# Characterizing Natural Hydrogen Occurrences in the Paris Basin Using OCR-Enhanced Well Database Studies

Nicolas Lefeuvre<sup>1</sup>, Eric Thomas<sup>2</sup>, Laurent Truche<sup>3</sup>, Frédéric-Victor Donzé<sup>4</sup>, Thibault Cros<sup>2</sup>, Johann Dupuy<sup>2</sup>, Laura Alejandra Pinzon-Rincon<sup>5</sup>, and Christophe Rigollet<sup>2</sup>

<sup>1</sup>Université Grenoble Alpes <sup>2</sup>CVA Group <sup>3</sup>ISTerre, UMR 5275 of CNRS, University of Grenoble Alpes, F-38041 Grenoble Cedex 9, France. <sup>4</sup>Institut des Sciences de la Terre <sup>5</sup>Univ. Grenoble Alpes

January 23, 2024

#### Abstract

This study investigates natural hydrogen (H2) occurrences in the Paris Basin, using Optical Character Recognition (OCR) technology to analyze an extensive, yet historically underexploited, well database that contains older drilling records. With the growing demand for carbon-free energy, natural hydrogen, produced through processes like serpentinization and water radiolysis, offers a promising alternative to fossil fuels. However, its potential has been largely unexplored in conventional oil and gas wells. Utilizing the BEPH (Office of Exploration and Production of Hydrocarbons) French database, which includes well logs, mudlogs, and End Drilling Reports (EDRs) in PDF image format, we applied the Tesseract-OCR Engine to convert these documents into searchable formats for efficient data analysis. Our analysis revealed several H2-bearing wells across the French sedimentary basins. The hydrogen occurrences in the Aquitaine Basin correlate with the geological context, but those in the Paris Basin present an anomaly, as their H2 occurrences do not align with the expected geological factors. In the Paris Basin, H2 has been detected in four main formations: the Lusitanian aquifer, Dogger aquifer, Triassic aquifer, and the basement. The highest hydrogen concentration (52 vol%) was found in the Dogger formation. These wells are primarily located along the Bray fault and thrust, indicating a geological influence on H2 distribution. This research demonstrates the effectiveness of OCR in reprocessing historical drilling data for natural hydrogen exploration, highlighting the need for comprehensive exploration methodologies in this emerging field.

#### Hosted file

985034\_0\_art\_file\_11788292\_s7qxqj.docx available at https://authorea.com/users/527801/ articles/705574-characterizing-natural-hydrogen-occurrences-in-the-paris-basin-usingocr-enhanced-well-database-studies

#### Hosted file

985034\_0\_supp\_11788468\_s77y48.docx available at https://authorea.com/users/527801/articles/ 705574-characterizing-natural-hydrogen-occurrences-in-the-paris-basin-using-ocrenhanced-well-database-studies

| 1  |                                                                                                                                            |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Characterizing Natural Hydrogen Occurrences in the Paris Basin Using OCR-                                                                  |
| 3  | <b>Enhanced Well Database Studies</b>                                                                                                      |
| 4  | Nicolas Lefeuvre <sup>1,2,*</sup> , Eric Thomas <sup>2</sup> , Laurent Truche <sup>1</sup> , Frédéric-Victor Donzé <sup>1</sup> , Thibault |
| 5  | Cros <sup>2</sup> , Johann Dupuy <sup>2</sup> , Laura Pinzon-Rincon <sup>1</sup> , Christophe Rigollet <sup>2</sup>                        |
| 6  | <sup>1</sup> Université Grenoble Alpes, CNRS, ISTerre, F-38058 Grenoble Cedex 9, France.                                                   |
| 7  | <sup>2</sup> CVA Group, 2 rue Myron Kinley, 64000 Pau – France                                                                             |
| 8  | Corresponding author: Nicolas Lefeuvre ( <u>nicolas.lefeuvre@univ-grenoble-alpes.fr</u> )                                                  |
| 9  | Key Points:                                                                                                                                |
| 10 | • Natural hydrogen exploration in former oil & gas province.                                                                               |
| 11 | • Use of OCR algorithm to optimize processing of a large drilling report database.                                                         |
| 12 | • Indices of a potential new H <sub>2</sub> system (source, migration, trap) in the Paris Basin.                                           |
| 12 |                                                                                                                                            |

13

## 14 Abstract

This study investigates natural hydrogen (H<sub>2</sub>) occurrences in the Paris Basin, using Optical 15 Character Recognition (OCR) technology to analyze an extensive, yet historically 16 17 underexploited, well database that contains older drilling records. With the growing demand for carbon-free energy, natural hydrogen, produced through processes like serpentinization and 18 water radiolysis, offers a promising alternative to fossil fuels. However, its potential has been 19 20 largely unexplored in conventional oil and gas wells. Utilizing the BEPH (Office of Exploration 21 and Production of Hydrocarbons) French database, which includes well logs, mudlogs, and End 22 Drilling Reports (EDRs) in PDF image format, we applied the Tesseract-OCR Engine to convert these documents into searchable formats for efficient data analysis. Our analysis revealed several 23 H<sub>2</sub>-bearing wells across the French sedimentary basins. The hydrogen occurrences in the 24 Aquitaine Basin correlate with the geological context, but those in the Paris Basin present an 25 26 anomaly, as their H<sub>2</sub> occurrences do not align with the expected geological factors. In the Paris Basin, H<sub>2</sub> has been detected in four main formations: the Lusitanian aquifer, Dogger aquifer, 27 28 Triassic aquifer, and the basement. The highest hydrogen concentration (52 vol%) was found in the Dogger formation. These wells are primarily located along the Bray fault and thrust, 29 30 indicating a geological influence on  $H_2$  distribution. This research demonstrates the effectiveness 31 of OCR in reprocessing historical drilling data for natural hydrogen exploration, highlighting the 32 need for comprehensive exploration methodologies in this emerging field.

## 33 Plain Language Summary

This study explores the presence of natural hydrogen (H<sub>2</sub>) in the Paris Basin, employing Optical Character Recognition (OCR) technology to sift through an extensive database of older drilling records that have not been fully utilized in the past. As the world increasingly seeks carbonneutral energy sources, natural hydrogen, produced through interactions between water and rocks, emerges as a promising alternative to fossil fuels.

Our research focuses on the BEPH (Office of Exploration and Production of Hydrocarbons)
French database, which contains detailed information on drilling activities, but in a nonsearchable PDF image format. OCR is a tool that turns images containing text, like scanned
documents, into text files that we can easily search and analyze.

Our findings indicate the presence of  $H_2$  in several wells across the French sedimentary basins. Particularly intriguing are the results from the Aquitaine Basin, where hydrogen occurrences align with the geological context, and the Paris Basin, which exhibits unexpected  $H_2$  occurrences not directly linked to anticipated geological factors known for  $H_2$  exploration. In the Paris Basin, the highest hydrogen concentration (52 vol%) was discovered in the Dogger formation. These wells are predominantly situated along the Bray fault and thrust, suggesting a geological influence on the distribution of hydrogen.

50 This research underscores the utility of OCR technology in re-evaluating historical drilling data 51 for natural hydrogen exploration. It highlights the necessity for thorough exploration strategies in 52 this nascent yet promising field.

#### 53 **1 Introduction**

54 Geochemical interactions between water and rock on Earth are known to generate molecular hydrogen 55  $(H_2)$ . This process, extensively documented in the literature (e.g., Klein et al., 2020), includes the 56 serpentinization of ultramafic rocks which is a reaction characterized by the hydration of olivine and 57 pyroxene minerals to form serpentine, brucite, and magnetite, accompanied by  $H_2$  production (Malvoisin 58 et al., 2012; Marcaillou et al., 2011; Mayhew et al., 2013; McCollom and Donaldson, 2016). Additionally, water radiolysis, which involves the dissociation of water molecules into H<sub>2</sub> and O<sub>2</sub> due to radiation, also 59 60 contributes to H<sub>2</sub> generation (Lin et al., 2005; Sauvage et al., 2021; Warr et al., 2019). These geochemical 61 processes are not only crucial for understanding Earth's deep microbial ecosystems but also play a significant role in the abiotic synthesis of organic molecules, as evidenced by numerous studies (Etiope et 62 al., 2015; Fiebig et al., 2007; Johnson et al., 2015; Lin et al., 2005; Sherwood Lollar et al., 2006). 63

In light of the global shift towards sustainable energy sources, naturally occurring  $H_2$  has garnered 64 significant attention as a viable, carbon-neutral energy alternative to traditional fossil fuels. This interest 65 is reflected in recent research exploring the potential of  $H_2$  in various geological contexts (Donzé et al., 66 67 2020; Moretti et al., 2021; Prinzhofer et al., 2018; Smith et al., 2005; Truche et al., 2018). Current 68 exploration methodologies for targeting  $H_2$  in potential geological reservoirs predominantly rely on soil 69 gas analysis at a depth of approximately 1 meter. However, this approach is somewhat limited in scope 70 and does not encompass a comprehensive and efficient methodology. This gap in methodology 71 underscores the need for more integrated and systematic exploration strategies, as highlighted in recent 72 studies (Lefeuvre et al., 2022, 2021).

73 In the domain of petroleum geology, the presence of molecular hydrogen in natural reservoirs has

- historically been underappreciated. This oversight can be attributed to the fact that H<sub>2</sub> was rarely detected
- 75 in the multitude of wells drilled globally for oil and natural gas exploration, as noted by Gaucher (2020).
- 76 The standard geochemical sensors employed in these wells were primarily calibrated for detecting fossil
- hydrocarbons, such as methane, with less sensitivity or focus on  $H_2$ .
- 78 However, emerging research and field data have begun to challenge this long-standing viewpoint. Recent 79 studies have identified significant concentrations of  $H_2$  in various geological settings across the world. 80 Notable examples include the "Bougou-1" well, which was drilled in 1987 in Mali, the concentration of H<sub>2</sub> was found to be 98 vol% (Maiga et al., 2023). The "Tisovita well", which was drilled before 1978 in 81 Romania, the concentration of H<sub>2</sub> was found to be 28.7 vol% (Mitrofan et al., 2021). The "#1 Wilson 82 83 Well" drilled in 2006 in the Kensas (USA). the H<sub>2</sub> concentration measured was 10.0 vol% (Newcombe, 84 1935). The well EVDD008 drilled in the Yilgarn Craton, in Australia, the H<sub>2</sub> concentration measured was 85 42,7 mol% (Boreham et al., 2021). At the "Copper Cliff well", in Canada, the H<sub>2</sub> concentration ranged 86 from 9.9 to 57.8 vol% (Sherwood et al., 1988)
- These findings underscore the potential for natural hydrogen reservoirs and highlight the necessity for refined geochemical analysis techniques in hydrocarbon exploration, particularly for the detection and quantification of  $H_2$ . The implications of these discoveries are significant, not only for understanding subsurface geochemical processes but also for evaluating the potential of  $H_2$  as an energy resource in the context of a transitioning global energy landscape.
- 92 In France, the exploration and production of oil and gas have led to the drilling of over 5,000 wells. 93 However, none of these wells have been designed for natural hydrogen exploration. The BEPH (Office of 94 Exploration and Production of Hydrocarbons) database used in this study is composed of well logs, 95 mudlogs and End Drilling Reports (EDRs) which are in PDF image format. Manual examination of each 96 well would take a considerable amount of time, so an Optical Character Recognition (OCR) algorithm 97 (Tesseract-OCR google Engine; Smith, 2007) was used to transform these scanned image PDFs into 98 searchable PDFs.
- 99 Through the analysis of an extensive dataset, we have identified several H<sub>2</sub>-bearing wells distributed 100 across the French sedimentary basin (Fig. 1). These wells can be categorized into two distinct groups: 101 those situated in the eastern region of Paris, and those in the southern part of the Aquitaine Basin.

102



Figure 1 : Geological map of France highlighting the locations of wells where  $H_2$  occurrences were detected using OCR.

105

In the Aquitain Basin, the observed concentrations of  $H_2$  can be linked to the geological context. Indeed, these wells are at the vicinity of a mantle body (peridotite) present at relatively shallow depths and are also near major drain facilitating fluid migration (Chevrot et al., 2022, 2018; Jammes et al., 2010; Lehujeur et al., 2021; Tugend et al., 2014).

In the Paris Basin the  $H_2$ -bearing wells are an enigma, as the  $H_2$  occurrences cannot be readily explained by the local geology. Consequently, our study will focus on investigating the underlying geological factors influencing  $H_2$  presence in the Paris Basin. Our findings reveal promising indications of  $H_2$ potential in the Paris Basin. This intracratonic basin is characterized by a geologically diverse basement, comprising peridotite rocks at relatively shallow depths (less than 4 kilometers; Averbuch and Piromallo, 115 2012). Notably, the basin is intersected by major faults that extend through both the basement and the 116 overlying sedimentary cover, which could be conduits for  $H_2$  migration and accumulation.

117 The primary objective of this study is to demonstrate the efficacy of applying OCR technology to old but 118 extensive drilling datasets. This approach enables the rapid identification of unexpected but promising 119 areas for H2 exploration. The Paris Basin, with its unique geological features, serves as a focal point for 120 this investigation, potentially positioning it as a H<sub>2</sub>-rich geological province. Our research underscores the 121 value of innovative data processing techniques in enhancing the efficiency and scope of geological 122 exploration, particularly in the context of emerging energy resources like natural hydrogen.

#### 123 **2 Geological context**

124 The Paris Basin, a prominent intracratonic basin, encompasses approximately 3 km of sedimentary 125 deposits spanning from the Trias to present. These deposits overlie the Variscan suture zones, a 126 significant geological feature from the Upper Paleozoic era, as documented in several studies (Fig. 2a; 127 Curnelle and Dubois, 1986; Delmas et al., 2002; Mégnien et al., 1980; Pomerol, 1978). The basin is 128 geographically bounded by four Paleozoic massifs: the Armorican Massif to the south, the Bresse Graben 129 to the southeast, the Vosges Massif to the east, and the Ardennes Massif to the north. The Paris Basin 130 exhibits a distinct geological structure, characterized by concentric outcrops of Meso-Cenozoic rocks. 131 This structure is the result of a series of depositions and erosional processes, as detailed in various studies 132 (Beccaletto et al., 2011; Delmas et al., 2002; Guillocheau et al., 2000). Additionally, the basin extends to 133 connect with the London and Belgium Basins to the northwest and north, respectively (Dercourt et al., 134 2000).

Two major fault systems are prominent in the Paris Basin: the Sennely fault and the Bray fault system
(Fig.2). The latter is a N130° dextral strike-slip fault that impacts the sedimentary cover (Matte and Hirn,
1988, Raoult and Meilliez, 1987).

138 The basement of the Paris Basin is a lithological and structural inheritance of the Variscan orogeny, 139 which occurred during the Carboniferous period following to the north-south convergence of the 140 Avalonia and Gondwana plates, culminating in the closure of the Rheic Ocean (Averbuch and Piromallo, 141 2012; Ballèvre et al., 2009; Matte, 1986). Seismic tomography beneath the Paris Basin has revealed 142 anomalies in the upper mantle, with Vp velocities oriented along NW-SE axes. These anomalies, situated 143 along the Bray fault, are associated with the Variscan suture zone, indicative of a Variscan paleoslab (Fig. 144 2b; Averbuch and Piromallo, 2012; Cazes et al., 1986). Recent P-wave seismic tomography studies 145 suggest the presence of a subducted paleo-slab beneath a segment of the Bray Fault (Autran et al., 1994; Averbuch and Piromallo, 2012; Matte and Hirn, 1988). Complementary gravimetric and magnetic data 146 147 along this major fault structure have identified anomalies correlating with granite intrusions (Baptiste,

148 2016; Thébault et al., 2006). The Lizard-Rhenohercynian suture zone, as illustrated by the Lizard
149 ophiolitic complex in southern part of Great Britain, comprises both ultramafic (peridotite, serpentinite)



and crustal rocks (amphibolite, gneiss, etc.), further elucidated in various studies (Cook et al., 2002, 1998;

151 Leake and Styles, 1984; Roberts et al., 1993).

152 Figure 2: a) The structural map of the Paris Basin displays the main units and the surrounding

153 crystalline massifs (modified from Baptiste, 2016). In this map, the red stars represent the wells showing

154 evidences for the presence of  $H_2$ , as identified using the OCR algorithm developed in the study 1 -

- 155 Longeuil; 2 Betz; 3 Montreuil Aux Lions; 4 Cramaille; 5 Connantre 1 and 2; 6 Grandville; 7 -
- 156 Saint Martin de Bossenay; 8 Hericy; 9 Le Luteau; 10 Coubert. b) Crustal-scale cross-section
- 157 through the Variscan orogenic system and the Paris Basin based on the Northern France crustal cross-
- 158 section (modified from Averbuch and Piromallo, 2012 and Matte and Hirn, 1988).

159

160 The Parisian Basin, primarily recognized for its hydrocarbon reserves, is characterized by over 3,000 161 boreholes that have been instrumental in delineating its structural framework. This basin encompasses several key aquifers and reservoir (Fig. 3). These include: (i) The Triassic Sandstone aquifer, capped by 162 163 mudstone and an evaporitic formation, particularly in the central part of the basin with a temperature of 120°C (e.g., Montmirail well; Torelli et al., 2020); (ii) The Middle Jurassic limestone aquifer, containing 164 165 geothermal waters with temperatures ranging between 50 to 80°C and (iii) the Lower Cretaceous green sandstone aquifers. A recent study calculated the geothermal gradient at T = 10 + 34.9\*z, (where T is the 166 temperature in °C and z is the depth in km), derived from an analysis of existing well data and aquifer 167 168 temperatures (Bonté et al., 2010; Pinti and Marty, 1998).

Furthermore, Pinti and Marty (1998) identified a helium anomaly in the Dogger Formation, characterized by an unusual excess of mantle-derived <sup>3</sup>He in the Dogger aquifer, particularly near the Bray fault (Fig. 3). This fault is hypothesized to serve as a conduit for helium-rich fluids, facilitating their migration through the low-permeability shales that separate the Triassic and Dogger aquifers (Worden and Matray, 1995).





177

174

178 Integrating geodynamic, geophysical, and geochemical data, it is assumed that a paleo-slab, 179 composed of mantellic and metamorphic rocks, is connected to the basin via the Bray fault (Bril et al., 180 1994). The detection of mantle-derived <sup>3</sup>He in the Dogger aquifer suggests a deep structural connection to
these formations (Fig. 3).

The Paris Basin's geology is particularly promising for  $H_2$  exploration. This potential is attributed to the presence of ultramafic rocks undergoing serpentinization, water radiolysis in granite bodies, the existence of preferential pathways for fluid migration and the excess of <sup>3</sup>He. Additionally, numerous reservoirs within the basin exhibit favorable porosity and permeability characteristics, making them suitable candidates for hydrogen storage. Collectively, these factors underscore the basin's potential as a complete H<sub>2</sub> system from sources to traps.

188

#### 189 **3 Methodology**

#### 190 3.1 Data origin

191 The database used in our research, whose management is delegated to the French Bureau of Hydrocarbon Exploration and Production, encompasses a comprehensive collection of well data. This repository, 192 known as the BEPH database, contains 5,139 records dating back to 1927, covering hydrocarbon 193 194 exploration activities in both metropolitan France and its overseas territories. However, a significant 195 portion of the database, approximately 36.8 % (equating to 1,893 files), is missing, primarily consisting of 196 End Drilling Reports (EDRs) in PDF format. The database incorporates a diverse array of data, including 197 scanned EDRs, well logs (such as Gamma-ray, etc.), mudlogs, seismic coring, and other relevant 198 documents (site logs, tests, etc.). For the purposes of our study, we concentrated exclusively on the 199 analysis of the EDRs, which comprise 3,246 scanned documents in PDF format, with individual files 200 ranging from 10 to 300 pages.

201 3.2 Pytesseract Screening RFS

202 Given the image-based nature of these documents, conventional keyword search techniques are infeasible, 203 and manual examination would be prohibitively time-consuming. To address this challenge, we employed 204 Optical Character Recognition (OCR) technology. Specifically, we utilized Pytesseract, a Python-based 205 OCR tool that integrates Google's **Tesseract-OCR** Engine (available at 206 https://github.com/madmaze/pytesseract), to convert the EDR PDFs into searchable formats (Fig. S1). 207 The process requires preliminary process of each EDR. As Pytesseract is incapable of directly processing

208 PDF files, we first converted each page of the EDRs into image files (PNG, JPG, etc.) using an initial 209 conversion tool. This tool transforms the scanned PDF images into Python Imaging Library (PIL) format, with each PIL image representing a page from the EDR. Subsequently, Pytesseract OCR processes each page, converting the text into a searchable PDF format, which we labeled as "EDR reference".

To further analyze the newly created searchable database, we employed PyMuPDF, a Python library designed for extracting, analyzing, converting, and manipulating PDF file data. This library facilitates keyword filtering within each searchable PDF, allowing us to extract the file name and the specific page number where the keyword appears, and store this information in a .txt file. This approach significantly streamlines the process of identifying relevant files and their locations, thereby enhancing the efficiency of quality checks and validation. In our case study, we focused on keywords such as "H<sub>2</sub>", "Hydrogène".

#### 218 **4 Results**

Applying the OCR algorithm to the Paris Basin well database, 141 occurrences were found in the French EDR database containing "Hydrogen" ("hydrogène" in French) and/or "H<sub>2</sub>". Initially, each time the word "hydrogen" is detected, *Pytesseract* records it in the results file. However, in the boreholes of the Paris Basin, there are many occurrences of Hydrogen Sulfide (H<sub>2</sub>S) which biases the results. The inability to distinguish between "H<sub>2</sub>" and "H<sub>2</sub>S" can lead to problems, therefore rapid human verification is essential. The main results have been reported in the supplementary materials.

After the validation process, only 11 wells of the Paris basin, the presence of the " $H_2$ " or "Hydrogen" keyword is mentioned in their EDR (Tab. S1). In EDR, when hydrogen is detected, geologists propose various hypotheses to explain its presence, such as: i) hydrogen arising from tool deterioration, ii) hydrogen of unknown origin, iii) hydrogen detected but not quantified, iv) trace concentrations of hydrogen in the background gas, and v) hydrogen identified using neutron porosity techniques.

The Longueil 1 Well (drilled in 1972), has detected H<sub>2</sub> and N<sub>2</sub> trace (no concentrations reported in the EDR) during the mud gas logging at 3 differents depths i) In Lusitanian formation at 988 to 1241m and composed of limestone (porosity of 19.2 %); ii) in the Middle Jurassic at 1241 to 1347m and composed of Massigny Marles (porosity ranging from 9 to 19 %) and iii) In Triassic formation at 1916 to 1981 m and composed of Saint Maur Red Clay. The geologist in charge doesn't explain the origin of H<sub>2</sub>.

The Betz 101 drilling well (drilled in 1963) revealed a concentration of H<sub>2</sub> gas ranging to 3 to 6 vol% in Lustianian formation at a depth of 1325 to 1335 m, however the report does not describe the methodology used for this gas analysis. The Lusitanian formation is mainly composed of limestone with a porosity ranging from 7 to 11 %. The geologist in charge revealed that detecting high H<sub>2</sub> concentrations in the Lusitanian formation in this area is common, but its origin remains unknown.

The Montreuil Aux Lions 1 drilling well (drilled in 1988) detected H<sub>2</sub> gas in a bottle sample of 1 liter taken at a depth of 2165-2175 m corresponding to Marles to Calcareous Clay formation in the Dogger. The pressure inside the bottle was 25 bar. The gas measurement revealed a gas composition of H<sub>2</sub> 52 vol%, CH<sub>4</sub> 42 vol%, C2 4.3 vol%, C3 0.9 vol% and nC4 0.19 vol%. The EDR did not provide any hypothesis about the origin of this H<sub>2</sub> concentration.

- The Cramaille 101 drilling well (drilled in 1961) detected  $H_2$  during the mud gas logging while crossing the Lusitanian formation, which is composed of limestones with a porosity of 16.7 % and a permeability ranging from 0.1 to 12 mDy. However, the EDR did not indicate the exact concentration of  $H_2$  gas, and there was no explanation provided for this gas detection.
- The Connantre 2 drilling well (drilled in 1981), have detected the presence of H<sub>2</sub> and nitrogen from 1508 to 1533 m, the Dogger formation was composed of limestones with porosity ranging from 7 to 11 %. The useful height of the formation was 9.5 m. The methodology for gas analysis is not described in the EDR.
- The Grandville 109 drilling well (drilled in 1982) has identified during the mud gas logging
   the presence of H<sub>2</sub> at two different depths i) The Aalenian formation is made up of clayey
   limestones and ranges from 1159 to 1725 m. The background mud gases have a H<sub>2</sub>
   concentration that ranges from 0.25 to 0.65 vol%. ii) The Triassic formation, spanning from
   2053 to 2555 m in depth, consists of dolomite, clay, and evaporite. Within the background
   gases, a concentration of 0.2 vol% of H<sub>2</sub> was detected.
- The Coubert 1 drilling well (drilled in 1986), has detected H<sub>2</sub> during the mud gas logging in the bottom hole at 2547 m depth but no concentrations are reported in the EDR. The Hercynian formation is mainly composed of Gneiss-type rocks. The gas composition recorded showed unusual fluctuations, with a disappearance of C4 hydrocarbons and a reduction in C3 and C2 concentrations, but an increase in total gas, along with the release of H<sub>2</sub>. The main hypothesis proposed by geologists is gas production linked to tool alteration.
- The Luteau 1 drilling well (drilled in 1986) detected H<sub>2</sub> and CH<sub>4</sub> during the mud gas logging
   while crossing Keuper from 2569 to 2578 m, which is mainly composed of clay but locally
   contains anhydrite. Unfortunately, the gas chromatograph (GC) used was unable to

distinguish between  $H_2$  and  $CH_4$ . The  $H_2$ - $CH_4$  compounds were detected during core sampling in the background gas ranging from 0.6 to 1.1 vol%.

- The Hericy 1 drilling well (drilled in 1986) detected H<sub>2</sub> and CH<sub>4</sub> in the gas background during the mud gas logging. However, the GC cannot distinguish between them, similar to Luteau 1. This potential H<sub>2</sub> detection occurs during the crossing of Liassic formation composed of calcareous clay. The gas Background is ranging from 1 to 3.5 vol%.
- 278 The Saint Martin de Bossenay 17 drilling well (drilled in 1976) detected H<sub>2</sub> traces in two 279 different formations. I) The upper Triassic (Rethien) Clayay formation was tested at a depth 280 of 2084 m. They detected H<sub>2</sub> gas but did not report its concentration. The well was open for 32 minutes, during which they recovered 20 liters of gas and 0.5 liters of mud. ii) The Upper 281 282 Triassic formation, made up of sandstones, clay, and anhydrite rocks, was tested at a depth of 283 2295 m. During the test, the well was open for 37 minutes and recovered 410 liters of mud, a 284 small quantity of gas and 120 liters of gasified mud. They also reported that the gas was detected in the same formation as the Saint Martin de Bossenay 201 well. The pressure of 285  $196 \text{ kg/m}^2$  was unstabilized at 2321m. 286
- The Jeumont 1 drilling well (drilled in 1963), has detected H<sub>2</sub> in mud gas at two differents depths i) At a depth of 4443 m in the Upper Devonian, there is a composition of quartzite and argillite. The detected H<sub>2</sub> is present in background gas at a concentration of 0.5 vol%. ii) At a depth of 4807 m, the Middle Devonian is mainly composed of quartzite and shale. The H<sub>2</sub> concentration is also in background gas at a concentration of 1.8 vol%. The H<sub>2</sub> concentration for both depths was unexplained.

All the data originate from wells drilled at various times during the 20th century and have not been previously correlated. To comprehend the natural hydrogen potential of this region, it is essential to integrate these data with the knowledge acquired in recent decades and with contemporary geological studies of the Paris Basin. Consequently, a comprehensive compilation of both geochemical and geological knowledge will also be carried out.

#### 298 **5 Discussion**

299 300 5.1 Hydrogen Detection and Origin Hypotheses in Various Geological Formations of the Paris Basin

According to the OCR algorithm, the drilling wells' location is concentrated within an area of  $8600 \text{ km}^2$  in the middle east of the Paris Basin (Fig. 2a). The H<sub>2</sub> concentration in the Paris Basin is not randomly distributed throughout the formations. It is mainly present in three formations: Lusitanian, Dogger, and Keuper.

305

## 5.1.1 The Lusitanian reservoir

Three sites north of the Bray fault—Longueil, Betz, and Cramaille—reported  $H_2$  content while intersecting the Lusitanian formation. According to the Initial interpretations, this would indicate a potential tool degradation. However,  $H_2$  was also detected in the same formation in Longueil and Betz wells. The well geologist revealed in the Betz 101 EDR that detecting  $H_2$  in the Lusitanian formation is common. Therefore, the hypothesis of  $H_2$  production by steel corrosion in Cramaille could be discarded.

An alternative hypothesis involves the production of  $H_2$  through mechano-radical reactions occurring during drilling. This suggests that the mechanical crushing of rocks results in the production of fresh Si surfaces that are highly reactive with water, generating  $H_2$  (Hirose et al., 2011; Kita et al., 1982). Nevertheless, the Lusitanian is mainly composed of limestone and contains little to no silica. Lefeuvre (2022) conducted a limestone grinding experiment in a confined atmosphere and demonstrated that this rock did not produce  $H_2$ . This leads to questioning the origin of the  $H_2$ .

317

#### 5.1.2 The Dogger reservoir

318 Investigations into the Dogger formation, specifically at the Montreuil Aux Lions, Connantre, and 319 Grandville wells north of the Bray Fault, have identified H<sub>2</sub> concentrations. At Montreuil Aux Lions, a 320 sampling approach was employed, utilizing a specialized bottle to collect a sample from within the 321 Dogger formation. The analysis of this sample revealed 52 vol%  $H_2$  concentration within a 1-liter vessel 322 under 25 bar pressure. Notably, the hypothesis of H<sub>2</sub> production by mechano-radical processes was 323 discarded due composition of Dogger formation, corresponding to Oolitic limestones. Moreover, this 324 conclusion is reinforced by the fact that the sampling procedure did not take place at the same time as the 325 drilling activities.

Gases have been sampled in Dogger formation from geothermal production wellheads during both artesian flow and production under pumping (Fig. 3). These wellheads exhibited pressure ranges from 4 to 12 bar, indicative of a monophasic state at depth for such fluids (Marty et al., 1988). Marty et al. (1988) 329 conducted analyses on 34 dissolved gas samples, which were isolated using a vacuum flask vessel half-330 filled with the separated liquid phase containing the dissolved gases. They recorded  $H_2$  concentrations reaching up to 12 x 10<sup>-5</sup> mol/l (at 71 °C and 9.81 bar). The prevalence of steel corrosion as possible origin 331 332 for elevated H<sub>2</sub> levels remains a consideration. However, only 9 out of the 34 wells displayed 333 concentrations exceeding 1 mol/l, suggesting a different origin for the elevated  $H_2$  concentrations. These 334 observations support the existence of an H<sub>2</sub>-rich aquifer in the Dogger.

335 The Dogger aquifer is also known for the presence of sulfate-reducing, methane-producing bacteria, which are mainly thermophilic (Fouillac et al., 1990). Isolated methane-producing bacteria from 336 337 Mellaray's well have shown the capability to thrive utilizing  $H_2$  and  $CO_2$  as their sole carbon and energy 338 sources (Daumas et al., 1986; Marty et al., 1993). This observation suggests that the  $H_2$  measured in the 339 Dogger is a source of energy for bacterial communities and it raises questions about the deeper origin of 340 H<sub>2</sub>.

341

# 5.1.3 The Triassic reservoir

342 In the Upper Triassic formation situated south of the Bray Fault,  $H_2$  presence was documented in the 343 drilling wells at Le Luteau and Saint Martin de Bossenay. This formation is characterized by a composite 344 of clay, anhydrite, and sandstones.

345 At Le Luteau, the detected background  $H_2$  concentrations during the drilling might be associated with 346 mechano-radical mechanisms, a hypothesis supported by the silica-rich composition of the rocks.

347 At Saint Martin de Bossenay,  $H_2$  detection occurred during post-drilling production testing, rendering the 348 mechano-radical hypothesis less plausible for this site. It is important to note that no acidification of the 349 well was performed prior to conducting this test. In this formation, the anhydrite may act as a promising 350 sealing rock for trapping H<sub>2</sub>.

351

# 5.1.3 $H_2$ detection through the basement

352 Lastly, two other wells reached the basement at Coubert and Jeumont, and they revealed the concentration 353 of H<sub>2</sub> at depth. The Coubert well, situated to the south of the Bray fault, traverses a geological formation 354 composed predominantly of Gneiss and quartzite with galena intrusions. At this site, geologists cannot 355 differentiate between methane and  $H_2$  gases due to instrumental reasons. However, a notable diminution 356 in C4 to C2 hydrocarbon concentrations suggests a possible  $H_2$  degassing, potentially originating from 357 drilling tools or the surrounding rock matrix as suggested in the EDR. The Jeumont well only revealed  $H_2$ 358 concentration during the core sampling of quartzite formation. This observation supports the hypothesis 359 of H<sub>2</sub> generation through mechano-radical processes.

360

361 Due to limited EDR data, deciphering the source of H<sub>2</sub> remains challenging. Geological and geochemical
 362 contextualization may offer a starting point for further analysis.

363

#### 5.2 Geological Trends and Structural Analysis of Drilling Wells in the Paris Basin

Initial observations indicate that the wells Longueil 1, Betz 101, and Montreuil Aux Lions 1, located to 364 365 the north of the Bray fault delineate a trend of N130° orientation. This aligns with the orientation of the 366 Bray fault, albeit situated approximately 20 km northward. This trend is highlighted and well correlated with the map of the vertical gradient of the pole-reduced magnetic anomaly extended to 600 m (Fig. 4; 367 368 Baptiste et al., 2016). The vertical gradient technique can be used to identify lithological features, 369 delineate contacts and discern structural variations between distinct geological formations (Baranov, 370 1953). This pattern could correspond the Bray Thrust located by Averbuch and Piromallo (2012) but 371 regarding the seismic cross section this discontinuity doesn't affect the sedimentary cover (Fig. 2b).

Contrastingly, the wells Cramaille 101, Connantre 1, 2, and Grandville 109 do not align with this specific trend but are situated within a large regional anomaly. This anomaly has been linked with magmatic rocks, with the axis of this anomaly appears to be correlated with the closure of the Rhenohercynian ocean during the Carboniferous period (Thébault et al., 2006).

Regarding the wells located south of the Bray fault (Fig. 4), their distribution is more dispersed and their association with structural features is more complex. These wells are part of the Bloc Every-Tonnerre, an area where the basement has been mapped through magnetic and gravimetric analysis (Baptiste, 2016).

379 The drilling well Hericy 1 is located on the Evry Fault, while Saint Martin de Bossenay 17 is located on

the Lalaye-L Fault (Baptiste, 2016). The map reveals the presence of basic rocks along the Evry fault, and a combination of gneissic or granitic rocks interspersed with Néoproterozoic/Paleozoic formations along the Lalaye-L Fault. The two other wells, Le Luteau 1 and Coubert 1, while not associated with any

383 specific faults, are located above granodiorite bedrock.

384 While the majority of the wells' locations appear to be correlated with fault lines, further investigation is 385 needed to determine if these faults could act as conduits for fluid migration.



Figure 4 : Map of the vertical gradient of the magnetic anomaly reduced to the pole and extended to
600 meters. The black circle corresponds to the H2-bearing well (Modified from Baptiste, 2016).

5.3 Characteristics and Deep Fluid Helium Studies of the Dogger Aquifer in the ParisBasin

The Paris Basin is characterized by several key aquifers, including Triassic sandstones, Dogger limestones, Lusitanian limestones, and Albian sandstones (Fig. 3). Among these, the Dogger aquifer has been the primary focus of numerous studies, primarily due to its notable helium concentration (Bril et al.,

393 1994; Castro et al., 1998a, 1998b; Marty et al., 1993, 1988; Pinti and Marty, 1998)

The Dogger aquifer exhibits a relatively consistent helium concentration and isotope ratio, though it presents minor variations in water chemistry (Marty et al., 1993). According to studies by Marty et al. (1988), the reported free gas concentration of helium in the aquifer ranging from 1.02 to 4.65 x  $10^{-5}$  mol/l (at 70 ± 10 °C, the pressure is not reported). Additionally, isotopic analyses have revealed a distinct excess of <sup>3</sup>He, indicative of a mantle-derived origin. Pinti and Marty, (1993) suggest that the enrichment in mantle-derived <sup>3</sup>He, alongside high <sup>4</sup>He concentrations, may be attributed to the influx of basement fluids into the Dogger and potentially to in-situ production within the Middle Jurassic formation. To explain the high helium concentration in the aquifer, one plausible explanation is the presence of a preferential migration pathway, notably the Bray-Vittel Fault (Fig. 3). This fault affects both the sedimentary cover and the basement, and can serve as intermittent vertical drains for helium-rich fluids across the 700m of low-permeability rocks that separate these aquifers (Bril et al., 1994; Pinti and Marty, 1998; Worden and Matray, 1995).

406 The analysis of the Dogger aquifer has revealed fluid migration along the major faults, while our OCR 407 analysis has pinpointed wells exhibiting  $H_2$  anomalies correlated with these faults. These findings suggest 408 the existence of a potentially fertile  $H_2$  system.

409 5.4 A putative  $H_2$  system ?

410 The potential for H<sub>2</sub> exploration in the Paris Basin is closely linked to its geodynamic characteristics and 411 structural features, particularly those associated with the closure of the Lizard-Rhenohercynian ocean. 412 This suture zone is composed of ultramafic rocks, including peridotites and amphibolites, which are able 413 to produce  $H_2$  through hydrothermal reactions such as serpentinization. The current temperature near the 414 basin/basin discontinuity is approximately 120°C (Pinti and Marty, 1998), significantly lower than the 415 250 to 300°C typically required for optimal  $H_2$  production kinetics (Malvoisin et al., 2012; McCollom et 416 al., 2016). However, a significant aspect of the Lizard complex is its composition, consisting of dunite, 417 which is largely serpentinized and contains magnetite (Leake and Styles, 1984). Recent findings by 418 Geymont et al. (2023) have revealed the potential of magnetite to facilitate H<sub>2</sub> production at relatively 419 lower temperatures through hydrothermal alteration processes. Therefore, in this geological context, 420 serpentinized dunite, particularly rich in magnetite, may represent a viable source rock for H<sub>2</sub> generation. 421 This raises the question of the actual production of  $H_2$ .

422 To the north of this closure zone, magnetic and gravimetric anomalies suggest the presence of granitic 423 formations, which can facilitate  $H_2$  generation via radiolysis of water, a process independent of rock 424 temperature (Lin et al., 2005b; Sherwood Lollar et al., 2006).

A key factor in these  $H_2$ -producing processes is the presence of a water source, originating from a recharge zone. The basin's sedimentary cover and basement are influenced by regional tectonic lineaments, notably the Bray-Vittel and Rouen-Couy faults, which may act as conduits for vertical fluid migration. Studies on noble gases suggest a vertical flow of fluids through the Rouen-Couy fault, allowing water infiltration into the sedimentary layer through this discontinuity, eventually reaching the basement (Pinti and Marty, 1998; Rouchet, 1981). Additionally, the Paris Basin hosts multiple aquifers,

431 potentially serving as sources for water essential to these reactions.

Helium analysis within the basin has provided insights into fluid migration patterns, with mantle-derived helium detected in the Dogger aquifer, as evidenced by the excess of  ${}^{3}$ He. The H<sub>2</sub> produced in the 434 basement may migrate through the Bray-Vittel fault and major detachments, and reach the aquifer. The

- 435 Triassic and Jurassic formation, are marked by evaporitic rocks and clayey rock, offering effective sealing
- 436 properties for H<sub>2</sub> entrapment. Furthermore, the temperature in the Triassic formation seems suitable for
- 437 H<sub>2</sub> trapping over geological time, being too hot for microbial activity and too cold for efficient abiotic
- 438 reactions involving  $H_2$  (Lefeuvre et al., 2022).

439 The Paris Basin stand for a good case study for natural  $H_2$  exploration. All the essential components 440 necessary for the establishment of a  $H_2$  system are gathered: i) a water source facilitating  $H_2$  production,

441 ii) iron-rich and granitic rocks, iii) preferential migration pathways along faults impacting both the

- 442 basement and sedimentary layers, and iv) efficient reservoirs characterized by the presence of clay,
- 443 evaporites, and aquifers, which may act as effective seals.

## 444 **5** Conclusions

445 After processing the BEPH database with an OCR algorithm, we discovered multiple wells that detected 446  $H_2$  gas. First, across France, several drilling wells have been identified where  $H_2$  concentrations are 447 documented in their EDR. The distribution of these wells is not random in terms of the geological 448 context, they are frequently situated near mantle bodies at shallow depths. This discovery should lead to 449 further research.

450 In the Paris Basin case, the OCR algorithm revealed four main formations in which  $H_2$  has been detected: Lustianien formation, Dogger aquifer, Triassic aquifer and in basement. A maximum of 52 vol% of H<sub>2</sub> 451 452 was obtained in the dogger, whereas up to 6 vol% has been measured in the lusitanian. In the others 453 formations, the concentration of  $H_2$  is not measured, but its presence is still reported. These wells are 454 situated in a small area in the central-east of the Paris Basin, and their distribution does not seem random. 455 All of them are situated along the Bray fault and the Bray thrust, which are N°130 faults that affect both the basement and the sedimentary cover. The basement comprises rocks that have the potential to be 456 sources of H<sub>2</sub>, such as peridotite or granitic rocks. An excess of <sup>3</sup>He is reported in the Dogger Formation, 457 458 suggesting a contribution from the mantle and deep fluid migration. Finally, the evaporite and clay 459 formation reported in the basin represent a promising trap for H<sub>2</sub>.

#### 460 Acknowledgments

This work was conducted in collaboration of CVA Group. Nicolas Lefeuvre acknowledges CVA Group for the access to their database. Vincent Roche, Guilhem Scheiblin are warmly thanked for his support in understanding the geology of the Paris basin.

#### 464 **References**

- 465 Averbuch, O., & Piromallo, C. (2012). Is there a remnant Variscan subducted slab in the mantle beneath
- the Paris basin? Implications for the late Variscan lithospheric delamination process and the Paris basin
  formation. *Tectonophysics*, 558–559, 70–83. https://doi.org/10.1016/j.tecto.2012.06.032
- 468 Baptiste, J., Martelet, G., Faure, M., Beccaletto, L., Reninger, P.-A., Perrin, J., & Chen, Y. (2016).
- 469 Mapping of a buried basement combining aeromagnetic, gravity and petrophysical data: The substratum
- 470 of southwest Paris Basin, France. *Tectonophysics*, 683, 333–348.
  471 https://doi.org/10.1016/j.tecto.2016.05.049
- 472 Baranov, V. (1953). Calcul du gradient vertical du champ de gravité ou du champ magnétique mesuré à la
- 473 surface du sol. *Geophysical Prospecting*, *1*(3), 171–191. https://doi.org/10.1111/j.1365-474 2478.1953.tb01139.x
- 475 Bonté, D., Guillou-Frottier, L., Garibaldi, C., Bourgine, B., Lopez, S., Bouchot, V., & Lucazeau, F.
- 476 (2010). Subsurface temperature maps in French sedimentary basins: new data compilation and
  477 interpolation. *Bulletin de La Société Géologique de France*, 181(4), 377–390.
  478 https://doi.org/10.2113/gssgfbull.181.4.377
- 479 Boreham, C. J., Sohn, J. H., Cox, N., Williams, J., Hong, Z., & Kendrick, M. A. (2021). Hydrogen and
- 480 hydrocarbons associated with the Neoarchean Frog's Leg Gold Camp, Yilgarn Craton, Western Australia.
- 481 *Chemical Geology*, 575, 120098. https://doi.org/10.1016/j.chemgeo.2021.120098
- Bril, H., Velde, B., Meunier, A., & Iqdari, A. (1994). Effects of the "pays de bray" fault on fluid
  paleocirculations in the Paris basin dogger reservoir, France. *Geothermics*, 23(3), 305–315.
  https://doi.org/10.1016/0375-6505(94)90006-X
- 485 Castro, M. C., Jambon, A., De Marsily, G., & Schlosser, P. (1998). Noble gases as natural tracers of water
- 486 circulation in the Paris Basin: 1. Measurements and discussion of their origin and mechanisms of vertical
- 487 transport in the basin. *Water Resources Research*, 34(10), 2443–2466.
  488 https://doi.org/10.1029/98WR01956
- 489 Castro, M. C., Goblet, P., Ledoux, E., Violette, S., & De Marsily, G. (1998). Noble gases as natural
- 490 tracers of water circulation in the Paris Basin: 2. Calibration of a groundwater flow model using noble gas
- 491 isotope data. *Water Resources Research*, *34*(10), 2467–2483. https://doi.org/10.1029/98WR01957
- 492 Chevrot, S., Sylvander, M., Diaz, J., Martin, R., Mouthereau, F., Manatschal, G., et al. (2018). The non-
- 493 cylindrical crustal architecture of the Pyrenees. Scientific Reports, 8(1), 9591.
- 494 https://doi.org/10.1038/s41598-018-27889-x
- 495 Chevrot, S., Sylvander, M., Villaseñor, A., Díaz, J., Stehly, L., Boué, P., et al. (2022). Passive imaging of
- 496 collisional orogens: a review of a decade of geophysical studies in the Pyrénées. BSGF Earth Sciences
- 497 Bulletin, 193, 1. https://doi.org/10.1051/bsgf/2021049

- 498 Daumas, S., Lombart, R., & Bianchi, A. (1986). A bacteriological study of geothermal spring waters
- 499 dating from the dogger and trias period in the Paris Basin. *Geomicrobiology Journal*, 4(4), 423–433.
- 500 https://doi.org/10.1080/01490458609385947
- 501 Donzé, F.-V., Truche, L., Shekari Namin, P., Lefeuvre, N., & Bazarkina, E. F. (2020). Migration of
- 502 Natural Hydrogen from Deep-Seated Sources in the São Francisco Basin, Brazil. *Geosciences*, 10(9), 346.
- 503 https://doi.org/10.3390/geosciences10090346
- 504 Etiope, G., Judas, J., & Whiticar, M. J. (2015). Occurrence of abiotic methane in the eastern United Arab
- 505 Emirates ophiolite aquifer. *Arabian Journal of Geosciences*, 8(12), 11345–11348. 506 https://doi.org/10.1007/s12517-015-1975-4
- 507 Fiebig, J., Woodland, A. B., Spangenberg, J., & Oschmann, W. (2007). Natural evidence for rapid
- 508 abiogenic hydrothermal generation of CH4. Geochimica et Cosmochimica Acta, 71(12), 3028-3039.
- 509 https://doi.org/10.1016/j.gca.2007.04.010
- 510 Fouillac, C., Fouillac, A., & Criaud, A. (1990). Sulphur and oxygen isotopes of dissolved sulphur species
- 511 in formation waters from the Dogger geothermal aquifer, Paris Basin, France. Applied Geochemistry,
- 512 5(4), 415–427. https://doi.org/10.1016/0883-2927(90)90018-Z
- 513 Hirose, T., Kawagucci, S., & Suzuki, K. (2011). Mechanoradical H<sub>2</sub> generation during simulated faulting:
- 514 Implications for an earthquake-driven subsurface biosphere: H<sub>2</sub> generation during earthquakes.
  515 *Geophysical Research Letters*, *38*(17). https://doi.org/10.1029/2011GL048850
- 516 Jammes, S., Lavier, L., & Manatschal, G. (2010). Extreme crustal thinning in the Bay of Biscay and the
- 517 Western Pyrenees: From observations to modeling: modelization of extreme crustal thinning.
- 518 Geochemistry, Geophysics, Geosystems, 11(10), n/a-n/a. https://doi.org/10.1029/2010GC003218
- Johnson, J. E., Mienert, J., Plaza-Faverola, A., Vadakkepuliyambatta, S., Knies, J., Bünz, S., et al. (2015).
- 520 Abiotic methane from ultraslow-spreading ridges can charge Arctic gas hydrates. Geology, 43(5), 371-
- 521 374. https://doi.org/10.1130/G36440.1
- 522 Kita, I., Matsuo, S., & Wakita, H. (1982). H<sub>2</sub> generation by reaction between H<sub>2</sub> O and crushed rock: An
- 523 experimental study on H<sub>2</sub> degassing from the active fault zone. Journal of Geophysical Research: Solid
- 524 *Earth*, 87(B13), 10789–10795. https://doi.org/10.1029/JB087iB13p10789
- 525 Lefeuvre, N., Truche, L., Donzé, F.-V., Gal, F., Tremosa, J., Fakoury, R.-A., et al. (2022). Natural
- 526 hydrogen migration along thrust faults in foothill basins: The North Pyrenean Frontal Thrust case study.
- 527 Applied Geochemistry, 145, 105396. https://doi.org/10.1016/j.apgeochem.2022.105396
- 528 Lefeuvre, Nicolas, Truche, L., Donzé, F., Ducoux, M., Barré, G., Fakoury, R., et al. (2021). Native H <sub>2</sub>
- 529 Exploration in the Western Pyrenean Foothills. Geochemistry, Geophysics, Geosystems, 22(8),
- 530 e2021GC009917. https://doi.org/10.1029/2021GC009917

- 531 Lehujeur, M., Chevrot, S., Villaseñor, A., Masini, E., Saspiturry, N., Lescoutre, R., et al. (2021). Three-
- 532 dimensional shear velocity structure of the Mauléon and Arzacq Basins (Western Pyrenees). BSGF -
- 533 Earth Sciences Bulletin, 192, 47. https://doi.org/10.1051/bsgf/2021039
- Lin, L.-H., Slater, G. F., Sherwood Lollar, B., Lacrampe-Couloume, G., & Onstott, T. C. (2005). The
- 535 yield and isotopic composition of radiolytic  $H_2$ , a potential energy source for the deep subsurface 536 biosphere. *Geochimica et Cosmochimica Acta*, 69(4), 893–903. https://doi.org/10.1016/j.gca.2004.07.032
- 537 Maiga, O., Deville, E., Laval, J., Prinzhofer, A., & Diallo, A. B. (2023). Characterization of the
- 538 spontaneously recharging natural hydrogen reservoirs of Bourakebougou in Mali. Scientific Reports,
- 539 13(1), 11876. https://doi.org/10.1038/s41598-023-38977-y
- 540 Malvoisin, B., Brunet, F., Carlut, J., Rouméjon, S., & Cannat, M. (2012). Serpentinization of oceanic
- 541 peridotites: 2. Kinetics and processes of San Carlos olivine hydrothermal alteration. Journal of
- 542 *Geophysical Research: Solid Earth*, *117*(B4). https://doi.org/10.1029/2011JB008842
- 543 Marcaillou, C., Muñoz, M., Vidal, O., Parra, T., & Harfouche, M. (2011). Mineralogical evidence for H2
- 544 degassing during serpentinization at 300°C/300bar. *Earth and Planetary Science Letters*, 303(3–4), 281–
- 545 290. https://doi.org/10.1016/j.epsl.2011.01.006
- 546 Marty, B., Criaud, A., & Fouillac, C. (1988). Low enthalpy geothermal fluids from the Paris sedimentary
- basin—1. Characteristics and origin of gases. *Geothermics*, *17*(4), 619–633. https://doi.org/10.1016/03756505(88)90047-8
- 549 Marty, Bernard, Torgersen, T., Meynier, V., O'Nions, R. K., & De Marsily, G. (1993). Helium isotope
- fluxes and groundwater ages in the Dogger Aquifer, Paris Basin. Water Resources Research, 29(4), 1025–
- 551 1035. https://doi.org/10.1029/93WR00007
- 552 Matte, P., & Hirn, A. (1988). Seismic signature and tectonic cross section of the Variscan Crust in
- 553 western France. *Tectonics*, 7(2), 141–155. https://doi.org/10.1029/TC007i002p00141
- 554 Mayhew, L. E., Ellison, E. T., McCollom, T. M., Trainor, T. P., & Templeton, A. S. (2013). Hydrogen
- 555 generation from low-temperature water–rock reactions. *Nature Geoscience*, *6*(6), 478–484. 556 https://doi.org/10.1038/ngeo1825
- 557 McCollom, T. M., & Donaldson, C. (2016). Generation of Hydrogen and Methane during Experimental
- 558 Low-Temperature Reaction of Ultramafic Rocks with Water. Astrobiology, 16(6), 389-406.
- 559 https://doi.org/10.1089/ast.2015.1382
- 560 Mitrofan, H., Marin, C., Chitea, F., Cadicheanu, N., Povară, I., Tudorache, A., et al. (2021). Multi-
- 561 kilometre long pathway of geofluids migration: Clues concerning an ophiolite serpentinization setting
- 562 possibly responsible for the inferred abiotic provenance of methane in thermal water outflows of the
- 563 South-West Carpathians (Romania). Terra Nova, 33(1), 56–73. https://doi.org/10.1111/ter.12491

- 564 Moretti, I., Prinzhofer, A., Françolin, J., Pacheco, C., Rosanne, M., Rupin, F., & Mertens, J. (2021).
- 565 Long-term monitoring of natural hydrogen superficial emissions in a brazilian cratonic environment.
- 566 Sporadic large pulses versus daily periodic emissions. International Journal of Hydrogen Energy, 46(5),
- 567 3615–3628. https://doi.org/10.1016/j.ijhydene.2020.11.026
- 568 Newcombe, R. B. (1935). Natural gas fields of Michigan.
- 569 Pinti, D. L., & Marty, B. (1998). The origin of helium in deep sedimentary aquifers and the problem of
- 570 dating very old groundwaters. Geological Society, London, Special Publications, 144(1), 53-68.
- 571 https://doi.org/10.1144/GSL.SP.1998.144.01.05
- 572 Prinzhofer, A., Tahara Cissé, C. S., & Diallo, A. B. (2018). Discovery of a large accumulation of natural
- 573 hydrogen in Bourakebougou (Mali). International Journal of Hydrogen Energy, 43(42), 19315–19326.
- 574 https://doi.org/10.1016/j.ijhydene.2018.08.193
- 575 Rouchet, J. du. (1981). Stress fields, a key to oil migration. AAPG Bulletin, 65(1), 74-85.
- 576 https://doi.org/10.1306/2F919774-16CE-11D7-8645000102C1865D
- 577 Sauvage, J. F., Flinders, A., Spivack, A. J., Pockalny, R., Dunlea, A. G., Anderson, C. H., et al. (2021).
- 578 The contribution of water radiolysis to marine sedimentary life. *Nature Communications*, *12*(1), 1297.
  579 https://doi.org/10.1038/s41467-021-21218-z
- 580 Sherwood, B., Fritz, P., Frape, S., Macko, S., Weise, S., & Welhan, J. (1988). Methane occurrences in the
- 581 Canadian Shield. *Chemical Geology*, 71(1–3), 223–236. https://doi.org/10.1016/0009-2541(88)90117-9
- 582 Sherwood Lollar, B., Lacrampe-Couloume, G., Slater, G. F., Ward, J., Moser, D. P., Gihring, T. M., et al.
- 583 (2006). Unravelling abiogenic and biogenic sources of methane in the Earth's deep subsurface. *Chemical*
- 584 *Geology*, 226(3–4), 328–339. https://doi.org/10.1016/j.chemgeo.2005.09.027
- 585 Smith, N. J. P., Shepherd, T. J., Styles, M. T., & Williams, G. M. (2005). Hydrogen exploration: a review
- 586 of global hydrogen accumulations and implications for prospective areas in NW Europe. Geological
- 587 Society, London, Petroleum Geology Conference Series, 6(1), 349–358. https://doi.org/10.1144/0060349
- 588 Smith, R. (2007). An Overview of the Tesseract OCR Engine. In Ninth International Conference on
- 589 Document Analysis and Recognition (ICDAR 2007) Vol 2 (pp. 629–633). Curitiba, Parana, Brazil: IEEE.
- 590 https://doi.org/10.1109/ICDAR.2007.4376991
- 591 Thébault, E., Mandea, M., & Schott, J. J. (2006). Modeling the lithospheric magnetic field over France by
- 592 means of revised spherical cap harmonic analysis (R-SCHA). Journal of Geophysical Research: Solid
- 593 *Earth*, *111*(B5), 2005JB004110. https://doi.org/10.1029/2005JB004110
- 594 Torelli, M., Traby, R., Teles, V., & Ducros, M. (2020). Thermal evolution of the intracratonic Paris
- 595 Basin: Insights from 3D basin modelling. Marine and Petroleum Geology, 119, 104487.
- 596 https://doi.org/10.1016/j.marpetgeo.2020.104487

- 597 Truche, L., Joubert, G., Dargent, M., Martz, P., Cathelineau, M., Rigaudier, T., & Quirt, D. (2018). Clay
- 598 minerals trap hydrogen in the Earth's crust: Evidence from the Cigar Lake uranium deposit, Athabasca.
- 599 Earth and Planetary Science Letters, 493, 186–197. https://doi.org/10.1016/j.epsl.2018.04.038
- 600 Tugend, J., Manatschal, G., Kusznir, N. J., Masini, E., Mohn, G., & Thinon, I. (2014). Formation and
- 601 deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay-
- 602 Pyrenees. *Tectonics*, 33(7), 1239–1276. https://doi.org/10.1002/2014TC003529
- Warr, O., Giunta, T., Ballentine, C. J., & Sherwood Lollar, B. (2019). Mechanisms and rates of 4He,
- 40Ar, and H2 production and accumulation in fracture fluids in Precambrian Shield environments.
- 605 *Chemical Geology*, 530, 119322. https://doi.org/10.1016/j.chemgeo.2019.119322
- Worden, R., & Matray, J. (1995). Cross formational flow in the Paris Basin. Basin Research, 7(1), 53–66.
- 607 https://doi.org/10.1111/j.1365-2117.1995.tb00095.x