TC-GEN: Data-driven Tropical Cyclone Downscaling using Machine Learning-Based High-resolution Weather Model

Renzhi Jing1, Jianxiong Gao2, Yunuo Cai2, Dazhi Xi3, Yinda Zhang4, Yanwei Fu2, Kerry A. Emanuel5, Noah S. Diffenbaugh1, and Eran Bendavid1

1Stanford University
2Fudan University
3Princeton University
4Google LLC
5Massachusetts Institute of Technology

January 16, 2024

Abstract

Synthetic downscaling of tropical cyclones (TCs) is critically important to estimate the long-term hazard of rare high-impact storm events. Existing downscaling approaches rely on statistical or statistical-deterministic models that are capable of generating large samples of synthetic storms with characteristics similar to observed storms. However, these models do not capture the complex two-way interactions between a storm and its environment. In addition, these approaches either necessitate a separate TC size model to simulate storm size or involve post-processing to introduce asymmetries in the simulated surface wind. In this study, we present an innovative data-driven approach for TC synthetic downscaling. Using a machine learning-based high-resolution global weather model (ML-GWM), our approach is able to simulate the full life cycle of a storm with asymmetric surface wind that accounts for the two-way interactions between the storm and its environment. This approach consists of multiple components: a data-driven model for generating synthetic TC seeds, a blending method that seamlessly integrate storm seeds into the surrounding while maintain the seed structure, and a recurrent neural network-based model for correcting the biases in maximum wind speed. Compared to observations and synthetic storms simulated using existing statistical-deterministic and statistical downscaling approaches, our method shows the ability to effectively capture many aspects of TC statistics, including track density, landfall frequency, landfall intensity, and outermost wind extent. Taking advantage of the computational efficiency of ML-GWM, our approach shows substantial potential for TC regional hazard and risk assessment.
TC-GEN: Data-driven Tropical Cyclone Downscaling using Machine Learning-Based High-resolution Weather Model

Renzhi Jing 1,2, Jianxiong Gao 3, Yunuo Cai 4, Dazhi Xi 5, Yinda Zhang 6, Yanwei Fu 4, Kerry Emanuel 7, Noah S. Diffenbaugh 1,8,9, Eran Bendavid 2,10

1Woods Institute for the Environment, Stanford University, Stanford, CA, USA
2School of Medicine, Stanford University, Stanford, CA, USA
3Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
4School of Data Science and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
5Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
6Google LLC, 1600 Amphitheatre Pkwy, Mountain View, CA, USA
7Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
8Department of Earth System Science, Stanford University, Stanford, CA, USA
9Doerr School of Sustainability, Stanford University, Stanford, CA, USA
10Department of Health Policy, Stanford University, Stanford, CA, USA

Key Points:
• We develop a novel approach for tropical cyclone downscaling using a machine learning-based high-resolution global weather model.
• We generate and integrate synthetic tropical cyclone seeds into the surrounding environment using a data-driven approach.
• The new tropical cyclone downscaling approach is capable of simulating the two-way interactions between storms and the environment as a unified system.

Corresponding author: Renzhi Jing, rjing@stanford.edu
Corresponding author: Yanwei Fu, yanweifu@fudan.edu.cn
Abstract

Synthetic downscaling of tropical cyclones (TCs) is critically important to estimate the long-term hazard of rare high-impact storm events. Existing downscaling approaches rely on statistical or statistical-deterministic models that are capable of generating large samples of synthetic storms with characteristics similar to observed storms. However, these models do not capture the complex two-way interactions between a storm and its environment. In addition, these approaches either necessitate a separate TC size model to simulate storm size or involve post-processing to introduce asymmetries in the simulated surface wind. In this study, we present an innovative data-driven approach for TC synthetic downscaling. Using a machine learning-based high-resolution global weather model (ML-GWM), our approach is able to simulate the full life cycle of a storm with asymmetric surface wind that accounts for the two-way interactions between the storm and its environment. This approach consists of multiple components: a data-driven model for generating synthetic TC seeds, a blending method that seamlessly integrate storm seeds into the surrounding while maintain the seed structure, and a recurrent neural network-based model for correcting the biases in maximum wind speed. Compared to observations and synthetic storms simulated using existing statistical-deterministic and statistical downscaling approaches, our method shows the ability to effectively capture many aspects of TC statistics, including track density, landfall frequency, landfall intensity, and outermost wind extent. Taking advantage of the computational efficiency of ML-GWM, our approach shows substantial potential for TC regional hazard and risk assessment.

Plain Language Summary

Tropical cyclones (TCs) cause significant destruction each year. It is crucial to accurately assess the risks they present, but this is challenging due to a scarcity of historical data. A commonly used approach involves creating a large number of synthetic TCs that share key characteristics with real storms, enabling an effective regional risk assessment. However, traditional synthetic TC generation approaches do not capture the complex interactions between storms and their larger-scale environment. Furthermore, these approaches do not adequately represent the asymmetric structure of TCs, despite the crucial role that they play in modeling storm-related hazards such as rainfall and surges. Recently, advances in machine learning-based global weather forecasting (ML-GWM) have provided highly accurate and efficient high-resolution global weather forecasts that surpass the capabilities of conventional numerical weather forecasting. In this study, we introduce a novel synthetic TC generation approach, which we call the synthetic TC-GENerative Model (or ”TC-GEN”), leveraging the state-of-the-art ML-GWM. We show that TC-GEN can generate a large number of synthetic storms that allow the interaction between the storm and its environment. We evaluate the performance of TC-GEN in various aspects, including several landfall characteristics, which are of the most importance for local TC risk analysis. Our study also serves as a compelling example of the transformative impact of machine learning and data science in revolutionizing climate studies during the era of artificial intelligence.

1 Introduction

Tropical cyclones (TCs) are among the most destructive natural disasters, causing substantial damage and losses in multiple ocean basins annually. In a warming climate, it is projected that TCs are likely to become more intense, with an expected increase in both the peak maximum wind speed and the proportion of strong TCs in the future (Pörtner et al., 2022; H. Lee et al., 2023). Accurate assessment of TC tracks and intensities is fundamental to reducing the impacts of landfalling storms. However, with around 90 storms occurring every year and an average of only 20 making landfall, this task is challenging due to the shortage of historical data required for regional risk assessment. To overcome data deficiency, a widely used approach is to generate synthetic TCs that are capable of responding to various climate
conditions (K. Emanuel et al., 2008; C.-Y. Lee et al., 2018; Jing & Lin, 2020). Using large
samples of synthetic storms, including extreme events with extended return periods, enables
a comprehensive risk assessment for specific regions in both current and future climates.

Previous studies on synthetic TC generation have primarily employed two main ap-
proaches: (1) statistical re-sampling, and (2) physical-based downscaling methods. Statistical
re-sampling models simulate TC genesis, tracks, and intensities (maximum wind speed
or minimum central pressure) based purely on historical observational datasets, without
considering environmental conditions. Examples of such models include those developed by
(Vickery et al., 2000; James & Mason, 2005; Bloemendaal et al., 2020). These models typ-
ically require a limited number of input variables, have low computational costs, and thus
are easily applicable on a global scale. However, these models are not based on physical
principles and cannot be accurately applied to a non-stationary climate due to changes in
the background environment. On the other hand, physically-based downscaling methods
relate TC characteristics to the large-scale background environmental conditions, making
them environment-dependent. These methods can be statistical-deterministic (e.g., models
developed by (K. Emanuel et al., 2006)) or purely statistical (e.g., models developed by
(C.-Y. Lee et al., 2018; Jing & Lin, 2020)). Such environment-dependent approaches are
able of simulating the TC climatology in future climate scenarios and, therefore, are suit-
able for climate change studies (K. Emanuel et al., 2008; C.-Y. Lee et al., 2020; Jing et al.,
2021). Since the first synthetic TC downscaling approach in this family of models appeared
in 2006, significant advances have been made in each of the three components (Huang et
al., 2021; Huang, Wang, Jing, et al., 2022), and these approaches have been widely used
for applications such as TC-induced surge risk assessment (Lin et al., 2012), regional loss
assessment (Meiler et al., 2022; Huang, Wang, Liu, et al., 2022), and TC-induced wind load
analysis (Kareem et al., 2019).

Both statistical and statistical-deterministic synthetic downscaling methods simulate
the complete lifecycle of TCs using environmental parameters derived from the background
environment. However, they cannot simultaneously simulate the two-way interactions be-
tween the storm and its surrounding environment; therefore, the environment cannot re-
respond correspondingly to the development of the storm. Furthermore, traditional ap-
proaches do not comprehensively simulate the characteristics of TCs (i.e. genesis, track,
intensity, and size) as a cohesive system. For example, although the TC intensity is deter-
mined based on environmental predictors along the track, the storm track is predominantly
driven by background winds, which is independent of the intensity component. Given the
clear and strong correlation between these components, it is prudent to consider the poten-
tial correlations between these components (Ruan & Wu, 2022). Moreover, the asymmetries
in the TC surface wind field are not directly captured. Some approaches do not output the
TC size and require a separate size component to determine the outer radius of the storm
by random sampling from historical data (Jing & Lin, 2020). Other methods provide the
radius of maximum wind (K. Emanuel et al., 2008); however, they require an additional
parametric wind model to generate the full surface wind field, followed by post-processing
to incorporate asymmetries related to storm translation speed and wind shear (Lin et al.,

The ideal synthetic downscaling method would simultaneously simulate all charac-
teristics of the TC as an integrated system, including the interactions between storms and the
surrounding environment, to generate detailed wind fields with greater accuracy but similar
computational efficiency to that of traditional statistical and statistical-deterministic down-
scaling methods. Recent progress in machine learning-based high-resolution global weather
modeling (ML-GWM) (Pathak et al., 2022; Bi et al., 2022; Lam et al., 2022) has made
this possible. ML-GWM systems are based on three-dimensional neural networks that are
trained on high-quality reanalysis datasets, such as the ERA5 reanalysis (Hersbach et al.,
2020), to predict weather around the globe. A significant advantage of ML-GWMs is their
substantially lower computational costs compared to traditional numerical weather fore-
casting, while still operating at high spatial resolutions. Representing the cutting edge of ML-GWM, Pangu-Weather (Bi et al., 2022) has outperformed the operational Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts in medium-range forecasting, with speeds more than 10,000 times faster. The high spatial resolution of 0.25 degrees also enables Pangu-Weather to precisely track TCs based on simulation results.

In this study, we leverage ML-GWM to create a novel ML-based approach for synthetic TCs downscaling, which we call the synthetic TC-GENerative Model (or "TC-GEN"). This involves generating a synthetic TC seed for each storm through a data-driven process, merging it with the background environment, and simulating both the storm and its surroundings simultaneously with Pangu-Weather. To achieve this, we first determine the annual frequency, date, and location of synthetic TCs using an existing environment-based TC genesis model. Next, we perform a Principal Component Analysis on all historical TCs at genesis, identifying the principal components that effectively capture most of the variances in TC genesis. Using these principal components, we generate synthetic TC seeds with weights derived from historical data. We then integrate these TC seeds into the surrounding environment using Poisson blending, a technique widely used in image processing to seamlessly merge two images, ensuring that the TC seeds are naturally embedded within the larger environmental context while still maintaining important wind structures. Finally, we run Pangu-Weather using their pre-trained model, which enables the joint simulation of both the storm and its surrounding environment, and bias-correct simulated intensity to real intensity. This integrated approach allows us to gather key characteristics of the TC, such as the track and the maximum wind speed. It also provides spatial details such as the full wind field, allowing for a direct derivation of the outermost extent of the storm. It is worth noting that several key steps of this ML-based method are data driven, relying heavily on historical data that lack substantial input from physics. Furthermore, while the spatial resolution of 0.25° is a high resolution for global climate models, it is still too coarse to accurately resolve the inner core and the structure of a storm. Therefore, we should use the simulated three-dimensional structure including the horizontal surface wind field with care, as it is likely to be unrealistic.

Despite these limitations, our ML-based method offers a unique set of collective advantages compared to previous TC downscaling approaches: 1) Holistic simulation: unlike previous studies where the genesis, track, and intensity of the storm are simulated separately, this approach can simulate these three storm components together as a cohesive system; 2) Integrated simulation: similar to numerical modeling, this approach can simulate both the storm and its environment simultaneously, thus allowing for the two-way interactions between the storm and the environment; 3) Intrinsic asymmetry: while the TC core and intensity may not be fully resolved, this approach has the capability to provide crucial asymmetric characteristics in the TC surface wind field. This, in turn, allows for the inference of the asymmetric outermost wind extent of a storm, which is essential for studying tropical cyclone-induced hazards such as surges and heavy rainfall; 4) Efficiency: utilizing pre-trained Pangu-Weather, this approach inherits the efficiency of statistical downscaling methods that require little computational resources, enabling large samples of synthetic TCs to be generated in days, a time frame comparable to the work of (Bloemendaal et al., 2020); 5) Scalability: this approach can be easily applied to other ocean basins and other high-resolution climate datasets, including future climate projections such as those in CMIP6. A successful extension of this approach is achieved when the climate dataset used for training processes high resolution for detecting storm eyes, provides a reasonable representation of the storm’s outer size, and involves the development of a corresponding pre-trained machine learning model as the core simulator.

To evaluate TC-GEN, we generate a large sample of synthetic TCs and compare those simulated storms with historical observations. We also place TC-GEN in context with an existing statistical-deterministic downscaling approach, represented by Emanuel et al.
We choose these two existing approaches as they are both environment dependent and have distinct model components. The metrics we use for comparison include the density of the tracks over the ocean, the maximum lifetime intensity, the landfall frequency, and the landfall intensity distributions. Given that KE08 and PepC lack the ability to simulate the outer size of TC, we only compare the distribution of TC outer size simulated by TC-GEN with that of the historical TCs identified using reanalysis data. In all of these metrics, we demonstrate a strong alignment between simulated storms and observational data. We further assess the adaptability of TC-GEN to different reanalysis datasets through two analyses: one with the ERA5 reanalysis, on which Pangu-Weather is trained, but using different temporal resolutions for model initialization, and the other using an alternative reanalysis dataset from the National Centers for Environmental Prediction (NCEP). We show that the effectiveness of TC-GEN depends on the consistency between the training reanalysis dataset used to train the ML-GMW and the data used for model initialization. Based on these analyses, we summarize the strength and limitations of TC-GEN and propose potential improvements for future work.

2 Pre-trained Models and Data

2.1 Neural network-based global weather model

In this study, we use Pangu-Weather as the core ML-GWM to generate synthetic TCs. Pangu-Weather is an artificial intelligence-based model for medium-range global weather forecasting, which has been shown to outperform the operational integrated forecasting system of the European Center for Medium-Range Weather Forecasts (ECMWF) (Bi et al., 2022).

Pangu-Weather is trained on atmospheric reanalysis data from the ERA5 reanalysis data (Hersbach et al., 2020), using 69 atmospheric and surface variables as input and forecasting these variables for the subsequent time step. The 69 variables include 65 upper-air variables (geopotential height, specific humidity, temperature, u and v component of wind at 13 pressure levels) plus four surface weather variables (2m temperature, u- and v- component of 10m wind speed, and mean sea level pressure). Pangu-Weather offers four pre-trained models that are capable of forecasting global weather data 1, 3, 6, and 24 hours ahead. We use the model with a lead time of 6 hours since it is consistent with the temporal resolution of TC IBTrACS data (see Section 2.2). Pangu-Weather has the ability to produce accurate simulations that span multiple consecutive days, a time frame that is adequate to simulate the entire life span of the most TCs. Pangu-Weather is open-source, and the pre-trained models can be downloaded at https://github.com/198808xc/Pangu-Weather.

Pangu-Weather has several distinct advantages, making it highly suitable for this study. First, Pangu-Weather is among the state-of-the-art ML-GWM systems with the highest performance in weather forecasting. Second, Pangu-Weather has a high horizontal resolution of 0.25° x 0.25°. Although the thermodynamic processes of the TCs cannot be fully resolved at this spatial resolution, it is sufficient to detect the low pressure center, which enables effective storm eye tracking. Third, Pangu-Weather is computationally efficient (more than 10,000 times faster than operational dynamical models), making it capable of simulating large numbers of synthetic storms. In our experiments, we run Pangu-Weather with 8 RTX A6000 GPUs, which adequately support all our computational tasks.

2.2 Tropical Cyclone Data

TC observations are extracted from IBTrACS data (version v04r00) (Knapp et al., 2018, 2010), which includes the location (latitude and longitude) of each storm every 6 hours, along with its maximum sustained wind speeds measured at a height of 10 meters
above the sea surface. We use historical TC data in the North Atlantic Basin between 1979 and 2022 to generate TC seeds, correct biases in intensities simulated from Pangu-Weather, and evaluate TC-GEN performance. We use extended TC data dating back to 1900 to analyze landfall frequency, which provides a more precise assessment of sampling errors with a larger number of TC tracks.

2.3 Atmospheric Reanalysis Data

Pangu-Weather requires global atmospheric and surface variables at the current time step to forecast the next step. To be consistent with the input setup for the Pangu-Weather model, we use ERA5 reanalysis with a resolution of 0.25° × 0.25°, the highest available spatial resolution, and a temporal resolution of both 6-hour and monthly reanalysis data to initiate Pangu-Weather. Using 6-hour reanalysis data for Pangu-Weather initialization is intuitive, as it ensures alignment with the model setup and prevents domain gaps. However, generating synthetic TCs with 6-hourly reanalysis data presents two challenges. First, introducing a synthetic TC to the 6-hourly reanalysis data may result in multiple storms developing on the same map. This does not reflect reality, as the simultaneous occurrence of multiple storms is relatively rare (Chowdhury et al., 2022). Second, generating synthetic TCs by initiating Pangu-Weather with 6-hourly data requires downloading extensive historical ERA5 reanalysis data, resulting in substantial data storage requirements. On the contrary, starting Pangu-Weather with monthly data significantly reduces the data storage burden and mitigates the problem of simultaneous occurrence. In this study, we use both 6-hourly and monthly reanalysis data for Pangu-Weather initialization, and under both scenarios we use the pre-trained model with a lead time of 6 hours to simulate storms. We denote these two scenarios as 'TC-GEN hourly' and 'TC-GEN monthly' in the following text and results.

In addition to ERA5 reanalysis, we test TC-GEN performance when initiating Pangu-Weather with the NCEP GFS from Global Forecast Grids Historical Archive at 0.25°×0.25° resolution (for Environmental Prediction/National Weather Service/NOAA/US Department of Commerce, 2015). We opt for this reanalysis dataset because it provides all 69 variables required by Pangu-Weather, and it is available at a resolution of 0.25°×0.25° with global coverage.

2.4 Existing downscaling approaches

We contextualize TC-GEN by comparing it with two existing synthetic downscaling approaches. The first is the statistical-deterministic model developed by Emanuel et al. (2008) (K. Emanuel et al., 2008), which applies a random seeding method to initiate the storm, a beta and advection model based on local winds to propagate the storm, and a deterministic Coupled Hurricane Intensity Prediction System (CHIPS; (K. Emanuel et al., 2004)) model to estimate the intensity of the storm based on the local thermodynamic state of the atmosphere and ocean. The model has been extensively applied to assess TC hazards (K. Emanuel, 2017; Marsooli et al., 2019), economic losses (Mendelsohn et al., 2012; Meiler et al., 2022), and changes in TC climatology under future projected climate conditions (K. Emanuel et al., 2008; Jing et al., 2021). Here, we compare our ML-based TC-GEN results with a total of 4,100 synthetic TCs from 1980-2020 that intensify and reach TC strength (lifetime maximum intensity exceeds 34 kt).

We also compare our TC-GEN results with the "PepC", a statistical synthetic downscaling approach of Jing and Lin (2020) (Jing & Lin, 2019). PepC has three components, a genesis model, a track model, and an intensity model. The genesis component determines annual frequency, as well as the time and location of weak vortices. The genesis model is developed using Poisson regression based on four large-scale environmental variables: absolute vorticity, wind shear, relative humidity, and maximum potential intensity (K. A. Emanuel, 1988), which are contained in a genesis index (Tippett et al., 2011). After initialization,
an analog-wind track model is used to propagate the storm based on analog factors (from historical track patterns) and local in situ winds. The intensity of the storm is simulated as a Markov process using an environment-dependent hurricane intensity model (Jing & Lin, 2019). In (Jing & Lin, 2020), the authors generated more than 55,000 TCs from 100 independent realizations of the genesis of TCs during the period 1979-2014. To compare with our ML-based TC-GEN results, we randomly select 10 independent 36-year realizations, including a total of 3,690 TCs that intensify and reach TC strength.

3 TC-GEN: data-driven synthetic TC downscaling approach

TC-GEN, our data-driven synthetic TC downscaling approach based on high-resolution ML-GWM, includes the following main steps:

1. Obtain the annual frequency as well as the date and locations of synthetic TCs from an environment-based TC genesis model;
2. Generate synthetic TC seeds using data-driven approach;
3. Integrate synthetic TC seeds into the background environment represented by global reanalysis data;
4. Run Pangu-Weather to simulate the complete TC life cycle, detecting and tracking the TC from simulation outputs;
5. Adjust TC intensity (maximum sustained winds) by an intensity bias correction model;
6. Retrieve the size of synthetic TCs (outer extent where the wind decreases to a specific threshold) from the simulated TCs.

The idea is shown in Figure 1 and we explain each step in detail in the following sections.

Figure 1. TC-GEN. We propose an AI-empowered approach for synthetic TC downscaling where TC seed is created through a data-driven approach and then incorporated into a reanalysis environment map. Both the TC and its surrounding environment are then simulated in an interactive manner. The idea is illustrated in the figure, which presents five snapshots of total wind at different stages of the storm’s life cycle.

3.1 Annual counts, date and locations of TC Seeds

The first step of TC-GEN is to determine the annual frequency and the date and location of the synthetic TCs. We use an environment-based hierarchical Poisson genesis model to determine the number of synthetic storms that occur each year, as well as when and where they originate over the ocean basin. This model is the genesis component of PepC (Jing & Lin, 2020), which has been shown to generate TC formations that align closely with observations, including interannual variations. This genesis model simulates the formation
of TCs for each month. When initializing Pangu-Weather with 6-hour reanalysis data, we randomly assign the precise date and time for each storm within the month of its genesis.

3.2 Structured TC seeds generation via data-driven approach

Previous studies using either statistical-deterministic or purely statistical TC downscaling approaches provide only the timing and position of TC seeds. There is no assumption about the structures or spatial features of the synthetic TCs at genesis. To create synthetic TC seeds with fine-grained spatial features, we employ a two-step process. First, we use principal component analysis (PCA) to learn a linear representation of atmospheric and surface variables from historical TCs at their genesis. PCA helps identify the most significant patterns in the data. Next, we create synthetic TC seeds based on this representation by sampling various sets of linear blending weights, according to the variance in the historical data.

Principal Component Analysis (PCA) is a widely recognized method used for dimension reduction in the fields of data science and machine learning. Given high-dimensional data represented by a matrix X with dimensions $M \times N$, where M is the number of observations and N is the dimension of features, the main objective of PCA is to identify a set of orthogonal axes (principal components) along which the variance of the data is maximized. By projecting the original data onto these principal components, PCA effectively reduces the complexity of the data, while retaining the essential information contained in the dataset. In a low-rank system, a small number of principal components are sufficient to explain the majority of the variance present in the data. Consequently, in such systems, it is feasible to generate synthetic data with only a few key principal components. PCA has been successfully applied in many earth science applications (Nandi et al., 2016; Bretherton et al., 1992), and we refer the reader to the survey (Abdi & Williams, 2010) for more details.

We use 690 historical TCs in the period 1979 - 2022 to create a linear representation of TC seeds using PCA. A TC seed is defined as a circular region with a radius equivalent to 64 grid cells at genesis (approximately 1600 kilometers), centered on the storm's eye. This circular region is large enough to encompass the outermost extent of most TCs at genesis. We collect TC seeds for each of the 69 atmospheric and surface variables from the ERA5 reanalysis for all $M = 690$ storms, which form a matrix with dimensions of $128 \times 128 \times 69 \times 690$, representing historical TC seeds. Next, we perform PCA to reduce the dimensions of the data. The cumulative sum of the largest 20 eigenvalues is shown in Figure 2. We show that historical TC seeds form a low-rank system, with the top 10, 15, 20 principal components sufficient to explain more than 94.1%, 96.2%, and 97.2% of the variance in the data. Moreover, the top 50, 100 and 500 principal components explain more than 99% of the variance, with the top 500 principal components explaining more than 99.9%. Using 50, 100 and 500 principal components, we show that the reconstructed wind fields (including total wind, as well as the u and v components) effectively preserve most of the detailed spatial features present in historical TC wind fields, as in Figure 2. To ensure quality, we use 500 principal components that represent the majority of the variations in actual environmental fields.

We create synthetic TC seeds by randomly sampling the low-dimensional space based on the top 500 principal components. The weight of each principal component is determined by randomly sampling from a Gaussian distribution centered around zero, with a variance equal to its corresponding eigenvalue (i.e. the variance explained). This allows synthetic TC seeds to have the same distribution as observational TC seeds. In Figure 3 we show three synthetic TCs at their genesis. We show four important variables (mean sea level pressure, temperature, and surface u- and v-winds) to demonstrate the effectiveness of this approach in simulating realistic TC seeds at genesis with diverse characteristics in terms of intensity, radius, and asymmetry.
Figure 2. Principal Component Analysis on TC genesis. We run PCA on TC historical data to learn a low dimensional representation for TC seeds at genesis. Subplot (a) shows the cumulative sum of the eigenvalues sorted in descending order, where each point represents the proportion of total variance explained by considering the corresponding number of top principal components. Subplot (b) shows the reconstruction of TC seeds at genesis for two distinct historical storms, using 50, 100, 500 principal components respectively. Both TC seeds are almost completely reconstructed using 500 principal components.

3.3 Integrating synthetic TC seeds into background environment with weighted Poisson blending

After generating a synthetic TC seed, we integrate it into the surrounding environment at a specific date and location identified by the PepC genesis component (see Sec 3.1). This step is critical for Pangu-Weather to simulate the environment along with the synthetic TC seeds. To achieve seamless integration of TC seeds with the background environment, we employ Poisson blending, a widely used approach to smoothly insert one image into another, without introducing artifacts at the boundary of the inserted image (Pérez et al., 2003). The fundamental concept of Poisson blending is to copy the gradients between spatially neighboring pixels rather than to directly copy the absolute color values. This approach ensures a smooth transition between different regions of the images, effectively eliminating visible seams and enhancing the coherence of the blended result.

Poisson blending can be mathematically expressed as follows: Let f^* be a known function defined on a closed subset of $S \subset \mathbb{R}^2$ (for example, color defined on pixel grids), and
Figure 3. Synthetic TC Seeds. This figure shows three synthetic TC seeds at genesis using the data-driven approach with 500 principal components. Each column shows one case, where mean sea level pressure, temperature, surface u- and v-winds are visualized.

Let g be another known function defined on a closed subset $\Omega \subset S$ with boundary $\partial \Omega$. The objective of poisson blending is to find an unknown function f on Ω, such that

$$\min_f \iint_\Omega |\nabla f - \nabla g|^2, \text{with} f|\partial \Omega = f^*|\partial \Omega$$

where $\nabla = [\frac{\partial}{\partial x}, \frac{\partial}{\partial y}]$. This optimization aims to achieve a blended result where, within the source region, it closely resembles the gradience of g, while at the boundary it should be similar to f^*. For more details and numerical solutions, we refer the reader to (Pérez et al., 2003).

As an analogy to our problem, f^* and g represent the global environment map (that is, target matrix) and synthetic TC seeds (that is, source matrix), respectively. In this context, Poisson blending aims to combine these two matrices, ensuring that the gradients of the blended results within the source region closely resemble the synthetic TC seeds, while at the boundary, they should be similar to the background environment. In practice, we find that naive Poisson blending still results in noticeable artifacts. Therefore, we adopt a linear
blending technique that incorporates both the source and target gradients, with a weight determined by the distance to the boundary. The optimization is modified to accommodate this approach:

$$\nabla = (1 - \lambda)\nabla f^* + \lambda \nabla g, \lambda = \begin{cases} \frac{5d}{R}, & d < \frac{R}{5} \\ 1, & \text{else} \end{cases}$$ \hspace{1cm} (2)$$

where d is the distance of each pixel to the boundary and R represents the radius of the blended region. This optimization guarantees a smooth integration of TC seeds into the global environment map, with natural transitions at the boundaries and the structure of TC well maintained.

We use this Poisson blending approach to seamlessly integrate the 69 atmospheric and surface variables of synthetic TC seeds within a radius of 64 grid cells (approximately 1600 km) into the corresponding ERA5 reanalysis data. In Figure 4, we show the Poisson blend process using mean sea level pressure as an example, which clearly reveals the eye of the storm. Similarly, we show three cases as examples of weak, moderate, and strong storms, illustrating the effectiveness of Poisson blending across a range of storm characteristics.

![Figure 4. TC seed integration using Poisson blending](image)

This figure shows the advantage of Poisson blending over naive stitching when integrating synthetic TC seeds into the environment. Mean sea level pressure is used as an example due to its ability to clearly reveal the eye of the storm. Naively stitching results in a sharp and unrealistic boundary. In contrast, the Poisson blending approach effectively integrates TC seeds into the environment, preserving both structures and achieving a smooth blend.

3.4 Simulation and tracking

After seamlessly integrating the generated TC seeds into the background environment map, we proceed to run Pangu-Weather, simulating the entire life cycle of each storm over a 15-day period, with 6-hour intervals between each step. To track the location of storm center from Pangu-Weather outputs, we formulate a Gaussian kernel over mean sea level pressure and vorticity at 10 meters, to identify the local maximum vorticity or minimum
pressure associated with the characteristic bell-shaped symmetric structure typical of a storm. Then we determine the center of the storm by averaging the locations of these two local extrema. Empirically, we set $\sigma = 2$ for the Gaussian kernel and $\sigma_1 = 2$, $\sigma_2 = 8$ for the Laplacian kernel, for the best performance. In most cases, the positions of maximum vorticity closely align with those of minimum sea level pressure. However, when a TC's symmetric structure is not well maintained, this approach aids in stabilizing the outcomes and provides robust tracking. It should be noted that Pangu-Weather includes an algorithm for tracking TCs, which is based on relative vorticity, geopotential thickness, and 10-m wind speed. Our tracking method delivers comparable results, while requiring fewer data inputs. This advantage makes our approach generalizable to other weather forecasting systems that may lack specific variables (for example, ForecastNet does not output vorticity; see (Pathak et al., 2022)).

3.5 Bias correction of TC maximum wind speed

The Pangu-Weather model is trained using ERA5 reanalysis data. Since the fine-grained structure of a storm cannot be fully resolved in the ERA5 reanalysis data, the physical processes of simulated storms are also not correctly resolved. This leads to an underestimation of the maximum wind speeds of the TC. To address this problem, we develop a separate machine learning model to correct this bias based on the characteristics of the storm and the environment within the inner region of the storm. Due to the recurrent nature of this problem, where the wind speed at time t is highly correlated with the wind speed at previous time steps, we formulate the problem using a recurrent neural network based on long-short-term memory (LSTM). The structure of our network is shown in Figure 5 subplot b, where the bias correction stage is formulated as:

$$\begin{align*}
I_{\text{true}}(t) &= e^a(t)I_{\text{raw}}(t) + b(t) \\
(a(t), b(t)) &= F(E(x(1)), E(x(2)), \ldots, E(x(t)))|\theta)
\end{align*}
$$

In Eq. 3, we use the term "raw" to indicate the intensity directly simulated from TC-GEN, which is expected to have the same statistics as those in the ERA5 reanalysis data. The term "true" is used to denote the real intensity, which has statistics similar to IBTrACS. Thus, I_{raw} and I_{true} represent the maximum wind speed before and after bias correction. $E(x(t))$ represents the environmental predictors extracted from the area surrounding the TC center, which is located at $x(t)$ at time t. F represents a machine learning model with learnable weights θ.

We use five environmental variables (mean sea level pressure, u- and v- component of 10m wind speed, relative humidity at 850 hpa and temperature at 850 hpa) that have been identified as the most important predictors of the intensity of TC (Jing & Lin, 2019). At each time step, the five variables within a circular region, covering a radius equivalent to 49 grid cells and centered at the TC, are combined with a positional embedding (Lam et al., 2022) to create a raw input. We then convert the raw input to a feature vector using a feature encoder comprised of 4 ResBlocks, and feed these feature vectors into an LSTM, predicting $a(t), b(t)$ at each time step.

In practice, we note that a model trained with ERA5 as input may not perform equally well during the test phase when the inputs are derived from Pangu-Weather predictions. This discrepancy arises because of the well-known domain gap issue in deep learning (Tremblay et al., 2018; Wei et al., 2018; Nam et al., 2021). Essentially, nuanced differences between training and testing data on the input side (Pangu-Weather simulation vs. ERA5 in our case) can lead to a catastrophic drop in model performance.

To bridge the domain gap, we pre-train the feature encoder so that the extracted feature is informative to reconstruct the raw ERA5 environment, yet indistinguishable in terms of its source, i.e. whether it comes from ERA5 or Pangu-Weather. Such properties are achieved by training the feature encoder through an auto-encoder architecture, as shown in the Figure.
Specifically, compressed feature vectors go through a feature encoder, followed by a feature decoder to reconstruct the original features using an L1 loss. Additionally, we introduce an adversarial loss that performs a binary classification task, attempting to discern the source of the feature (ERA5 or Pangu-Weather). The feature encoder is trained to deceive the discriminator to the extent that it cannot identify the source of the feature. As a result, the extracted features become domain-agnostic after this stage and the domain gap is mitigated.

Overall, we start by training the auto-encoder architecture using a combination of environment maps sampled from both the ERA5 and Pangu-Weather output (Figure 5 subplot a). Once the autoencoder converges, we discard the decoder, freeze the encoder weights for feature extraction, and only update the LSTM weights (Figure 5 subplot b). To train the LSTM, we divide the historical data of the TCs from 1979 to 2021, randomly selecting 80% of the TCs for training and reserving the remaining 20% for testing. We use the real maximum wind speed data from IBTrACS as ground truth. The LSTM is trained with an AdamW optimizer (Loshchilov & Hutter, 2017), with a Huber loss and a learning rate of 0.0001 over 10 iterations.

Figure 5. Structure of the intensity bias correction model
The model consists of two stages, (a) a pre-trained stage to bridge domain gap between ERA5 and Pangu-Weather output so that all features become domain-agnostic; and (b) a bias correction stage that adjust the maximum wind speed using a Long Short-Term Memory (LSTM) model.

The performance of the LSTM-based bias correction model is illustrated in Figure 6, which shows four cases that represent various characteristics of the storm. These include typical growth and decay, rapid intensification, and storms that weaken after hitting an island but subsequently strengthen after moving over the ocean.

3.6 Extracting the radius of outer size from each storm
The destructive potential of a TC is related to both its maximum sustained wind speed and the radial extent of the near-surface wind, the latter typically measured by the outer
Figure 6. Examples of bias correction in TC maximum wind speeds. Four synthetic TCs are shown including (a, c) two TCs illustrating a storm’s typical growth and decay, (b) TC underwent rapid intensification, and (d) TC hit small islands followed by subsequent growth. The bias correction model effectively simulates the realistic evolution of intensity while capturing the correlation of TC intensity with the previous time step, thus maintaining strong continuity.
10-meter azimuthal-mean tangential wind speeds decrease to a certain threshold (12 m/s, 6 m/s, and 2 m/s).

4 TC-GEN Evaluation

We evaluate the performance of TC-GEN by comparing simulated TCs with historical observations for the following TC characteristics: track density, landfall frequency along the US-Mexico coastline, lifetime maximum intensity (LMI), landfall intensity, and outer size under three size metrics. For each TC, we generate a synthetic TC seed and blend it into the corresponding hourly or monthly environment map, with the location and time provided by the PepC genesis model. We then run Pangu-Weather to simulate each storm and apply the bias correction model to adjust the maximum intensity for each step. The track is terminated if the raw maximum intensity is below 8 m/s, the adjusted intensity is below 15 kt, the central vorticity is below 5×10^{-5} s$^{-1}$, or if the storm has been over the land for five consecutive steps, which is equivalent to 30 hours. To form a fair comparison, we remove storms with a lifetime maximum intensity less than 25 kt for all datasets. As TCs would undergo an extratropical transition at high latitudes, we restrict our analysis to samples where the storm center is south of 50N. The remaining storms are used for the TC-GEN evaluation.

4.1 Track Density

Figure 7 compares the simulated tracks that are initiated with both hourly and monthly data, with observed tracks and simulated tracks using KE08 and PepC. The colors represent the spatial track density normalized to the maximum of the basin. We show that both sets of simulated tracks replicate the typical recurving pattern seen in the observed tracks relatively well, which is comparable to KE08 and PepC. Compared to observations, TC-GEN simulated tracks exhibit a negative bias in the main development region, mainly stemming from the negative bias in the genesis component of PepC within this region. We test this hypothesis with a sensitivity test by resampling the genesis according to the spatial distribution of historical genesis locations. After sampling, we find that the simulated tracks effectively capture the hotspots in the main development region, the southeast US coast, and the Gulf of Mexico, although there is a slight positive bias in the Gulf of Mexico with hourly data and in the West Caribbean Sea with monthly data (Figure S1).

We further evaluate the performance of TC-GEN by comparing the 6-hourly north-south and east-west displacements of simulated and observed tracks, which serves as a means to assess TC-GEN’s performance in simulating individual tracks. The results are shown in Figure 8. All simulated data sets are largely consistent with the observations. For simulated tracks initiated with hourly data, there is a slight positive bias for positive meridional displacement, a slight negative bias for negative meridional displacement; and correspondingly, a negative bias for positive zonal displacements and a positive bias for negative zonal displacements, which could come from fewer recurvations in simulated storm tracks that originate in the main development region. Additionally, positive biases in meridional displacements may also arise from the deviations in eastward moving tracks at high latitude (near Europe), where they should have been terminated because of their low wind intensity. These patterns are also seen in simulated tracks that are initiated with monthly reanalysis data. In general, both datasets exhibit comparable performance to existing downscaling methods, with simulated tracks initiated using hourly data showing slightly better performance than those initiated with monthly data.

4.2 Landfall Frequency

We examine the annual regional landfall frequency at coastal locations along the North Atlantic coastline. To help indicate locations, a total of 186 mileposts (MPs) are defined
Figure 7. Track density

Track density is calculated as the accumulated number of TC passes into each 0.75 × 0.75 grid box normalized by the maximum grid value of the basin, smoothed with a Gaussian low-pass filter. Tracks over land are removed in each subplot. Simulated tracks initiated with (b) hourly data and (d) monthly data are compared with (a) observations, (c) KE08 and (e) PepC. All simulated tracks replicate the typical recurving pattern seen relatively well.

Following Vickery et al. (2000) (Vickery et al., 2000), as shown in Figure 9, to cover the coastline with 100-km spacing along the Mexican coastline and 50-km spacing along the US coastline. Landfall is defined as simulated or observed storms that approach within 50 km of each coastal milepost. The results presented in Figure 9b are based on simulated tracks initiated using both hourly and monthly data. Furthermore, results from KE08- and PepC-simulated tracks are included for comparison. As a reference, the historical annual landfall rate between 1900 and 2022 is shown with shading that indicates the associated sampling error at each milepost. The sampling error for the annual rate of each gate is determined by calculating the total number and standard error of storms that cross each gate over the entire record and then dividing both the mean and the error bars by the number of years.

Due to the different annual total frequencies in the simulated and observed track datasets, which can significantly influence landfall frequency, we adjust the annual rate to a uniform 13 storms per year in all datasets to form a fair comparison. Our results indicate that the simulated tracks, from daily and monthly data, can reproduce the overall pattern in the observations, showing a performance comparable to that of KE08 and PepC. The annual landfall rates simulated by TC-GEN exhibit correlations with observations of 0.79 and 0.82 for the tracks initiated with hourly and monthly data, respectively, which are...
Figure 8. 6 hour zonal and meridional displacement

Comparison of probability density functions of 6 hour (a) meridional and (b) zonal displacements between simulated tracks and observations. Simulated tracks initiated with hourly data and monthly data are both presented and compared with KE08 and PepC.

Figure 8. 6 hour zonal and meridional displacement

The probability density functions of 6 hour zonal and meridional displacements show a comparison between simulated tracks and observations. Simulated tracks initiated with hourly data and monthly data are presented and compared with KE08 and PepC.

4.3 Lifetime Maximum Intensity and Landfall Intensity

We analyze the simulated TC intensity using two metrics, the lifetime maximum intensity and landfall intensity. The LMI distribution serves as a representation of the TC intensity climatology. A successful simulation should be able to reproduce the bimodal distribution with a shoulder feature around 120 kt, which is associated with storms that undergo rapid intensification (C.-Y. Lee et al., 2016). We show in Figure 10 that after bias correction, both sets of TC-GEN are capable of reproducing a realistic distribution of the observed LMI. TC-GEN tracks initiated with hourly data better simulate the tail of the LMI distribution for LMI greater than 75 kt; however, there is a negative bias in LMI for storms with LMI less than 75 kt, which are mostly moderate storms that do not undergo rapid
Figure 9. Landfall frequency Subplot a shows locations of mileposts along Mexico (every 100 km) and U.S. (every 50 km) coastline. Subplot b shows the comparison of annual landfall rate at each of 186 mileposts between simulated tracks and observation, with shading indicating the associated sampling error. Results from KE08 simulated tracks and PepC simulated tracks are shown for comparison.

intensification. TC-GEN tracks initiated with monthly data overestimate the proportion of storms with an LMI greater than 75 kt. The biases might originate from the intensity bias correction model. In order to have a reasonable fraction of storms undergo rapid intensification, the bias correction model prioritizes strong storms, which could lead to a higher proportion of storms becoming more intense than they should be. Similar patterns are also seen in the distribution of the landfall intensity. Both data sets initiated with hourly and monthly data exhibit a positive bias in landfall intensity greater than 75 knots. This bias is also likely to be attributed to the intensity correction model, which tends to overestimate the intensity of the storm when the storm has already weakened.
Figure 10. Lifetime maximum intensity and landfall intensity. Subplot a compares LMI distribution between simulated storms and observations. Subplot b compares the distribution of landfall intensity, defined as the maximum wind speed within 50 km of each coastal milepost, from both simulated and observed tracks. Results of KE08 and PepC are shown here for comparison.

4.4 Outer Size

Although the TC structure cannot be fully resolved in the reanalysis data set, previous work has shown that the reanalysis data can be used to extract the outer size of storms, and ERA5 shows an improved representation of the outer size compared to previous versions of ERA (Bian et al., 2021). Here, we examine how the outer size of the TCs compares between TC-GEN simulated tracks and historical storms, where outer sizes of historical TCs are derived from the corresponding ERA5 reanalysis data. As the statistical downscaling approach does not provide this output, we do not have data from PepC for this analysis. The results are shown in Figure 11. The medians (standard deviations) of r2, r6, and r12 from TC-GEN simulated tracks are 574.5 (230.2), 451.0 (172.5) and 270.8 (74.1) km, respectively, compared to 584.9 (259.8), 468.1 (233.4) and 277.5 (129.6) km, respectively, from historical data. For all three size metrics, TC-GEN accurately reproduces the median of outer size, with a discrepancy of approximately 10 km, which is even lower than the uncertainties in outer size arising from different reanalysis datasets (Bian et al., 2021). However, the
standard deviations for all three size metrics in TC-GEN-simulated TCs are smaller than those observed in historical storms, particularly for r12, which represents the largest metric that defines the outer size of storms. This smaller variation may arise from the bias in the horizontal wind structures of TCs at genesis, which requires further investigation.

Figure 11. TC outer size Subplot a shows the concept of TC outer size defined as the radii at which the 10-m azimuthal-mean wind speed equals 2, 6, and 12 m/s. The contours of the 10-meter azimuthal-mean wind are shown with color lines. Subplot b shows the boxplots of outer size at three radii metrics, from TC-GEN simulated tracks and those in ERA reanalysis. The median of each metric is represented as a horizontal bold line, and the upper and lower boundaries of each box indicate the 75th and 25th percentiles.

5 Discussion

5.1 Sensitivity to reanalysis data

In this study, we show the results of TC-GEN initiated with 6-hourly and monthly ERA5 reanalysis data. We illustrate that TC-GEN can generate realistic synthetic TCs with both datasets, despite their different temporal resolutions. Given the significant advantage in reducing data download and storage burdens, we propose that using monthly data to initiate TC-GEN is acceptable when scaling up the data generation process to achieve global coverage or long-period simulations.

Furthermore, we evaluate the suitability of applying TC-GEN to reanalysis data sets other than ERA5 reanalysis. Using NCEP GFS (see 2.3, we find that the results are unsatisfactory (as illustrated in Figure S2), which is likely attributed to the well-known domain gap problem in deep learning. In a deep learning model, typically the first several layers of the neural network are responsible for extracting features from raw data. These layers are trained to identify relevant features that help in downstream tasks, such as recogniz-
ing distinctive patterns, reducing noise, and achieving specific invariances. However, these layers can become highly specialized for the specific training data set and fail to generalize effectively to different data sets. We believe that this is the reason why TC-GEN does not perform well in NCEP GFS, as its core model Pangu-Weather is trained exclusively on ERA5 reanalysis data. Based on this discussion, an interesting future direction involves devising a generalized ML-based weather forecasting system that performs reasonably well on various reanalysis datasets. This could be accomplished, for example, by training the model on multiple reanalysis datasets together.

5.2 Extrapolation and applicability for future climate

To generate storms under future climate conditions, traditional statistical downscaling approaches assume that the observed relationships between the TC and the environment, established under historical climate conditions, will continue to hold in a warming climate. While there is no need to re-train the statistical models based on future climate, the process of extrapolation introduces a certain degree of uncertainty, particularly when unforeseen factors may impact the relationship. TC-GEN has unique strengths and limitations in addressing extrapolation. As ML-GWM operates in a manner that mimics the characteristics of numerical models; once a future ML-GWM becomes accessible, it enables TC-GEN to directly simulate storms under future climate conditions when initiated with future climate projections. However, as previously discussed and a significant limitation, the optimal performance of TC-GEN depends on being paired with the specific set of environment maps on which it was trained. Therefore, it is necessary to pre-train an ML-GWM using environmental data obtained from climate projections, before applying TC-GEN to climate change studies.

5.3 Range of TC seeds

Poisson blending involves integrating synthetic TC seeds into the surrounding environment, where it is crucial to carefully choose a specific range to define the extent of TC seeds. The TC seed range should be limited to avoid including unrelated meteorological systems, which can negatively affect the performance of the PCA model. However, if the range is excessively limited, it may not fully capture the entire spatial structure of the TC during its genesis. In such cases, the outermost extent of the range may not have fully diminished to the intensity of the surrounding background wind. As the Poisson blending algorithm tends to assimilate the gradient of TC seeds while aligning the boundaries with the ambient wind field, this could result in an underestimation of the wind speed within the inner region of the storm. In practice, we examine several sets of radii ranging from 25 grid cells (approximately 200 km) to 89 grid cells (approximately 1200 km). Our sensitivity tests reveal that the results are relatively robust when the radius falls within the range of 49 to 75. For the primary analysis in this study, we use a radius of 64 grid cells as the optimal parameter for blending.

5.4 Intensity bias correction

The spatial structure of the TCs could not be fully resolved on the 0.25° × 0.25° horizontal grid, and we apply the intensity bias correction model to adjust the simulated raw intensity to the real intensity. The bias correction model has the ability to reproduce a realistic LMI distribution and captures the correlation of the TC intensity with the previous time step, thereby maintaining strong continuity. In the development of this model, we also test models that are not based on recurrent neural networks, where the maximum intensity of the storm is adjusted solely based on the TC and environmental predictors in the current and previous steps. However, the performance of these models is not optimal, indicating that recurrent networks are necessary. One limitation of the current bias correction model is that it tends to overestimate TC maximum intensity when the storm is decaying, which
partially explains the positive bias in the landfall intensity distribution. This bias is likely
a result of the model being trained to prioritize replication of the shoulder feature in LMI,
which is associated with strong storms that undergo rapid intensification (this may also
stem from a limitation in the Dvorak technique, which is used to estimate the TC intensity
from satellite imagery). Consequently, the model tends to generate more storms that grow
at a higher rate while decaying at a slower rate. Future work should focus on improving
the bias correction model to effectively handle storms that undergo rapid intensification and
those that do not, with the aim of achieving optimal performance in terms of both lifetime
maximum intensity and landfall intensity.

5.5 Asymmetric TC wind field

Horizontal asymmetric TC wind fields are important for disaster management and re-

gional risk assessment. In addition to the maximum wind speed, accurate estimation of

the TC wind field is essential to identify at-risk populations and assess potential climate-

related threats. One notable advantage of TC-GEN is its ability to directly output spatial

asymmetric characteristics of the TC surface wind field. Although raw simulated winds

are often underestimated as TC structures cannot be fully resolved at a resolution of 0.25°

× 0.25°, there are still several ways to adjust the intensity of the wind and effectively use

the simulated asymmetries. For example, with the adjusted maximum wind intensity and

the extracted outer size of the TC, a parametric wind model can be applied, such as the

model developed in Chavas et al. (2015) (Chavas et al., 2015), to generate the complete

asymmetric wind profile of the TC. Future work should also assess the ability of TC-GEN

to simulate asymmetric winds at landfall. This assessment may involve comparing the syn-

thetic landfalling TCs with observational data, such as winds obtained from Automated

Surface/Weather Observing Systems, or with output from dynamical simulations.

6 Conclusions

This study introduces a novel machine learning-based approach to the synthetic down-

scaling of tropical cyclones. This approach, which we refer to as "TC-GEN", leverages the

recent advances in machine learning-based global weather models. The machine learning-

based high-resolution global weather model (ML-GWM) takes environmental maps of key

atmospheric and surface variables from reanalysis data as input and predicts the values

of these variables for the next time step, with the flexibility to choose from various lead
times. Using a pre-trained model representing a cutting-edge ML-GWM (Pangu-Weather),

we show that TC-GEN is capable of simulating synthetic storms that allow for the two-way

interactions between the storm and its environment. It maintains computational efficiency

that is similar to existing statistical-deterministic and statistical downscaling approaches;

however, its distinctive advantage lies in the ability to simulate the spatial asymmetries of

surface wind. TC-GEN consists of four key steps: the generation of a synthetic TC seed for

each storm through a data-driven process, the merging of the TC seed with the background

environment using Poisson blending, the simulation of the full life cycle of the storm with

ML-GWM, and the correction maximum wind speed biases using a long-short-term memory

model. By comparing TC-GEN-simulated storms with observed storms and those simulated

from existing statistical-deterministic and statistical downscaling approaches, we show that

TC-GEN is capable of simulating storms that reproduce a range of important TC charac-
teristics, including metrics for track, intensity, and storm size. For future work, our plan

involves expanding this approach to include other TC basins and exploring its applicability

on a global scale. Additionally, considering the absence of rain rate in the simulation output

from Pangu-Weather, one potential work would be to examine the performance of TC-GEN

when working with other ML-GWMs that are capable of simulating this important variable.

The recently introduced ML-GWM has significant potential for improvement with on-
going advances in machine learning and artificial intelligence, aiming for higher resolution,
improved accuracy, and even lower computational costs. Therefore, we expect that the performance of TC-GEN will see further improvements as ML-GWM undergoes continuous development. Moreover, using TC-GEN as an example of how recent advances in machine learning and data science can contribute to tropical cyclone risk assessment, we believe that machine learning-based global weather models will play a crucial role in future climate studies.

Open Research Section

Pangu-Weather trained models can be downloaded from the public GitHub repository at https://github.com/198808xc/Pangu-Weather (https://doi.org/10.5281/zenodo.7678849). Tropical cyclone observations are obtained from the International Best Track Archive for Climate Stewardship (IBTrACS) project at https://www.ncei.noaa.gov/products/international-best-track-archive. Historical ERA5 reanalysis data (both monthly and 6-hourly) are obtained from the ECMWF climate data store. Historical NCEP reanalysis data is downloaded at https://rda.ucar.edu/datasets/ds084.1/.

Acknowledgments

K. Emanuel’s research is part of the MIT Climate Grand Challenge on Weather and Climate Extremes. This research received support by the generosity of Eric and Wendy Schmidt by recommendation of Schmidt Futures as part of its Virtual Earth System Research Institute (VESRI).

References

Emanuel, K., Sundararajan, R., & Williams, J. (2008). Hurricanes and global warming:

Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., . . . others (2023). Climate change 2023: synthesis report. contribution of working groups i, ii and iii to
the sixth assessment report of the intergovernmental panel on climate change.

TC-GEN: Data-driven Tropical Cyclone Downscaling using Machine Learning-Based High-resolution Weather Model

Renzhi Jing 1,2, Jianxiong Gao 3, Yunuo Cai 4, Dazhi Xi 5, Yinda Zhang 6, Yanwei Fu 4, Kerry Emanuel 7, Noah S. Diffenbaugh 1,8,9, Eran Bendavid 2,10

1Woods Institute for the Environment, Stanford University, Stanford, CA, USA
2School of Medicine, Stanford University, Stanford, CA, USA
3Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
4School of Data Science and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
5Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
6Google LLC, 1600 Amphitheatre Pkwy, Mountain View, CA, USA
7Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
8Department of Earth System Science, Stanford University, Stanford, CA, USA
9Doerr School of Sustainability, Stanford University, Stanford, CA, USA
10Department of Health Policy, Stanford University, Stanford, CA, USA

Key Points:

• We develop a novel approach for tropical cyclone downscaling using a machine learning-based high-resolution global weather model.
• We generate and integrate synthetic tropical cyclone seeds into the surrounding environment using a data-driven approach.
• The new tropical cyclone downscaling approach is capable of simulating the two-way interactions between storms and the environment as a unified system.

Corresponding author: Renzhi Jing, rjing@stanford.edu

Corresponding author: Yanwei Fu, yanweifu@fudan.edu.cn
Abstract

Synthetic downscaling of tropical cyclones (TCs) is critically important to estimate the long-term hazard of rare high-impact storm events. Existing downscaling approaches rely on statistical or statistical-deterministic models that are capable of generating large samples of synthetic storms with characteristics similar to observed storms. However, these models do not capture the complex two-way interactions between a storm and its environment. In addition, these approaches either necessitate a separate TC size model to simulate storm size or involve post-processing to introduce asymmetries in the simulated surface wind. In this study, we present an innovative data-driven approach for TC synthetic downscaling. Using a machine learning-based high-resolution global weather model (ML-GWM), our approach is able to simulate the full life cycle of a storm with asymmetric surface wind that accounts for the two-way interactions between the storm and its environment. This approach consists of multiple components: a data-driven model for generating synthetic TC seeds, a blending method that seamlessly integrate storm seeds into the surrounding while maintain the seed structure, and a recurrent neural network-based model for correcting the biases in maximum wind speed. Compared to observations and synthetic storms simulated using existing statistical-deterministic and statistical downscaling approaches, our method shows the ability to effectively capture many aspects of TC statistics, including track density, landfall frequency, landfall intensity, and outermost wind extent. Taking advantage of the computational efficiency of ML-GWM, our approach shows substantial potential for TC regional hazard and risk assessment.

Plain Language Summary

Tropical cyclones (TCs) cause significant destruction each year. It is crucial to accurately assess the risks they present, but this is challenging due to a scarcity of historical data. A commonly used approach involves creating a large number of synthetic TCs that share key characteristics with real storms, enabling an effective regional risk assessment. However, traditional synthetic TC generation approaches do not capture the complex interactions between storms and their larger-scale environment. Furthermore, these approaches do not adequately represent the asymmetric structure of TCs, despite the crucial role that they play in modeling storm-related hazards such as rainfall and surges. Recently, advances in machine learning-based global weather forecasting (ML-GWM) have provided highly accurate and efficient high-resolution global weather forecasts that surpass the capabilities of conventional numerical weather forecasting. In this study, we introduce a novel synthetic TC generation approach, which we call the synthetic TC-GENerative Model (or ”TC-GEN”), leveraging the state-of-the-art ML-GWM. We show that TC-GEN can generate a large number of synthetic storms that allow the interaction between the storm and its environment. We evaluate the performance of TC-GEN in various aspects, including several landfall characteristics, which are of the most importance for local TC risk analysis. Our study also serves as a compelling example of the transformative impact of machine learning and data science in revolutionizing climate studies during the era of artificial intelligence.

1 Introduction

Tropical cyclones (TCs) are among the most destructive natural disasters, causing substantial damage and losses in multiple ocean basins annually. In a warming climate, it is projected that TCs are likely to become more intense, with an expected increase in both the peak maximum wind speed and the proportion of strong TCs in the future (Pörtner et al., 2022; H. Lee et al., 2023). Accurate assessment of TC tracks and intensities is fundamental to reducing the impacts of landfalling storms. However, with around 90 storms occurring every year and an average of only 20 making landfall, this task is challenging due to the shortage of historical data required for regional risk assessment. To overcome data deficiency, a widely used approach is to generate synthetic TCs that are capable of responding to various climate
Previous studies on synthetic TC generation have primarily employed two main approaches: (1) statistical re-sampling, and (2) physical-based downscaling methods. Statistical re-sampling models simulate TC genesis, tracks, and intensities (maximum wind speed or minimum central pressure) based purely on historical observational datasets, without considering environmental conditions. Examples of such models include those developed by (Vickery et al., 2000; James & Mason, 2005; Bloemendaal et al., 2020). These models typically require a limited number of input variables, have low computational costs, and thus are easily applicable on a global scale. However, these models are not based on physical principles and cannot be accurately applied to a non-stationary climate due to changes in the background environment. On the other hand, physically-based downscaling methods relate TC characteristics to the large-scale background environmental conditions, making them environment-dependent. These methods can be statistical-deterministic (e.g., models developed by (K. Emanuel et al., 2006)) or purely statistical (e.g., models developed by (C.-Y. Lee et al., 2018; Jing & Lin, 2020)). Such environment-dependent approaches are capable of simulating the TC climatology in future climate scenarios and, therefore, are suitable for climate change studies (K. Emanuel et al., 2008; C.-Y. Lee et al., 2020; Jing et al., 2021). Since the first synthetic TC downscaling approach in this family of models appeared in 2006, significant advances have been made in each of the three components (Huang et al., 2021; Huang, Wang, Jing, et al., 2022), and these approaches have been widely used for applications such as TC-induced surge risk assessment (Lin et al., 2012), regional loss assessment (Meiler et al., 2022; Huang, Wang, Liu, et al., 2022), and TC-induced wind load analysis (Kareem et al., 2019).

Both statistical and statistical-deterministic synthetic downscaling methods simulate the complete lifecycle of TCs using environmental parameters derived from the background environment. However, they cannot simultaneously simulate the two-way interactions between the storm and its surrounding environment; therefore, the environment cannot respond correspondingly to the development of the storm. Furthermore, traditional approaches do not comprehensively simulate the characteristics of TCs (i.e. genesis, track, intensity, and size) as a cohesive system. For example, although the TC intensity is determined based on environmental predictors along the track, the storm track is predominantly driven by background winds, which is independent of the intensity component. Given the clear and strong correlation between these components, it is prudent to consider the potential correlations between these components (Ruan & Wu, 2022). Moreover, the asymmetries in the TC surface wind field are not directly captured. Some approaches do not output the TC size and require a separate size component to determine the outer radius of the storm by random sampling from historical data (Jing & Lin, 2020). Other methods provide the radius of maximum wind (K. Emanuel et al., 2008); however, they require an additional parametric wind model to generate the full surface wind field, followed by post-processing to incorporate asymmetries related to storm translation speed and wind shear (Lin et al., 2012; Lin & Chavas, 2012).

The ideal synthetic downscaling method would simultaneously simulate all characteristics of the TC as an integrated system, including the interactions between storms and the surrounding environment, to generate detailed wind fields with greater accuracy but similar computational efficiency to that of traditional statistical and statistical-deterministic downscaling methods. Recent progress in machine learning-based high-resolution global weather modeling (ML-GWM) (Pathak et al., 2022; Bi et al., 2022; Lam et al., 2022) has made this possible. ML-GWM systems are based on three-dimensional neural networks that are trained on high-quality reanalysis datasets, such as the ERA5 reanalysis (Hersbach et al., 2020), to predict weather around the globe. A significant advantage of ML-GWMs is their substantially lower computational costs compared to traditional numerical weather fore-
casting, while still operating at high spatial resolutions. Representing the cutting edge of ML-GWM, Pangu-Weather (Bi et al., 2022) has outperformed the operational Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts in medium-range forecasting, with speeds more than 10,000 times faster. The high spatial resolution of 0.25 degrees also enables Pangu-Weather to precisely track TCs based on simulation results.

In this study, we leverage ML-GWM to create a novel ML-based approach for synthetic TCs downscaling, which we call the synthetic TC-GENerative Model (or "TC-GEN"). This involves generating a synthetic TC seed for each storm through a data-driven process, merging it with the background environment, and simulating both the storm and its surroundings simultaneously with Pangu-Weather. To achieve this, we first determine the annual frequency, date, and location of synthetic TCs using an existing environment-based TC genesis model. Next, we perform a Principal Component Analysis on all historical TCs at genesis, identifying the principal components that effectively capture most of the variances in TC genesis. Using these principal components, we generate synthetic TC seeds with weights derived from historical data. We then integrate these TC seeds into the surrounding environment using Poisson blending, a technique widely used in image processing to seamlessly merge two images, ensuring that the TC seeds are naturally embedded within the larger environmental context while still maintaining important wind structures. Finally, we run Pangu-Weather using their pre-trained model, which enables the joint simulation of both the storm and its surrounding environment, and bias-correct simulated intensity to real intensity. This integrated approach allows us to gather key characteristics of the TC, such as the track and the maximum wind speed. It also provides spatial details such as the full wind field, allowing for a direct derivation of the outermost extent of the storm.

It is worth noting that several key steps of this ML-based method are data driven, relying heavily on historical data that lack substantial input from physics. Furthermore, while the spatial resolution of 0.25° is a high resolution for global climate models, it is still too coarse to accurately resolve the inner core and the structure of a storm. Therefore, we should use the simulated three-dimensional structure including the horizontal surface wind field with care, as it is likely to be unrealistic.

Despite these limitations, our ML-based method offers a unique set of collective advantages compared to previous TC downscaling approaches: 1) Holistic simulation: unlike previous studies where the genesis, track, and intensity of the storm are simulated separately, this approach can simulate these three storm components together as a cohesive system; 2) Integrated simulation: similar to numerical modeling, this approach can simulate both the storm and its environment simultaneously, thus allowing for the two-way interactions between the storm and the environment; 3) Intrinsic asymmetry: while the TC core and intensity may not be fully resolved, this approach has the capability to provide crucial asymmetric characteristics in the TC surface wind field. This, in turn, allows for the inference of the asymmetric outermost wind extent of a storm, which is essential for studying tropical cyclone-induced hazards such as surges and heavy rainfall; 4) Efficiency: utilizing pre-trained Pangu-Weather, this approach inherits the efficiency of statistical downscaling methods that require little computational resources, enabling large samples of synthetic TCs to be generated in days, a time frame comparable to the work of (Bloemendaal et al., 2020); 5) Scalability: this approach can be easily applied to other ocean basins and other high-resolution climate datasets, including future climate projections such as those in CMIP6. A successful extension of this approach is achieved when the climate dataset used for training processes high resolution for detecting storm eyes, provides a reasonable representation of the storm’s outer size, and involves the development of a corresponding pre-trained machine learning model as the core simulator.

To evaluate TC-GEN, we generate a large sample of synthetic TCs and compare those simulated storms with historical observations. We also place TC-GEN in context with an existing statistical-deterministic downscaling approach, represented by Emanuel et al.
We choose these two existing approaches as they are both environment dependent and have distinct model components. The metrics we use for comparison include the density of the tracks over the ocean, the maximum lifetime intensity, the landfall frequency, and the landfall intensity distributions. Given that KE08 and PepC lack the ability to simulate the outer size of TC, we only compare the distribution of TC outer size simulated by TC-GEN with that of the historical TCs identified using reanalysis data. In all of these metrics, we demonstrate a strong alignment between simulated storms and observational data. We further assess the adaptability of TC-GEN to different reanalysis datasets through two analyses: one with the ERA5 reanalysis, on which Pangu-Weather is trained, but using different temporal resolutions for model initialization, and the other using an alternative reanalysis dataset from the National Centers for Environmental Prediction (NCEP). We show that the effectiveness of TC-GEN depends on the consistency between the training reanalysis dataset used to train the ML-GMW and the data used for model initialization. Based on these analyses, we summarize the strength and limitations of TC-GEN and propose potential improvements for future work.

2 Pre-trained Models and Data

2.1 Neural network-based global weather model

In this study, we use Pangu-Weather as the core ML-GWM to generate synthetic TCs. Pangu-Weather is an artificial intelligence-based model for medium-range global weather forecasting, which has been shown to outperform the operational integrated forecasting system of the European Center for Medium-Range Weather Forecasts (ECMWF) (Bi et al., 2022).

Pangu-Weather is trained on atmospheric reanalysis data from the ERA5 reanalysis data (Hersbach et al., 2020), using 69 atmospheric and surface variables as input and forecasting these variables for the subsequent time step. The 69 variables include 65 upper-air variables (geopotential height, specific humidity, temperature, u and v component of wind at 13 pressure levels) plus four surface weather variables (2m temperature, u- and v- component of 10m wind speed, and mean sea level pressure). Pangu-Weather offers four pre-trained models that are capable of forecasting global weather data 1, 3, 6, and 24 hours ahead. We use the model with a lead time of 6 hours since it is consistent with the temporal resolution of TC IBTrACS data (see Section 2.2). Pangu-Weather has the ability to produce accurate simulations that span multiple consecutive days, a time frame that is adequate to simulate the entire life span of the most TCs. Pangu-Weather is open-source, and the pre-trained models can be downloaded at https://github.com/198808xc/Pangu-Weather.

Pangu-Weather has several distinct advantages, making it highly suitable for this study. First, Pangu-Weather is among the state-of-the-art ML-GWM systems with the highest performance in weather forecasting. Second, Pangu-Weather has a high horizontal resolution of 0.25° × 0.25°. Although the thermodynamic processes of the TCs cannot be fully resolved at this spatial resolution, it is sufficient to detect the low pressure center, which enables effective storm eye tracking. Third, Pangu-Weather is computationally efficient (more than 10,000 times faster than operational dynamical models), making it capable of simulating large numbers of synthetic storms. In our experiments, we run Pangu-Weather with 8 RTX A6000 GPUs, which adequately support all our computational tasks.

2.2 Tropical Cyclone Data

TC observations are extracted from IBTrACS data (version v04r00) (Knapp et al., 2018, 2010), which includes the location (latitude and longitude) of each storm every 6 hours, along with its maximum sustained wind speeds measured at a height of 10 meters.
above the sea surface. We use historical TC data in the North Atlantic Basin between 1979 and 2022 to generate TC seeds, correct biases in intensities simulated from Pangu-Weather, and evaluate TC-GEN performance. We use extended TC data dating back to 1900 to analyze landfall frequency, which provides a more precise assessment of sampling errors with a larger number of TC tracks.

2.3 Atmospheric Reanalysis Data

Pangu-Weather requires global atmospheric and surface variables at the current time step to forecast the next step. To be consistent with the input setup for the Pangu-Weather model, we use ERA5 reanalysis with a resolution of 0.25° × 0.25°, the highest available spatial resolution, and a temporal resolution of both 6-hour and monthly reanalysis data to initiate Pangu-Weather. Using 6-hour reanalysis data for Pangu-Weather initialization is intuitive, as it ensures alignment with the model setup and prevents domain gaps. However, generating synthetic TCs with 6-hourly reanalysis data presents two challenges. First, introducing a synthetic TC to the 6-hourly reanalysis data may result in multiple storms developing on the same map. This does not reflect reality, as the simultaneous occurrence of multiple storms is relatively rare (Chowdhury et al., 2022). Second, generating synthetic TCs by initiating Pangu-Weather with 6-hourly data requires downloading extensive historical ERA5 reanalysis data, resulting in substantial data storage requirements. On the contrary, starting Pangu-Weather with monthly data significantly reduces the data storage burden and mitigates the problem of simultaneous occurrence. In this study, we use both 6-hourly and monthly reanalysis data for Pangu-Weather initialization, and under both scenarios we use the pre-trained model with a lead time of 6 hours to simulate storms. We denote these two scenarios as 'TC-GEN hourly' and 'TC-GEN monthly' in the following text and results.

In addition to ERA5 reanalysis, we test TC-GEN performance when initiating Pangu-Weather with the NCEP GFS from Global Forecast Grids Historical Archive at 0.25°×0.25° resolution (for Environmental Prediction/National Weather Service/NOAA/US Department of Commerce, 2015). We opt for this reanalysis dataset because it provides all 69 variables required by Pangu-Weather, and it is available at a resolution of 0.25°×0.25° with global coverage.

2.4 Existing downscaling approaches

We contextualize TC-GEN by comparing it with two existing synthetic downscaling approaches. The first is the statistical-deterministic model developed by Emanuel et al. (2008) (K. Emanuel et al., 2008), which applies a random seeding method to initiate the storm, a beta and advection model based on local winds to propagate the storm, and a deterministic Coupled Hurricane Intensity Prediction System (CHIPS; (K. Emanuel et al., 2004)) model to estimate the intensity of the storm based on the local thermodynamic state of the atmosphere and ocean. The model has been extensively applied to assess TC hazards (K. Emanuel, 2017; Marsooli et al., 2019), economic losses (Mendelsohn et al., 2012; Meiler et al., 2022), and changes in TC climatology under future projected climate conditions (K. Emanuel et al., 2008; Jing et al., 2021). Here, we compare our ML-based TC-GEN results with a total of 4,100 synthetic TCs from 1980-2020 that intensify and reach TC strength (lifetime maximum intensity exceeds 34 kt).

We also compare our TC-GEN results with the "PepC", a statistical synthetic downscaling approach of Jing and Lin (2020) (Jing & Lin, 2019). PepC has three components, a genesis model, a track model, and an intensity model. The genesis component determines annual frequency, as well as the time and location of weak vortices. The genesis model is developed using Poisson regression based on four large-scale environmental variables: absolute vorticity, wind shear, relative humidity, and maximum potential intensity (K. A. Emanuel, 1988), which are contained in a genesis index (Tippett et al., 2011). After initialization,
an analog-wind track model is used to propagate the storm based on analog factors (from historical track patterns) and local in situ winds. The intensity of the storm is simulated as a Markov process using an environment-dependent hurricane intensity model (Jing & Lin, 2019). In (Jing & Lin, 2020), the authors generated more than 55,000 TCs from 100 independent realizations of the genesis of TCs during the period 1979-2014. To compare with our ML-based TC-GEN results, we randomly select 10 independent 36-year realizations, including a total of 3,690 TCs that intensify and reach TC strength.

3 TC-GEN: data-driven synthetic TC downscaling approach

TC-GEN, our data-driven synthetic TC downscaling approach based on high-resolution ML-GWM, includes the following main steps:

1. Obtain the annual frequency as well as the date and locations of synthetic TCs from an environment-based TC genesis model;
2. Generate synthetic TC seeds using data-driven approach;
3. Integrate synthetic TC seeds into the background environment represented by global reanalysis data;
4. Run Pangu-Weather to simulate the complete TC life cycle, detecting and tracking the TC from simulation outputs;
5. Adjust TC intensity (maximum sustained winds) by an intensity bias correction model;
6. Retrieve the size of synthetic TCs (outer extent where the wind decreases to a specific threshold) from the simulated TCs.

The idea is shown in Figure 1 and we explain each step in detail in the following sections.

Figure 1. TC-GEN. We propose an AI-empowered approach for synthetic TC downscaling where TC seed is created through a data-driven approach and then incorporated into a reanalysis environment map. Both the TC and its surrounding environment are then simulated in an interactive manner. The idea is illustrated in the figure, which presents five snapshots of total wind at different stages of the storm’s life cycle.

3.1 Annual counts, date and locations of TC Seeds

The first step of TC-GEN is to determine the annual frequency and the date and location of the synthetic TCs. We use an environment-based hierarchical Poisson genesis model to determine the number of synthetic storms that occur each year, as well as when and where they originate over the ocean basin. This model is the genesis component of PepC (Jing & Lin, 2020), which has been shown to generate TC formations that align closely with observations, including interannual variations. This genesis model simulates the formation
of TCs for each month. When initializing Pangu-Weather with 6-hour reanalysis data, we randomly assign the precise date and time for each storm within the month of its genesis.

3.2 Structured TC seeds generation via data-driven approach

Previous studies using either statistical-deterministic or purely statistical TC downscaling approaches provide only the timing and position of TC seeds. There is no assumption about the structures or spatial features of the synthetic TCs at genesis. To create synthetic TC seeds with fine-grained spatial features, we employ a two-step process. First, we use principal component analysis (PCA) to learn a linear representation of atmospheric and surface variables from historical TCs at their genesis. PCA helps identify the most significant patterns in the data. Next, we create synthetic TC seeds based on this representation by sampling various sets of linear blending weights, according to the variance in the historical data.

Principal Component Analysis (PCA) is a widely recognized method used for dimension reduction in the fields of data science and machine learning. Given high-dimensional data represented by a matrix X with dimensions $M \times N$, where M is the number of observations and N is the dimension of features, the main objective of PCA is to identify a set of orthogonal axes (principal components) along which the variance of the data is maximized. By projecting the original data onto these principal components, PCA effectively reduces the complexity of the data, while retaining the essential information contained in the dataset. In a low-rank system, a small number of principal components are sufficient to explain the majority of the variance present in the data. Consequently, in such systems, it is feasible to generate synthetic data with only a few key principal components. PCA has been successfully applied in many earth science applications (Nandi et al., 2016; Bretherton et al., 1992), and we refer the reader to the survey (Abdi & Williams, 2010) for more details.

We use 690 historical TCs in the period 1979 - 2022 to create a linear representation of TC seeds using PCA. A TC seed is defined as a circular region with a radius equivalent to 64 grid cells at genesis (approximately 1600 kilometers), centered on the storm’s eye. This circular region is large enough to encompass the outermost extent of most TCs at genesis. We collect TC seeds for each of the 69 atmospheric and surface variables from the ERA5 reanalysis for all $M = 690$ storms, which form a matrix with dimensions of $128 \times 128 \times 69 \times 690$, representing historical TC seeds. Next, we perform PCA to reduce the dimensions of the data. The cumulative sum of the largest 20 eigenvalues is shown in Figure 2. We show that historical TC seeds form a low-rank system, with the top 10, 15, 20 principal components sufficient to explain more than 94.1%, 96.2%, and 97.2% of the variance in the data. Moreover, the top 50, 100 and 500 principal components explain more than 99% of the variance, with the top 500 principal components explaining more than 99.9%. Using 50, 100 and 500 principal components, we show that the reconstructed wind fields (including total wind, as well as the u and v components) effectively preserve most of the detailed spatial features present in historical TC wind fields, as in Figure 2. To ensure quality, we use 500 principal components that represent the majority of the variations in actual environmental fields.

We create synthetic TC seeds by randomly sampling the low-dimensional space based on the top 500 principal components. The weight of each principal component is determined by randomly sampling from a Gaussian distribution centered around zero, with a variance equal to its corresponding eigenvalue (i.e. the variance explained). This allows synthetic TC seeds to have the same distribution as observational TC seeds. In Figure 3 we show three synthetic TCs at their genesis. We show four important variables (mean sea level pressure, temperature, and surface u- and v- winds) to demonstrate the effectiveness of this approach in simulating realistic TC seeds at genesis with diverse characteristics in terms of intensity, radius, and asymmetry.
Figure 2. Principal Component Analysis on TC genesis. We run PCA on TC historical data to learn a low dimensional representation for TC seeds at genesis. Subplot (a) shows the cumulative sum of the eigenvalues sorted in descending order, where each point represents the proportion of total variance explained by considering the corresponding number of top principal components. Subplot (b) shows the reconstruction of TC seeds at genesis for two distinct historical storms, using 50, 100, 500 principal components respectively. Both TC seeds are almost completely reconstructed using 500 principal components.

3.3 Integrating synthetic TC seeds into background environment with weighted Poisson blending

After generating a synthetic TC seed, we integrate it into the surrounding environment at a specific date and location identified by the PepC genesis component (see Sec 3.1). This step is critical for Pangu-Weather to simulate the environment along with the synthetic TC seeds. To achieve seamless integration of TC seeds with the background environment, we employ Poisson blending, a widely used approach to smoothly insert one image into another, without introducing artifacts at the boundary of the inserted image (Pérez et al., 2003). The fundamental concept of Poisson blending is to copy the gradients between spatially neighboring pixels rather than to directly copy the absolute color values. This approach ensures a smooth transition between different regions of the images, effectively eliminating visible seams and enhancing the coherence of the blended result.

Poisson blending can be mathematically expressed as follows: Let f^* be a known function defined on a closed subset of $S \subset \mathbb{R}^2$ (for example, color defined on pixel grids), and
Figure 3. Synthetic TC Seeds. This figure shows three synthetic TC seeds at genesis using the data-driven approach with 500 principal components. Each column shows one case, where mean sea level pressure, temperature, surface u- and v-winds are visualized.

\[g \] be another known function defined on a closed subset \(\Omega \subset S \) with boundary \(\partial \Omega \). The objective of poisson blending is to find an unknown function \(f \) on \(\Omega \), such that

\[
\min_f \int \int_{\Omega} |\nabla f - \nabla g|^2, \text{with} f|_{\partial \Omega} = f^*|_{\partial \Omega}
\]

where \(\nabla = [\frac{\partial}{\partial x}, \frac{\partial}{\partial y}] \). This optimization aims to achieve a blended result where, within the source region, it closely resembles the gradience of \(g \), while at the boundary it should be similar to \(f^* \). For more details and numerical solutions, we refer the reader to (Pérez et al., 2003).

As an analogy to our problem, \(f^* \) and \(g \) represent the global environment map (that is, target matrix) and synthetic TC seeds (that is, source matrix), respectively. In this context, Poisson blending aims to combine these two matrices, ensuring that the gradients of the blended results within the source region closely resemble the synthetic TC seeds, while at the boundary, they should be similar to the background environment. In practice, we find that naive Poisson blending still results in noticeable artifacts. Therefore, we adopt a linear
blending technique that incorporates both the source and target gradients, with a weight determined by the distance to the boundary. The optimization is modified to accommodate this approach:

\[\nabla = (1 - \lambda)\nabla f^* + \lambda \nabla g, \lambda = \begin{cases} \frac{5d}{R}, & d < \frac{R}{5} \\ 1, & \text{else} \end{cases} \tag{2} \]

where \(d \) is the distance of each pixel to the boundary and \(R \) represents the radius of the blended region. This optimization guarantees a smooth integration of TC seeds into the global environment map, with natural transitions at the boundaries and the structure of TC well maintained.

We use this Poisson blending approach to seamlessly integrate the 69 atmospheric and surface variables of synthetic TC seeds within a radius of 64 grid cells (approximately 1600 km) into the corresponding ERA5 reanalysis data. In Figure 4, we show the Poisson blend process using mean sea level pressure as an example, which clearly reveals the eye of the storm. Similarly, we show three cases as examples of weak, moderate, and strong storms, illustrating the effectiveness of Poisson blending across a range of storm characteristics.

![Poisson blending examples](image)

Figure 4. TC seed integration using Poisson blending This figure shows the advantage of Poisson blending over naive stitching when integrating synthetic TC seeds into the environment. Mean sea level pressure is used as an example due to its ability to clearly reveal the eye of the storm. Naively stitching results in a sharp and unrealistic boundary. In contrast, the Poisson blending approach effectively integrates TC seeds into the environment, preserving both structures and achieving a smooth blend.

3.4 Simulation and tracking

After seamlessly integrating the generated TC seeds into the background environment map, we proceed to run Pangu-Weather, simulating the entire life cycle of each storm over a 15-day period, with 6-hour intervals between each step. To track the location of storm center from Pangu-Weather outputs, we formulate a Gaussian kernel over mean sea level pressure and vorticity at 10 meters, to identify the local maximum vorticity or minimum
pressure associated with the characteristic bell-shaped symmetric structure typical of a storm. Then we determine the center of the storm by averaging the locations of these two local extrema. Empirically, we set $\sigma = 2$ for the Gaussian kernel and $\sigma_1 = 2, \sigma_2 = 8$ for the Laplacian kernel, for the best performance. In most cases, the positions of maximum vorticity closely align with those of minimum sea level pressure. However, when a TC’s symmetric structure is not well maintained, this approach aids in stabilizing the outcomes and provides robust tracking. It should be noted that Pangu-Weather includes an algorithm for tracking TCs, which is based on relative vorticity, geopotential thickness, and 10-m wind speed. Our tracking method delivers comparable results, while requiring fewer data inputs. This advantage makes our approach generalizable to other weather forecasting systems that may lack specific variables (for example, ForecastNet does not output vorticity; see (Pathak et al., 2022)).

3.5 Bias correction of TC maximum wind speed

The Pangu-Weather model is trained using ERA5 reanalysis data. Since the fine-grained structure of a storm cannot be fully resolved in the ERA5 reanalysis data, the physical processes of simulated storms are also not correctly resolved. This leads to an underestimation of the maximum wind speeds of the TC. To address this problem, we develop a separate machine learning model to correct this bias based on the characteristics of the storm and the environment within the inner region of the storm. Due to the recurrent nature of this problem, where the wind speed at time t is highly correlated with the wind speed at previous time steps, we formulate the problem using a recurrent neural network based on long-short-term memory (LSTM). The structure of our network is shown in Figure 5 subplot b, where the bias correction stage is formulated as:

$$I_{\text{true}}(t) = e^{a(t)} I_{\text{raw}}(t) + b(t)$$

$$a(t), b(t) = F(E(x(1)), E(x(2)), \ldots, E(x(t)))|\theta)$$

In Eq. 3, we use the term "raw" to indicate the intensity directly simulated from TC-GEN, which is expected to have the same statistics as those in the ERA5 reanalysis data. The term "true" is used to denote the real intensity, which has statistics similar to IBTrACS. Thus, I_{raw} and I_{true} represent the maximum wind speed before and after bias correction. $E(x(t))$ represents the environmental predictors extracted from the area surrounding the TC center, which is located at $x(t)$ at time t. F represents a machine learning model with learnable weights θ.

We use five environmental variables (mean sea level pressure, u- and v- component of 10m wind speed, relative humidity at 850 hpa and temperature at 850 hpa) that have been identified as the most important predictors of the intensity of TC (Jing & Lin, 2019). At each time step, the five variables within a circular region, covering a radius equivalent to 49 grid cells and centered at the TC, are combined with a positional embedding (Lam et al., 2022) to create a raw input. We then convert the raw input to a feature vector using a feature encoder comprised of 4 ResBlocks, and feed these feature vectors into an LSTM, predicting $a(t), b(t)$ at each time step.

In practice, we note that a model trained with ERA5 as input may not perform equally well during the test phase when the inputs are derived from Pangu-Weather predictions. This discrepancy arises because of the well-known domain gap issue in deep learning (Tremblay et al., 2018; Wei et al., 2018; Nam et al., 2021). Essentially, nuanced differences between training and testing data on the input side (Pangu-Weather simulation vs. ERA5 in our case) can lead to a catastrophic drop in model performance.

To bridge the domain gap, we pre-train the feature encoder so that the extracted feature is informative to reconstruct the raw ERA5 environment, yet indistinguishable in terms of its source, i.e. whether it comes from ERA5 or Pangu-Weather. Such properties are achieved by training the feature encoder through an auto-encoder architecture, as shown in the Figure.
5 subplot a. Specifically, compressed feature vectors go through a feature encoder, followed by a feature decoder to reconstruct the original features using an L1 loss. Additionally, we introduce an adversarial loss that performs a binary classification task, attempting to discern the source of the feature (ERA5 or Pangu-Weather). The feature encoder is trained to deceive the discriminator to the extent that it cannot identify the source of the feature. As a result, the extracted features become domain-agnostic after this stage and the domain gap is mitigated.

Overall, we start by training the auto-encoder architecture using a combination of environment maps sampled from both the ERA5 and Pangu-Weather output (Figure 5 subplot a). Once the autoencoder converges, we discard the decoder, freeze the encoder weights for feature extraction, and only update the LSTM weights (Figure 5 subplot b). To train the LSTM, we divide the historical data of the TCs from 1979 to 2021, randomly selecting 80% of the TCs for training and reserving the remaining 20% for testing. We use the real maximum wind speed data from IBTrACS as ground truth. The LSTM is trained with an AdamW optimizer (Loshchilov & Hutter, 2017), with a Huber loss and a learning rate of 0.0001 over 10 iterations.

Figure 5. Structure of the intensity bias correction model. The model consists of two stages, (a) a pre-trained stage to bridge domain gap between ERA5 and Pangu-Weather output so that all features become domain-agnostic; and (b) a bias correction stage that adjust the maximum wind speed using a Long Short-Term Memory (LSTM) model.

The performance of the LSTM-based bias correction model is illustrated in Figure 6, which shows four cases that represent various characteristics of the storm. These include typical growth and decay, rapid intensification, and storms that weaken after hitting an island but subsequently strengthen after moving over the ocean.

3.6 Extracting the radius of outer size from each storm

The destructive potential of a TC is related to both its maximum sustained wind speed and the radial extent of the near-surface wind, the latter typically measured by the outer
Figure 6. Examples of bias correction in TC maximum wind speeds. Four synthetic TCs are shown including (a, c) two TCs illustrating a storm’s typical growth and decay, (b) TC underwent rapid intensification, and (d) TC hit small islands followed by subsequent growth. The bias correction model effectively simulates the realistic evolution of intensity while capturing the correlation of TC intensity with the previous time step, thus maintaining strong continuity.
10-meter azimuthal-mean tangential wind speeds decrease to a certain threshold (12 m/s, 6 m/s, and 2 m/s).

4 TC-GEN Evaluation

We evaluate the performance of TC-GEN by comparing simulated TCs with historical observations for the following TC characteristics: track density, landfall frequency along the US-Mexico coastline, lifetime maximum intensity (LMI), landfall intensity, and outer size under three size metrics. For each TC, we generate a synthetic TC seed and blend it into the corresponding hourly or monthly environment map, with the location and time provided by the PepC genesis model. We then run Pangu-Weather to simulate each storm and apply the bias correction model to adjust the maximum intensity for each step. The track is terminated if the raw maximum intensity is below 8 m/s, the adjusted intensity is below 15 kt, the central vorticity is below 5×10^{-5} s$^{-1}$, or if the storm has been over the land for five consecutive steps, which is equivalent to 30 hours. To form a fair comparison, we remove storms with a lifetime maximum intensity less than 25 kt for all datasets. As TCs would undergo an extratropical transition at high latitudes, we restrict our analysis to samples where the storm center is south of 50N. The remaining storms are used for the TC-GEN evaluation.

4.1 Track Density

Figure 7 compares the simulated tracks that are initiated with both hourly and monthly data, with observed tracks and simulated tracks using KE08 and PepC. The colors represent the spatial track density normalized to the maximum of the basin. We show that both sets of simulated tracks replicate the typical recurving pattern seen in the observed tracks relatively well, which is comparable to KE08 and PepC. Compared to observations, TC-GEN simulated tracks exhibit a negative bias in the main development region, mainly stemming from the negative bias in the genesis component of PepC within this region. We test this hypothesis with a sensitivity test by resampling the genesis according to the spatial distribution of historical genesis locations. After sampling, we find that the simulated tracks effectively capture the hotspots in the main development region, the southeast US coast, and the Gulf of Mexico, although there is a slight positive bias in the Gulf of Mexico with hourly data and in the West Caribbean Sea with monthly data (Figure S1).

We further evaluate the performance of TC-GEN by comparing the 6-hourly north-south and east-west displacements of simulated and observed tracks, which serves as a means to assess TC-GEN’s performance in simulating individual tracks. The results are shown in Figure 8. All simulated data sets are largely consistent with the observations. For simulated tracks initiated with hourly data, there is a slight positive bias for positive meridional displacement, a slight negative bias for negative meridional displacement; and correspondingly, a negative bias for positive zonal displacements and a positive bias for negative zonal displacements, which could come from fewer recurvations in simulated storm tracks that originate in the main development region. Additionally, positive biases in meridional displacements may also arise from the deviations in eastward moving tracks at high latitude (near Europe), where they should have been terminated because of their low wind intensity. These patterns are also seen in simulated tracks that are initiated with monthly reanalysis data. In general, both datasets exhibit comparable performance to existing downscaling methods, with simulated tracks initiated using hourly data showing slightly better performance than those initiated with monthly data.

4.2 Landfall Frequency

We examine the annual regional landfall frequency at coastal locations along the North Atlantic coastline. To help indicate locations, a total of 186 mileposts (MPs) are defined
Figure 7. Track density Track density is calculated as the accumulated number of TC passes into each 0.75×0.75 grid box normalized by the maximum grid value of the basin, smoothed with a Gaussian low-pass filter. Tracks over land are removed in each subplot. Simulated tracks initiated with (b) hourly data and (d) monthly data are compared with (a) observations, (c) KE08 and (e) PepC. All simulated tracks replicate the typical recurving pattern seen relatively well.

following Vickery et al. (2000) (Vickery et al., 2000), as shown in Figure 9, to cover the coastline with 100-km spacing along the Mexican coastline and 50-km spacing along the US coastline. Landfall is defined as simulated or observed storms that approach within 50 km of each coastal milepost. The results presented in Figure 9b are based on simulated tracks initiated using both hourly and monthly data. Furthermore, results from KE08- and PepC-simulated tracks are included for comparison. As a reference, the historical annual landfall rate between 1900 and 2022 is shown with shading that indicates the associated sampling error at each milepost. The sampling error for the annual rate of each gate is determined by calculating the total number and standard error of storms that cross each gate over the entire record and then dividing both the mean and the error bars by the number of years.

Due to the different annual total frequencies in the simulated and observed track datasets, which can significantly influence landfall frequency, we adjust the annual rate to a uniform 13 storms per year in all datasets to form a fair comparison. Our results indicate that the simulated tracks, from daily and monthly data, can reproduce the overall pattern in the observations, showing a performance comparable to that of KE08 and PepC. The annual landfall rates simulated by TC-GEN exhibit correlations with observations of 0.79 and 0.82 for the tracks initiated with hourly and monthly data, respectively, which are
Figure 8. 6 hour zonal and meridional displacement. Comparison of probability density functions of 6 hour (a) meridional and (b) zonal displacements between simulated tracks and observations. Simulated tracks initiated with hourly data and monthly data are both presented and compared with KE08 and PepC.

comparable to 0.83 and 0.79 for PepC and KE08, respectively. Both TC-GEN simulated data sets capture the landfall frequency at MP 100-125, which is overlooked by existing methods, while they underestimate the landfall frequency below MP 25, possibly due to fewer genesis in the main development region.

4.3 Lifetime Maximum Intensity and Landfall Intensity

We analyze the simulated TC intensity using two metrics, the lifetime maximum intensity and landfall intensity. The LMI distribution serves as a representation of the TC intensity climatology. A successful simulation should be able to reproduce the bimodal distribution with a shoulder feature around 120 kt, which is associated with storms that undergo rapid intensification (C.-Y. Lee et al., 2016). We show in Figure 10 that after bias correction, both sets of TC-GEN are capable of reproducing a realistic distribution of the observed LMI. TC-GEN tracks initiated with hourly data better simulate the tail of the LMI distribution for LMI greater than 75 kt; however, there is a negative bias in LMI for storms with LMI less than 75 kt, which are mostly moderate storms that do not undergo rapid
Figure 9. Landfall frequency Subplot a shows locations of mileposts along Mexico (every 100 km) and U.S. (every 50 km) coastline. Subplot b shows the comparison of annual landfall rate at each of 186 mileposts between simulated tracks and observation, with shading indicating the associated sampling error. Results from KE08 simulated tracks and PepC simulated tracks are shown for comparison.

intensification. TC-GEN tracks initiated with monthly data overestimate the proportion of storms with an LMI greater than 75 kt. The biases might originate from the intensity bias correction model. In order to have a reasonable fraction of storms undergo rapid intensification, the bias correction model prioritizes strong storms, which could lead to a higher proportion of storms becoming more intense than they should be. Similar patterns are also seen in the distribution of the landfall intensity. Both data sets initiated with hourly and monthly data exhibit a positive bias in landfall intensity greater than 75 knots. This bias is also likely to be attributed to the intensity correction model, which tends to overestimate the intensity of the storm when the storm has already weakened.
Figure 10. **Lifetime maximum intensity and landfall intensity** Subplot a compares LMI distribution between simulated storms and observations. Subplot b compares the distribution of landfall intensity, defined as the maximum wind speed within 50 km of each coastal milepost, from both simulated and observed tracks. Results of KE08 and PepC are shown here for comparison.

4.4 Outer Size

Although the TC structure cannot be fully resolved in the reanalysis data set, previous work has shown that the reanalysis data can be used to extract the outer size of storms, and ERA5 shows an improved representation of the outer size compared to previous versions of ERA (Bian et al., 2021). Here, we examine how the outer size of the TCs compares between TC-GEN simulated tracks and historical storms, where outer sizes of historical TCs are derived from the corresponding ERA5 reanalysis data. As the statistical downscaling approach does not provide this output, we do not have data from PepC for this analysis. The results are shown in Figure 11. The medians (standard deviations) of r2, r6, and r12 from TC-GEN simulated tracks are 574.5 (230.2), 451.0 (172.5) and 270.8 (74.1) km, respectively, compared to 584.9 (259.8), 468.1 (233.4) and 277.5 (129.6) km, respectively, from historical data. For all three size metrics, TC-GEN accurately reproduces the median of outer size, with a discrepancy of approximately 10 km, which is even lower than the uncertainties in outer size arising from different reanalysis datasets (Bian et al., 2021). However, the
standard deviations for all three size metrics in TC-GEN-simulated TCs are smaller than those observed in historical storms, particularly for r12, which represents the largest metric that defines the outer size of storms. This smaller variation may arise from the bias in the horizontal wind structures of TCs at genesis, which requires further investigation.

Figure 11. TC outer size Subplot a shows the concept of TC outer size defined as the radii at which the 10-m azimuthal-mean wind speed equals 2, 6, and 12 m/s. The contours of the 10-meter azimuthal-mean wind are shown with color lines. Subplot b shows the boxplots of outer size at three radii metrics, from TC-GEN simulated tracks and those in ERA reanalysis. The median of each metric is represented as a horizontal bold line, and the upper and lower boundaries of each box indicate the 75th and 25th percentiles.

5 Discussion

5.1 Sensitivity to reanalysis data

In this study, we show the results of TC-GEN initiated with 6-hourly and monthly ERA5 reanalysis data. We illustrate that TC-GEN can generate realistic synthetic TCs with both datasets, despite their different temporal resolutions. Given the significant advantage in reducing data download and storage burdens, we propose that using monthly data to initiate TC-GEN is acceptable when scaling up the data generation process to achieve global coverage or long-period simulations.

Furthermore, we evaluate the suitability of applying TC-GEN to reanalysis data sets other than ERA5 reanalysis. Using NCEP GFS (see 2.3, we find that the results are unsatisfactory (as illustrated in Figure S2), which is likely attributed to the well-known domain gap problem in deep learning. In a deep learning model, typically the first several layers of the neural network are responsible for extracting features from raw data. These layers are trained to identify relevant features that help in downstream tasks, such as recogniz-
ing distinctive patterns, reducing noise, and achieving specific invariances. However, these layers can become highly specialized for the specific training data set and fail to generalize effectively to different data sets. We believe that this is the reason why TC-GEN does not perform well in NCEP GFS, as its core model Pangu-Weather is trained exclusively on ERA5 reanalysis data. Based on this discussion, an interesting future direction involves devising a generalized ML-based weather forecasting system that performs reasonably well on various reanalysis datasets. This could be accomplished, for example, by training the model on multiple reanalysis datasets together.

5.2 Extrapolation and applicability for future climate

To generate storms under future climate conditions, traditional statistical downscaling approaches assume that the observed relationships between the TC and the environment, established under historical climate conditions, will continue to hold in a warming climate. While there is no need to re-train the statistical models based on future climate, the process of extrapolation introduces a certain degree of uncertainty, particularly when unforeseen factors may impact the relationship. TC-GEN has unique strengths and limitations in addressing extrapolation. As ML-GWM operates in a manner that mimics the characteristics of numerical models; once a future ML-GWM becomes accessible, it enables TC-GEN to directly simulate storms under future climate conditions when initiated with future climate projections. However, as previously discussed and a significant limitation, the optimal performance of TC-GEN depends on being paired with the specific set of environment maps on which it was trained. Therefore, it is necessary to pre-train an ML-GWM using environmental data obtained from climate projections, before applying TC-GEN to climate change studies.

5.3 Range of TC seeds

Poisson blending involves integrating synthetic TC seeds into the surrounding environment, where it is crucial to carefully choose a specific range to define the extent of TC seeds. The TC seed range should be limited to avoid including unrelated meteorological systems, which can negatively affect the performance of the PCA model. However, if the range is excessively limited, it may not fully capture the entire spatial structure of the TC during its genesis. In such cases, the outermost extent of the range may not have fully diminished to the intensity of the surrounding background wind. As the Poisson blending algorithm tends to assimilate the gradient of TC seeds while aligning the boundaries with the ambient wind field, this could result in an underestimation of the wind speed within the inner region of the storm. In practice, we examine several sets of radii ranging from 25 grid cells (approximately 200 km) to 89 grid cells (approximately 1200 km). Our sensitivity tests reveal that the results are relatively robust when the radius falls within the range of 49 to 75. For the primary analysis in this study, we use a radius of 64 grid cells as the optimal parameter for blending.

5.4 Intensity bias correction

The spatial structure of the TCs could not be fully resolved on the 0.25° × 0.25° horizontal grid, and we apply the intensity bias correction model to adjust the simulated raw intensity to the real intensity. The bias correction model has the ability to reproduce a realistic LMI distribution and captures the correlation of the TC intensity with the previous time step, thereby maintaining strong continuity. In the development of this model, we also test models that are not based on recurrent neural networks, where the maximum intensity of the storm is adjusted solely based on the TC and environmental predictors in the current and previous steps. However, the performance of these models is not optimal, indicating that recurrent networks are necessary. One limitation of the current bias correction model is that it tends to overestimate TC maximum intensity when the storm is decaying, which
partially explains the positive bias in the landfall intensity distribution. This bias is likely a result of the model being trained to prioritize replication of the shoulder feature in LMI, which is associated with strong storms that undergo rapid intensification (this may also stem from a limitation in the Dvorak technique, which is used to estimate the TC intensity from satellite imagery). Consequently, the model tends to generate more storms that grow at a higher rate while decaying at a slower rate. Future work should focus on improving the bias correction model to effectively handle storms that undergo rapid intensification and those that do not, with the aim of achieving optimal performance in terms of both lifetime maximum intensity and landfall intensity.

5.5 Asymmetric TC wind field

Horizontal asymmetric TC wind fields are important for disaster management and regional risk assessment. In addition to the maximum wind speed, accurate estimation of the TC wind field is essential to identify at-risk populations and assess potential climate-related threats. One notable advantage of TC-GEN is its ability to directly output spatial asymmetric characteristics of the TC surface wind field. Although raw simulated winds are often underestimated as TC structures cannot be fully resolved at a resolution of 0.25° × 0.25°, there are still several ways to adjust the intensity of the wind and effectively use the simulated asymmetries. For example, with the adjusted maximum wind intensity and the extracted outer size of the TC, a parametric wind model can be applied, such as the model developed in Chavas et al. (2015) (Chavas et al., 2015), to generate the complete asymmetric wind profile of the TC. Future work should also assess the ability of TC-GEN to simulate asymmetric winds at landfall. This assessment may involve comparing the synthetic landfalling TCs with observational data, such as winds obtained from Automated Surface/Weather Observing Systems, or with output from dynamical simulations.

6 Conclusions

This study introduces a novel machine learning-based approach to the synthetic downscaling of tropical cyclones. This approach, which we refer to as "TC-GEN", leverages the recent advances in machine learning-based global weather models. The machine learning-based high-resolution global weather model (ML-GWM) takes environmental maps of key atmospheric and surface variables from reanalysis data as input and predicts the values of these variables for the next time step, with the flexibility to choose from various lead times. Using a pre-trained model representing a cutting-edge ML-GWM (Pangu-Weather), we show that TC-GEN is capable of simulating synthetic storms that allow for the two-way interactions between the storm and its environment. It maintains computational efficiency that is similar to existing statistical-deterministic and statistical downscaling approaches; however, its distinctive advantage lies in the ability to simulate the spatial asymmetries of surface wind. TC-GEN consists of four key steps: the generation of a synthetic TC seed for each storm through a data-driven process, the merging of the TC seed with the background environment using Poisson blending, the simulation of the full life cycle of the storm with ML-GWM, and the correction maximum wind speed biases using a long-short-term memory model. By comparing TC-GEN-simulated storms with observed storms and those simulated from existing statistical-deterministic and statistical downscaling approaches, we show that TC-GEN is capable of simulating storms that reproduce a range of important TC characteristics, including metrics for track, intensity, and storm size. For future work, our plan involves expanding this approach to include other TC basins and exploring its applicability on a global scale. Additionally, considering the absence of rain rate in the simulation output from Pangu-Weather, one potential work would be to examine the performance of TC-GEN when working with other ML-GWMs that are capable of simulating this important variable.

The recently introduced ML-GWM has significant potential for improvement with ongoing advances in machine learning and artificial intelligence, aiming for higher resolution,
improved accuracy, and even lower computational costs. Therefore, we expect that the performance of TC-GEN will see further improvements as ML-GWM undergoes continuous development. Moreover, using TC-GEN as an example of how recent advances in machine learning and data science can contribute to tropical cyclone risk assessment, we believe that machine learning-based global weather models will play a crucial role in future climate studies.

Open Research Section

Pangu-Weather trained models can be downloaded from the public GitHub repository at https://github.com/198808xc/Pangu-Weather (https://doi.org/10.5281/zenodo.7678849). Tropical cyclone observations are obtained from the International Best Track Archive for Climate Stewardship (IBTrACS) project at https://www.ncei.noaa.gov/products/international-best-track-archive. Historical ERA5 reanalysis data (both monthly and 6-hourly) are obtained from the ECMWF climate data store. Historical NCEP reanalysis data is downloaded at https://rda.ucar.edu/datasets/ds084.1/.

Acknowledgments

K. Emanuel’s research is part of the MIT Climate Grand Challenge on Weather and Climate Extremes. This research received support by the generosity of Eric and Wendy Schmidt by recommendation of Schmidt Futures as part of its Virtual Earth System Research Institute (VESRI).

References

Emanuel, K., Sundararajan, R., & Williams, J. (2008). Hurricanes and global warming:

Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., ... others (2023). Climate change 2023: synthesis report. contribution of working groups i, ii and iii to
the sixth assessment report of the intergovernmental panel on climate change.
Supporting Information for "TC-GEN: Data-driven Tropical Cyclone Downscaling using Machine Learning-Based High-resolution Weather Model"
Renzhi Jing ¹,², Jianxiong Gao ³, Yunuo Cai ⁴, Dazhi Xi ⁵, Yinda Zhang ⁶, Yanwei Fu ⁴, Kerry Emanuel ⁷, Noah S. Diffenbaugh ¹,⁸,⁹, Eran Bendavid ²,¹⁰

¹Woods Institute for the Environment, Stanford University, Stanford, CA, USA
²School of Medicine, Stanford University, Stanford, CA, USA
³Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
⁴School of Data Science and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
⁵Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
⁶Google LLC, 1600 Amphitheatre Pkwy, Mountain View, CA, USA
⁷Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
⁸Department of Earth System Science, Stanford University, Stanford, CA, USA
⁹Doerr School of Sustainability, Stanford University, Stanford, CA, USA
¹⁰Department of Health Policy, Stanford University, Stanford, CA, USA

Contents of this file

1. Figures S1 to S2
Figure S1. **Sensitivity test of track density** Similar to Figure 7, track density is computed as the accumulated number of tropical cyclone passes into each 0.75 \times 0.75 grid box, normalized by the maximum grid value of the basin, and smoothed using a Gaussian low-pass filter. The four panels show track density from (a) observations, (b) TC-GEN initiated with hourly data, (c) storms simulated by PepC, and (d) TC-GEN initiated with monthly data. In comparison with Figure 7, we resample the genesis locations based on the spatial distribution of historical genesis to ensure a fair comparison between TC-GEN simulated storms and observations. We demonstrate that, following the resampling, the simulated tracks effectively capture the hotspots in the main development region, the southeast US coast, and the Gulf of Mexico.
Figure S2. **Robustness with alternative reanalysis data** We assess the suitability of TC-GEN by initiating it with an alternative reanalysis dataset, the NCEP GFS. Through the simulation of two historical tropical cyclones (a) 2021240N13313 and (b) 2021256N21265, representing storms originating in the Gulf of Mexico and the main development region, respectively, we observe unsatisfactory performance. This is likely due to the well-known domain gap problem in deep learning.