity and Mole Depth from Diurnal and Annual Thermal Wave Data

In the following, we describe how the surface and soil temperature recordings were used to estimate the soil thermal diffusivity and the depth to the mole upper end (compare Spohn, 2024). Note that the depth to the mole was not well known before but was estimated to be 1-2 cm from camera data (Spohn, Hudson, Marteau et al., 2022).

It is well known [e.g., Carslaw and Jaeger, 1959] that the peak-to-peak temperature oscillation in a half-space heated periodically at the surface decreases with

\[e^{-z/\delta} \]

where \(z \) is depth and where \(\delta = \sqrt{\kappa P/\pi} \) is the thermal skin depth, with \(P \) the period of the forcing temperature variation. Since the mole is an extended thermal sensor, it will average the temperature along its length. Averaged over the depth interval sampled by the mole, we get for the peak-to-peak variation \(\Delta T \)

\[
\bar{\Delta T} = \frac{1}{z_1 - z_0} \int_{z_0}^{z_1} \Delta T(z = 0) \cdot e^{z/\delta} \, dz
\]

(S1)

where \(z_0 \) is the depth to the mole back-end and \(z_1 \) the depth to the tip. Let \(l' = l \cos i \), where \(l \) is the length of the mole (40 cm) and \(i \) its inclination with respect to vertical \((30 \pm 0.22^\circ \) (Grott et al., 2019; Spohn, Hudson, Marteau et al., 2022) after the complete burial of the mole), then \(z_1 = z_0 + l' \) and

\[
\chi \equiv \frac{\Delta T}{\Delta T(z=0)} = \frac{\delta}{l'} \left(1 - e^{-z_0/\delta} \right) \cdot \exp \left(\frac{-z_0}{\delta} \right)
\]

(S2)

With \(x \equiv l'/\delta, y \equiv z_0/\delta, \) and \(C \equiv x/(e^x - 1) \), we get from (S2)

\[
\ln \chi + \ln C = -y - x
\]

(S3)

The phase lag \(\Phi \) of the temperature variation increases with depth according to \(z/\delta \) (e.g., Carslaw and Jaeger, 1959). Because the temperature signal decreases exponentially along the mole, we calculate the average value of the phase lag by taking a weighted average over the depth extent of the mole:

\[
\bar{\Phi} = \frac{\int_{z_0}^{z_1} z \cdot e^{-z/\delta} \, dz}{\int_{z_0}^{z_1} e^{-z/\delta} \, dz}
\]

(S4)

\[
= y + 1 - C
\]

(S5)
For the diurnal wave, we note that the thermal skin depth δ_d is expected to be significantly smaller than l' and thus $x >> 1$. C will then be very close to zero and can safely be neglected in Eqn. S5 for the diurnal wave. The phase lag measured by TEM-A will then be close to the phase lag at depth $z = z_0 + \delta_d$. Moreover, Eqn. S3 for the diurnal wave transforms to

$$\ln \chi + \ln x = -y$$ \hspace{1cm} (S6)

The diurnal and annual thermal skin depths, respectively, are given by:

$$\delta_d = \sqrt{\frac{\kappa P_d}{\pi}}$$ \hspace{1cm} (S7)

$$\delta_a = \sqrt{\frac{\kappa P_a}{\pi}}$$ \hspace{1cm} (S8)

where P_d is a sol and P_a a Martian year in seconds.

The skin depths of the diurnal and annual waves differ by a factor of the square root of the number of sols in the Martian year (≈ 26, for a constant thermal diffusivity) and thus sample different depth ranges. Therefore, we use the amplitude ratios and the phase lags of the diurnal and annual waves separately to calculate values of κ representative of the different depth ranges. We use the diurnal wave to estimate z_0 which can be done with a reasonable uncertainty of about 4% as we will show below. The uncertainty of estimating z_0 from the annual wave was found to be unreasonably large, however, mostly because of the uncertainties of the data and the large difference between z_0 and δ_a.

For the diurnal wave, we use the six TEM-A 24h recordings available for sols 796 - 1202 as shown in Fig. 2 (top) of the main paper. As described in the main paper we use the following combinations of RAD/TEM-A data 120/796, 138/825, 174/872, 511/1202, 1075/1069, and 1175/1157. Fig. S3 shows the temperature centered around the daily average and scaled by the difference between the maximum temperature and the average temperature for the pairs of sols considered for the analysis. For the phase shifts, we use Fourier analyses (with Microsoft Excel™) of the recordings and the phase shifts (in Mars hours of 3699s) between the fundamental modes. The amplitude ratios for the full signals and the fundamental modes differ by a few percent only. Fig. 3 of the main paper shows the solutions to Eqn. 5 (with $C = 0$) and 6 in terms of z_0 and κ after de-trending for a temperature dependence of the measured amplitude ratio and the phase lag and a dependence of the phase lag on the amount of mismatch of the sols used for the analysis. We find the top-most piece of the mole to be at a depth of 5.07 ± 0.25 mm and the thermal diffusivity to be $2.30 \pm 0.03 \times 10^{-8}$ m² s⁻¹. Considering the diameter of the mole of 13.5 mm and its inclination towards vertical of $30 \pm 0.22^\circ$, the center of the back-cap is at a depth of 11.8 ± 0.3 mm. The thermal skin depth is found to be 25 ± 0.4 mm and the wavelength 160 mm.

To estimate the uncertainties of the values of z_0 and κ we take the uncertainty of the temperature differences measured by the TEM-A sensor to be 0.1 K (Grott et al., 2019)
and 2 K for the temperature differences measured by RAD. The InSight clocks measured time to better than 10^{-3} s and thus we take the discretization time step as indication of the uncertainty for the phase differences. We had more than 5000 time steps available for the TEM-A data but for RAD only the recordings at sols 120, 1075 and 1175 were of a similar time resolution. For sols 138, 174 and 511, about 550 time steps were recorded. Thus, we used 512 data points for the combinations of sols 138/825, 174/872 and 511/1202. For these, the relative uncertainties are 7% for z_0 and 6% for κ. For the combinations of sols 120/796, 1075/1069, and 1157/1175 we used 4096 data points resulting in relative uncertainties of 3% for z_0 and 5% for κ. The uncertainties are shown as error bars in Fig. 3 of the main paper along with the mean values calculated from the data points and their standard deviations of 5% for z_0 and 1.3% for κ, respectively. The above uncertainties are smaller than the scattering of the values around the mean. The standard deviation from the mean was found to be about 12% for z_0 and 3% for κ, similar to the average absolute spread about the mean value of 9.5% and 2.6%, respectively.

Figure S3. Scaled and centered mole temperature (indicated by the label “TEM-A” and the sol number) and surface temperature (indicated by the label “RAD” and the sol number) as functions of Local True Solar Time LTST in Mars hours. T_{av} is the 24h-averaged temperature and T_{max} the maximum temperature on the specified sol. The temperature scale T_{max} - T_{av} is between 2.8 and 3.5 K for TEM-A and between 55.5 and 65.4 K for the surface temperature, respectively.
The data for the annual wave are significantly noisier than the diurnal wave recordings, which should partly be a consequence of the weather on Mars. A total of 1.81 Martian years (1231 sols) of surface temperatures are available but only 565 sols (0.85a) of buried mole data and only 459 sols (0.69a) after the Free Mole Test with the final hammering (compare Fig. 2 of the main paper).

The data used to estimate the phase shift between the surface and mole signal from a Fourier analysis of the signal are shown in Fig. S4. Because only about 2/3 of a Martian year of data are available, the data vector was filled with zeros symmetrically at the beginning and the end of the vector, as is commonly done for numerical Fast Fourier Transforms. The time resolution of the data set is 669:512 sols. The analysis resulted in an estimate of the phase lag of 20.9 sols with an estimated uncertainty of ±2 sols.

![Figure S4](image.png)

Figure S4. Scaled and centered surface (red) and mole (blue) temperature in the time window between sols 754 and 1245 for which data are available. The time intervals between sols 658 and 754 and 1245 and 1316 have been filled with zero values to perform a numerical Fast Fourier Transform. The temperature scale $T_{\text{max}} - T_{\text{av}}$, where T_{max} is the annual maximum temperature and T_{av} the yearly average is 7.65 K for the mole and 9.14 K for the surface temperature. The phase lag was determined by Fourier analysis to be 20.9 sols.

With the above uncertainty of the phase lag and an uncertainty of 1K for the annual temperature variations at the surface and at mole depth, we find from the amplitude
ratio a thermal diffusivity of $3.68 \pm 1.1 \times 10^{-8} \text{ m}^2 \text{ s}^{-1}$ and of $3.80 \pm 0.51 \times 10^{-8} \text{ m}^2 \text{ s}^{-1}$ from the phase lag. Taking the average value of the two, we calculate a thermal skin depth of $84 \pm 10 \text{ cm}$ and a wavelength of 5.3 m.