“Measurement of mitral annular plane systolic excursion to estimate left ventricular ejection fraction in Patients with left ventricular systolic dysfunction”

Samir Poudel¹, Arun Maskey¹, Ram Kishor Sah¹, Prabha Chapagain Koirala¹, Binayak Gautam¹, Kunjang Sherpa¹, and Lata Gautam¹

¹Bir Hospital

March 07, 2024

Abstract

Backgrounds and Aims: Left Ventricular Ejection Fraction (LVEF) serves as an important prognostic tool for the management of patients with heart failure. Mitral annular plane systolic excursion (MAPSE) can be used for the calculation of LVEF as an easy, reproducible and cost-effective method. Method: This was a hospital-based observational study. Patients, above 18, from OPD and wards in Bir Hospital and Shahid Gangalal National Heart Centre referred for echocardiographic assessment, who were found to have systolic dysfunction (LVEF < 50%), were enrolled in the study. Patients with primary valvular disease, congenital heart disease, any form of arrhythmia, acute coronary syndrome, hemodynamic instability and history of recent (≤6 weeks) cardioversion were excluded from the study. Mean of lateral and medial MAPSE values and LVEF derived from biplane apical (2- and 4-chamber) views using the modified Simpson’s rule algorithm were taken. Results: 155 patients were enrolled in the study, out of which, 81 were males and 74 were females. Gender-wise regression analysis between LVEF-Simpson and MAPSE-Mean showed a strong positive correlation (R² = 0.614) for males and a fair positive correlation (R² = 0.310) for females. In both, the regression model was significant (p < 0.05). From the Regression analysis, the gender-specific formulae for predicted LVEF from MAPSE for our population were calculated as:

“Measurement of mitral annular plane systolic excursion to estimate left ventricular ejection fraction in Patients with left ventricular systolic dysfunction”

Corresponding Author:

Samir Kumar Poudel

DM Cardiology

Assistant Professor in Cardiology

National Academy of Medical Sciences, Bir Hospital, Kathmandu

poudelsamir@gmail.com

ORCID ID NO : 0000-0002-6641-7883

Author:

Samir Kumar Poudel

DM Cardiology

Assistant Professor in Cardiology
National Academy of Medical Sciences, Bir Hospital, Kathmandu
poudelsamir@gmail.com

Co-Authors:
Arun Maskey
MD Cardiology
Professor in Cardiology
National Academy of Medical Sciences, Bir Hospital, Kathmandu
Shahid Gangalal National Heart Center, Bansbari
Kathmandu
maskeyarun@yahoo.com

Ram Kishor Sah
MD Cardiology
Professor in Cardiology
National Academy of Medical Sciences, Bir Hospital, Kathmandu
Star Hospital, Sanepa
Lalitpur
rkshah40@yahoo.com

Prabha Chapagain Koirala
DM Cardiology
Associate Professor in Cardiology
National Academy of Medical Sciences, Bir Hospital, Kathmandu
drprabhakoirala@yahoo.com

Binyak Gautam
DM Cardiology
Assistant Professor in Cardiology
National Academy of Medical Sciences, Bir Hospital, Kathmandu
binayakgautam@gmail.com

Kunjang Sherpa
DM Cardiology
Assistant Professor in Cardiology
National Academy of Medical Sciences, Bir Hospital, Kathmandu
sherpakunjang7@gmail.com

Lata Gautam
MD Psychiatry
Senior Consultant Psychiatrist
National Academy of Medical Sciences, Bir Hospital, Kathmandu
Mental Hospital, Lagankhel
latapoudel@gmail.com

Data used in the research has been kept safe and can be made available on demand. The fund needed was managed by myself (the author) and it included only the expenses on stationery and transportation charges. We took the ethical approval from the Institutional Research Board, National Academy of Medical Sciences, Kathmandu. There is no conflict of interest. Only the patients who gave written consent to be involved in the study were enrolled. The manuscript has been seen and approved by all authors.

Samir Kumar Poudel
Mobile no: 9852026631
Email: poudelsamir@gmail.com
--- Lata Gautam

--- Binayak Gautam
Arun Maskey

Ram K. Sah
Prabha Chapagain Koirala

Kunjang Sherpa

ABSTRACT

Backgrounds and Aims: Left Ventricular Ejection Fraction (LVEF) serves as an important prognostic tool for the management of patients with heart failure. Mitral annular plane systolic excursion (MAPSE) can be used for the calculation of LVEF as an easy, reproducible and cost-effective method.

Method: This was a hospital-based observational study. Patients, above 18, from OPD and wards in Bir Hospital and Shahid Gangalal National Heart Centre referred for echocardiographic assessment, who were found to have systolic dysfunction (LVEF < 50%), were enrolled in the study. Patients with primary valvular disease, congenital heart disease, any form of arrhythmia, acute coronary syndrome, hemodynamic instability and history of recent (<6 weeks) cardioversion were excluded from the study. Mean of lateral and medial MAPSE values and LVEF derived from biplane apical (2- and 4-chamber) views using the modified Simpson’s rule algorithm were taken.

Results: 155 patients were enrolled in the study, out of which, 81 were males and 74 were females. Gender-wise regression analysis between LVEF-Simpson and MAPSE-Mean showed a strong positive correlation ($R^2 = 0.614$) for males and a fair positive correlation ($R^2 = 0.310$) for females. In both, the regression model was significant ($p < 0.05$). From the Regression analysis, the gender-specific formulae for predicted LVEF from MAPSE for our population were calculated as:

LVEF for Male

$$LVEF_{Male} = 3.6 \times MAPSE + 7$$

LVEF for Female

$$LVEF_{Female} = 2.4 \times MAPSE + 12.5$$

Conclusions: The use of MAPSE measurement is helpful to evaluate LV systolic function in case of poor sonographic windows and for non-cardiologist and novice practitioners. There is a fair correlation between LVEF derived from modified Simpson method and the average MAPSE value.

Key words: Mitral annular plane systolic excursion (MAPSE), Left ventricular systolic dysfunction (LVSD) and Left ventricular ejection fraction (LVEF)
Introduction

Left ventricular ejection fraction serves as an important prognostic tool for the management of patients with heart failure. Among heart failure patients, higher LVEFs is associated with a linear decrease in mortality up to a LVEF of 45%\(^1\). Moreover, treatment of heart failure with low ejection fraction is different from that with normal ejection fraction. The prognostic value of LVEF in heart failure should, however, be interpreted in the context of other established risk factors.\(^2\) LVEF has become the primary criterion used for intracardiac defibrillator placement and cardiac resynchronization therapy. All these facts show the importance of correct LVEF measurement in clinical practice.

Many modalities of assessment can be used for the evaluation of LVEF, cardiac MRI being the gold standard. It can be assessed by 2D-echocardiography by eye-balling, Teichholz’s, Simpson’s and Speckle Tracking methods. 3D-echocardiography is being increasingly used. Computed tomography (CT), Gated equilibrium radionuclide angiography (multiple-gated acquisition [MUGA] scan), Gated myocardial perfusion imaging with either single photon emission computed tomography (SPECT) or positron emission tomography (PET), though not frequently used, are the other options at the corner. Left ventricular contrast ventriculography, in contrast to others, is the only invasive method of LVEF measurement.\(^2\) LV systolic dysfunction can be graded into mild (LVEF: 40%-49%), moderate (LVEF: 30%-39%) and severe (LVEF<30%).\(^3\)

The major benefit of using MAPSE for left ventricular functional assessment is in the simplicity of the measurement and it can be easily performed by even novice practitioners with little training in echocardiography. Also, MAPSE measurement is much less dependent on endocardial resolution and can be performed even in technically challenging studies.\(^4\) MAPSE as a surrogate of LVEF was first tried to use in 2012. The initial analysis of the 300 studies in the calibration cohort showed that MAPSE values \(\geq 13\) mm in men and \(\geq 11\) mm in women consistently predicted a normal or increased EF. Likewise, it was found that a MAPSE value \(< 6\) mm (for both men and women) served as an appropriate cut-off for predicting severely depressed EF (\(<30\%\)).\(^4\) Such type of study has not been done in Nepalese population.

Methodology

This was a hospital-based observational study. The objective of the study was to assess LVEF in patients with left ventricular systolic dysfunction (LVEF < 50%) in relation to MAPSE. The study population was the patients from OPD and wards in Bir Hospital and Shahid Gangalal National Heart Centre, from October 2019 to March 2020, referred for echocardiographic assessment, who were found to have systolic dysfunction. Ethical clearance was taken from the Institutional Research Board (IRB), National Academy of Medical Sciences, Bir Hospital. Total of 155 cases above 18 years, who had left ventricular systolic dysfunction were enrolled in the study. Patients with primary valvular disease, congenital heart disease, any form of arrhythmia, acute coronary syndrome, hemodynamic instability and history of recent (\(<6\) weeks) cardioversion were excluded from the study.

2D-imaging examination was performed in the standard fashion in parasternal long- and short-axis views and apical 4- and 2- chamber views. Echocardiograms were assessed by careful visual analysis to detect regional and global contractile abnormalities. LV systolic and diastolic volumes and ejection fraction were also derived from biplane apical (2- and 4-chamber) views using the modified Simpson’s rule algorithm. Displacement of the mitral annulus was measured in the apical four-chamber view. The measurements were taken with M-mode beam positioned on the medial and lateral mitral annuli, in line with the left ventricular long axis. Maximum systolic plane excursions of the medial and lateral mitral annuli were taken in mm. The longitudinal motion of the mitral annulus was depicted over time as a sine wave. The nadir of the sine wave corresponds to the mitral annular position at end-diastole, and the peak occurs at end-systole. The height of the peak relative to the nadir is MAPSE. MAPSE was averaged from the septal and lateral mitral annuli.\(^5\), \(^6\)

Sometimes in patients with mitral valve disease, the mitral ring is extremely calcified. In these patients, the direct MAPSE measurement at the mitral ring was not possible and longitudinal functional assessment was done, by convention, slightly more above in the myocardium.
Collected data was entered into and analyzed with SPSS 23 for Mac-OS. Qualitative data were presented using the frequency and related percentage, while quantitative data would have the mean and standard deviation. The LVEF obtained from Simpson’s method was tabulated and the LVEF derived from Simpson’s method was correlated with MAPSE-mean.

Results

In this study, age of the patients ranged from 18 years to 92 years, the mean age being 60.82 years. Of the total 155 patients, 81 were males and 74 were females. In both sexes, the number of patients with left ventricular systolic dysfunction was maximum in the age range of 50 to 70 years.

Table 1: Age-group and Sex-wise distribution of LVSD

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Sex</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>18-30</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>31-40</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>41-50</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>51-60</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>61-70</td>
<td>17</td>
<td>27</td>
</tr>
<tr>
<td>71-80</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>81-90</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>>91</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>81</td>
<td>74</td>
</tr>
</tbody>
</table>

Clinical heart failure was evident in 40.65% of patients, 22.58% in males and 18.06% in females.

The mean of MAPSE was correlated with LVEF derived from Simpson’s method for both sexes but the correlation was stronger in male patients.
Figure 1: Linear scarplot showing positive correlation between MAPSE_Mean in Males and the LVEF by Simpson’s Method

![Linear scarplot showing positive correlation between MAPSE_Mean in Males and the LVEF by Simpson’s Method](image)

Pearson correlation analysis between LVEF derived from Simpson’s method and MAPSE_Mean was significant. The correlation coefficient was more strongly positive in males (r = 0.784) than in females (r = 0.557) [Table 2].

Table 2: Correlation Between LVEF_Simpson and MAPSE_Mean

<table>
<thead>
<tr>
<th>Sex</th>
<th>LVEF_Simpson in %</th>
<th>MAPSE Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Pearson Correlation</td>
<td>.784**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>81</td>
</tr>
<tr>
<td>Female</td>
<td>Pearson Correlation</td>
<td>.557**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>74</td>
</tr>
</tbody>
</table>

. Correlation is significant at the 0.01 level (2-tailed).

Table 2: Correlation Between LVEF_Simpson and MAPSE_Mean

<table>
<thead>
<tr>
<th>Sex</th>
<th>LVEF_Simpson in %</th>
<th>MAPSE Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Pearson Correlation</td>
<td>.557**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>74</td>
</tr>
</tbody>
</table>

. Correlation is significant at the 0.01 level (2-tailed).
From the Regression analysis, the gender-specific formula for LVEF from MAPSE for our population was found to be [Table:3].

LVEF for Male = 3.6 x MAPSE + 7

LVEF for Female = 2.4 x MAPSE + 12

<table>
<thead>
<tr>
<th>Sex</th>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
<th>95.0% Confidence Interval for B</th>
<th>95.0% Confidence Interval for B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>1 (Constant)</td>
<td>7.007</td>
<td>1.563</td>
<td>4.483</td>
<td>.000</td>
<td>3.896</td>
<td>10.118</td>
</tr>
<tr>
<td></td>
<td>MAPSE Mean</td>
<td>3.601</td>
<td>.321</td>
<td>.784</td>
<td>11.220</td>
<td>.000</td>
<td>2.962</td>
</tr>
<tr>
<td>Female</td>
<td>1 (Constant)</td>
<td>12.493</td>
<td>2.288</td>
<td>5.460</td>
<td>.000</td>
<td>7.932</td>
<td>17.055</td>
</tr>
<tr>
<td></td>
<td>MAPSE Mean</td>
<td>2.433</td>
<td>.428</td>
<td>.557</td>
<td>5.688</td>
<td>.000</td>
<td>1.580</td>
</tr>
</tbody>
</table>

Table 3: Regression Analysis between LVEF Simpson and MAPSE

Receiver-operating characteristic curve analysis was used to generate MAPSE cutoff value for both gender with the highest balanced sensitivity and specificity to predict LVEF < 30% as assessed by the modified Simpson’s rule. In males, an average MAPSE cutoff value of less than or equal to 4.57mm provided the best balanced sensitivity (100%) and specificity (58.2%) to predict LVEF < 30%. The area under the ROC curve for this cutoff point was 0.674 (Figure: 3). In females, an average MAPSE cutoff value of less than or equal to 5mm provided the best balanced sensitivity (80%) and specificity (60%) to predict EF < 30%. The area under the ROC curve for this cutoff point was 0.714 (Figure: 4).

Figure 3: Receiver-operating characteristics curve. Average MAPSE cutoff value of less than or equal to 4.57mm in males provided the best balanced sensitivity (100%) and specificity (58.2%) to determine patients with EF < 30% (area under the curve = 0.674).
Figure 4: Receiver-operating characteristics curve. Average MAPSE cutoff value of less than or equal to 5mm in females provided the best balanced sensitivity (80%) and specificity (60%) to determine patients with EF < 30% (area under the curve = 0.714).

Discussions

Mitral annular plane systolic excursion (MAPSE) has been found to correlate with and is suggested as a surrogate measurement for left ventricular function. Matos et al designed a study to examine the accuracy of MAPSE taken by novice examiners for predicting left ventricular ejection fraction (EF). The study concluded that MAPSE measurement by an untrained observer was a highly accurate predictor of LVEF. They propounded formulae for LVEF for males(4.8x MAPSE + 5.8) and females(4.2 x MAPSE + 20) who had LVEF in the range of 30-50%.

After the publication of this study, a number of studies were carried out to test the accuracy of the predicted LVEF from MAPSE, including those with severe left ventricular systolic dysfunction. One of those is the study done by Adel W et al which showed that MAPSE-derived EF using the equation EF = 4.8 × MAPSE (mm) + 5.8 was a valid technique in adult males with severely impaired LV EF.

Studies on female patients are scarce. A study done by Mohamed Nabil revealed that predicted ejection fractions in females using MAPSE formula generated by Matos et al. gave higher mean values than the mean values of LVEF measured by M-mode, Simpson’s method and eye balling.

The present study aimed to correlate the left ventricular ejection fraction with the mean value of lateral and septal MAPSE taken in M-mode in 2D- Echocardiography. 155 patients were taken in the sample, out of which, 81 were males and 74 were females. The mean age of the patients was (60.82 ± 16.56) years which was similar to the study done by Adel W et al where the mean age of the study group was 60.6 ± 9.8 years.

In both sexes, the number of patients with left ventricular systolic dysfunction was maximum in the age range of 50 to 70 years. Clinical heart failure was evident in 40.65% of patients (22.58% of males and 18.06% of females). This study had larger sample size than similar study done by Angel Lopez-Candales et al who studied 100 patients (mean age 54 ± 14) with male being 53.
Among the patients, most were diagnosed to have dilated cardiomyopathy. Second most common cause of LVSD was ischemic cardiomyopathy followed by alcoholic cardiomyopathy. Myocarditis was the least common diagnosis. This was different from the study by Adel W where ischemic cardiomyopathy (61.2%) was the most common pathology followed by dilated cardiomyopathy (38.8%).

Gender-wise regression analysis between LVEF_Simpson and MAPSE_Mean showed a strong positive correlation ($R^2 = 0.614$) for males and a fair positive correlation ($R^2 = 0.310$) for females. In both, the regression model was significant ($p < 0.05$). Pearson correlation analysis between LVEF derived from Simpson’s method and MAPSE-mean was significant. In males, the correlation coefficient ($r = 0.784$) was strongly positive while in females, it was fairly positive ($r = 0.557$).

From the Regression analysis, the gender-specific formula for LVEF from MAPSE for our population would be:

LVEF for Male = $3.6 \times MAPSE + 7$

LVEF for Female = $2.4 \times MAPSE + 12.5$

Receiver-operating characteristic curve analysis was used to generate MAPSE cutoff value for both gender with the highest balanced sensitivity and specificity to predict EF < 30% as assessed by the modified Simpson’s rule. In males, an average MAPSE cutoff value of less than or equal to 4.57mm provided the best balanced sensitivity (100%) and specificity (58.2%) to predict EF < 30%. The area under the ROC curve for this cutoff point was 0.674. In females, an average MAPSE cutoff value of less than or equal to 5mm provided the best balanced sensitivity (80%) and specificity (60%) to predict EF < 30%. The area under the ROC curve for this cutoff point was 0.714.

Conclusions

Newer and more refined echocardiographic technologies such as strain-rate imaging, 3D echocardiography are routinely practiced in many centers. The use of MAPSE measurement is still especially helpful to evaluate LV systolic function in case of poor sonographic windows. An average MAPSE cutoff value of < 4.57mm provided the best balanced sensitivity (100%) and specificity (58.2%) in males, and a value of 5mm provided the best balanced sensitivity (80%) and specificity (60%) in females to predict EF < 30%.

The gender-specific formulae for LVEF in our patients with left ventricular systolic dysfunction were found to be:

LVEF for Male = $3.6 \times MAPSE$ in mm + 7

LVEF for Female = $2.4 \times MAPSE$ in mm + 12.5

Further study with large number of patients are necessary to validate the gender-specific formulae for predicted LVEF from MAPSE for Nepalese population

Limitations

- The effect of specific disease entities on MAPSE measurements was not examined. Localized wall motion abnormalities due to coronary artery disease, significant mitral annular calcifications, prosthetic valves can definitely affect MAPSE values, irrespective of global EF.
- Whether or not diastolic dysfunction could affect MAPSE-derived measurements remains another area of future research. It was not addressed in this study.
- The study was done in a limited number of patients over a specified time period.

Recommendations

- The effect of specific disease entities on MAPSE measurements should be assessed and the formulae for MAPSE-derived LVEF should accordingly be tested.
- Effect of diastolic dysfunction on MAPSE, if any, should be incorporated in the formula.
• Comparing MAPSE-derived EF with CMR or 3DTTE-derived LVEF should be considered in future studies as these modalities represent the gold standard for quantification of LV function and are sought to be much more accurate than the current 2D quantification methods.

Disclosures: None

Categories for authors’ contributions:

Samir Kumar Poudel, DM Cardiology: Concept/design, Data analysis/interpretation, Drafting article and finalization

Arun Maskey, MD Cardiology: Critical revision of article

Ram Kishor Sah, MD Cardiology: Critical revision of article

Binayak Gautam, DM Cardiology: Statistics and Drafting

Kunjang Sherpa, DM Cardiology: Data collection and Statistics

Prabha Chapagain Koirala, DM Cardiology: Statistics

Lata Gautam, MD Psychiatry: Final revision and editing

REFERENCES

3. ACC. Left Ventricular Ejection Fraction LVEF Assessment (Outpatient Setting). American College of Cardiology.

Table 1: Age-group and Sex-wise distribution of LVSD

<table>
<thead>
<tr>
<th>Age Group/Years</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-30</td>
<td>9</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>31-40</td>
<td>2</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>41-50</td>
<td>9</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>51-60</td>
<td>16</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>61-70</td>
<td>17</td>
<td>27</td>
<td>44</td>
</tr>
<tr>
<td>71-80</td>
<td>21</td>
<td>13</td>
<td>34</td>
</tr>
<tr>
<td>81-90</td>
<td>5</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>>91</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>81</td>
<td>74</td>
<td>155</td>
</tr>
</tbody>
</table>

Figure 1: Linear scatterplot showing positive correlation between MAPSE_Mean in Males and the LVEF by Simpson’s Method

Figure 2: Linear scatterplot showing positive correlation between MAPSE_Mean and the LVEF by Simpson’s Method in Female Patients
Table 2: Correlation Between LVEF_Simpson and MAPSE Mean

<table>
<thead>
<tr>
<th></th>
<th>LVEF_Simpson in %</th>
<th>MAPSE Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pearson Correlation</td>
<td>.784**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>81</td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAPSE Mean</td>
<td>Pearson Correlation</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>81</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVEF_Simpson in %</td>
<td>Pearson Correlation</td>
<td>.557**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>74</td>
</tr>
<tr>
<td>MAPSE Mean</td>
<td>Pearson Correlation</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>74</td>
</tr>
</tbody>
</table>

** Correlation is significant at the 0.01 level (2-tailed)

Table 3: Regression Analysis between LVEF_Simpson and MAPSE

<table>
<thead>
<tr>
<th></th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>95.0% Confidence Interval for B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
</tr>
<tr>
<td>Male</td>
<td>1 (Constant)</td>
<td>7.007</td>
<td>1.563</td>
</tr>
<tr>
<td>Female</td>
<td>1 (Constant)</td>
<td>12.493</td>
<td>2.289</td>
</tr>
<tr>
<td>MAPSE Mean</td>
<td>2.433</td>
<td>.429</td>
<td>.557</td>
</tr>
</tbody>
</table>

a. Dependent Variable: LVEF_Simpson in %

Figure 3: Receiver-operating characteristics curve. Average MAPSE cutoff value of less than or equal to 4.575mm in males provided the best balanced sensitivity (100%) and specificity (58.2%) to determine patients with EF < 30% (area under the curve = 0.674).
Figure 4: Receiver-operating characteristics curve. Average MAPSE cutoff value of less than or equal to 5 mm in females provided the best balanced sensitivity (80%) and specificity (60%) to determine patients with EF < 30% (area under the curve ≈ 0.714).